JPS5989736A - Production of al-pb-mg sintered bearing alloy - Google Patents
Production of al-pb-mg sintered bearing alloyInfo
- Publication number
- JPS5989736A JPS5989736A JP57198885A JP19888582A JPS5989736A JP S5989736 A JPS5989736 A JP S5989736A JP 57198885 A JP57198885 A JP 57198885A JP 19888582 A JP19888582 A JP 19888582A JP S5989736 A JPS5989736 A JP S5989736A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- solvent
- mixture
- sintered
- mixing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 10
- 239000001996 bearing alloy Substances 0.000 title claims abstract description 5
- 239000000843 powder Substances 0.000 claims abstract description 60
- 239000002904 solvent Substances 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims abstract description 16
- 239000000203 mixture Substances 0.000 claims abstract description 15
- 238000002156 mixing Methods 0.000 claims abstract description 14
- 239000011230 binding agent Substances 0.000 claims abstract description 10
- 239000002002 slurry Substances 0.000 claims abstract description 9
- 238000005245 sintering Methods 0.000 claims abstract description 8
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 abstract description 15
- 239000012188 paraffin wax Substances 0.000 abstract description 6
- 238000000465 moulding Methods 0.000 abstract description 5
- 229910052745 lead Inorganic materials 0.000 abstract description 3
- 239000011159 matrix material Substances 0.000 abstract description 2
- -1 for example Substances 0.000 abstract 2
- 238000013329 compounding Methods 0.000 abstract 1
- 238000001704 evaporation Methods 0.000 abstract 1
- 229910045601 alloy Inorganic materials 0.000 description 9
- 239000000956 alloy Substances 0.000 description 9
- 238000013016 damping Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910000978 Pb alloy Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 229910000906 Bronze Inorganic materials 0.000 description 2
- WIKSRXFQIZQFEH-UHFFFAOYSA-N [Cu].[Pb] Chemical compound [Cu].[Pb] WIKSRXFQIZQFEH-UHFFFAOYSA-N 0.000 description 2
- 239000010974 bronze Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 239000011812 mixed powder Substances 0.000 description 2
- 238000004663 powder metallurgy Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 241000473391 Archosargus rhomboidalis Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000861 Mg alloy Inorganic materials 0.000 description 1
- 229910052770 Uranium Inorganic materials 0.000 description 1
- 229910001361 White metal Inorganic materials 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000013040 bath agent Substances 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 230000001050 lubricating effect Effects 0.000 description 1
- 238000005551 mechanical alloying Methods 0.000 description 1
- 238000001000 micrograph Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 239000010969 white metal Substances 0.000 description 1
Landscapes
- Powder Metallurgy (AREA)
- Sliding-Contact Bearings (AREA)
Abstract
Description
【発明の詳細な説明】 方法に関する。[Detailed description of the invention] Regarding the method.
近年、AI、−Pb合金は軸受材料として注目され、種
々の研究が行なわれている。In recent years, AI and -Pb alloys have attracted attention as bearing materials, and various studies have been conducted.
しかし、A7−Pb合金は、次の理由によりその製造が
きわめて困難である。すなわち、Atに対するpbの最
大溶解度は658.5vの部品温度におイテ0.2重量
s C1,5原子チ)、Pbニ対する尼の溶解度は0.
9重量% (0,12原子%)で倒れも極めて小さい。However, the A7-Pb alloy is extremely difficult to manufacture for the following reasons. That is, the maximum solubility of Pb in At is 0.2 weight s C1,5 atoms at a part temperature of 658.5V, and the solubility of Ni in Pb is 0.
At 9% by weight (0.12 atomic%), the collapse is extremely small.
しかし、μの比重が2.70に対し、pbが11.36
でPbとUの比重差が極めて大きい。However, the specific gravity of μ is 2.70, while pb is 11.36.
The difference in specific gravity between Pb and U is extremely large.
したがって、At−Pb合金を鋳造法で製造しようとす
る場合、通常の溶解ではν話Pbは比重差によって上下
2相に分離し、冷却すれば658.5υでAL相が、3
26.8 eでpb相が別々に凝固してしまう。Therefore, when attempting to manufacture an At-Pb alloy by a casting method, in normal melting, ν Pb separates into two upper and lower phases due to the difference in specific gravity, and when cooled, the AL phase becomes 3 at 658.5 υ.
At 26.8 e, the pb phase solidifies separately.
この状態を避ける方法としてMとpb を融体溶解度曲
線の温度以上(例えば20東量%pbでは1080℃以
上、40重量*pbでは1300 t!以上)の高温か
ら急速冷却する方法がある。One way to avoid this situation is to rapidly cool M and pb from a high temperature higher than the temperature of the melt solubility curve (for example, 1080° C. or higher for 20% pb, or 1300 t! or higher for 40% pb).
しかし、この方法ではAtおよびPbヲ高温で融解させ
なければならないために、大気中では酸化が激しく不活
性雰囲気中で製造しなければならない。また、Pb量が
多い組成のものヲ鯛造するため番こは融体温度を高くと
ることと冷却速度を極めて速くするために小さい試料の
ものしか製造出来ないことになる。溶解法で製造を試み
ている例は、これまでpb量が9゜0車量qbまでで、
実用的にはpb量が6重量%のものまでである。However, in this method, since At and Pb must be melted at high temperatures, they are highly oxidized in the air and must be produced in an inert atmosphere. Furthermore, in order to manufacture sea bream with a composition containing a large amount of Pb, the melt temperature must be high and the cooling rate must be extremely fast, which means that only small samples can be manufactured. The examples of manufacturing attempted using the melting method so far have had a PB amount of up to 9゜0qb,
Practically, the amount of Pb is up to 6% by weight.
また、粉末冶金により製造する場合、尼粉とPb粉との
比重差が大きいため、両粉末の混合過程において二相に
分離しやすく均一に混合することは難しい。しかも両粉
末の溶解度が極めて小さいため焼結も困難である。これ
まで粉末冶金的手法によるAt−Pb焼結合金の製造実
験は唯−At粉とPb粉と機械的合金法の手法を応用し
て製造した例があるが、この混合方法では大量にkl
−pb焼結合金を製造することは極めて困難である。In addition, when manufacturing by powder metallurgy, since the difference in specific gravity between the Pb powder and the Pb powder is large, the two powders tend to separate into two phases during the mixing process, making it difficult to mix them uniformly. Moreover, since the solubility of both powders is extremely low, sintering is also difficult. Up to now, the only experiment to produce At-Pb sintered alloy using powder metallurgy has been the production of At-Pb sintered alloy using At powder, Pb powder, and mechanical alloying method.
-It is extremely difficult to produce a pb sintered alloy.
また、その機械的強度も不十分であった。Moreover, its mechanical strength was also insufficient.
本発明は、上記事情に鑑みてなされたもので、その目的
とするところは、スラリー混合法という簡単な混合法で
均一にPb相およびMg相がAt母ある。The present invention has been made in view of the above-mentioned circumstances, and its object is to uniformly form a Pb phase and a Mg phase in an At matrix by a simple mixing method called a slurry mixing method.
すなわち本発明は、At粉末とpb粉末とMg粉末とを
pb粉末が1゜0〜80.0体積チ、−粉末が0.5〜
5.0体積チとなるように配合し、予め粘結剤(例えば
パラフィン)′ft溶剤(例えばトルエン)に溶解させ
ておいた溶液に浸漬させ攪拌を行なうと次第に浴剤が揮
発するので粉体入シの溶液の粘性が増しスラリー状にな
り、ここで適当な粘性が得られたならば残りの溶剤を揮
発させ乾燥を行ない、次いてこれを所定形状に成形後焼
結することを特徴とする。That is, in the present invention, the At powder, the PB powder, and the Mg powder are mixed in such a manner that the PB powder has a volume of 1°0 to 80.0%, and the -powder has a volume of 0.5 to 80.0%.
When mixed to a volume of 5.0 volume and immersed in a solution in which a binder (e.g., paraffin) has been dissolved in a solvent (e.g., toluene) and stirred, the bath agent gradually evaporates, making it a powder. The viscosity of the injected solution increases and becomes a slurry, and once a suitable viscosity is obtained, the remaining solvent is evaporated and dried, which is then shaped into a predetermined shape and sintered. do.
以下、本発明方法を図面を参照して説明する。The method of the present invention will be explained below with reference to the drawings.
まず、本発明はU粉末とpb粉末とMg粉末とをPb粉
末が1.0〜80.0体積チ、Mg粉末が0.5〜5.
0体積チとなるように配合する。この場合、At粉末と
しては80〜1500メツシュ程度とくに好ましくは、
325〜1500メツシユの噴霧粉又は搗砕粉を用いる
。pb粉末としては100〜350メツシユの噴霧粉又
は搗砕粉を用いる。Mg粉は60メツシユ以下の粉末、
とくに好ましくは100〜325 メツシュの噴霧粉ま
たは搗砕粉を用いる。First, in the present invention, U powder, Pb powder, and Mg powder are used.
Blend so that the volume is 0%. In this case, the At powder is particularly preferably about 80 to 1500 meshes,
Spray powder or ground powder of 325 to 1500 mesh is used. As the PB powder, a sprayed powder or ground powder of 100 to 350 mesh is used. Mg powder is powder of 60 mesh or less,
Particularly preferably, spray powder or ground powder with a mesh size of 100 to 325 is used.
次いで、本発明は、At粉末とpb粉末ト崗粉末と粘結
剤(例えばパラフィン)を溶かし込んだ溶剤(例えばト
ルエン)を入れた乳鉢の如き容器に入れ機械的に攪拌混
合を行なう。溶剤と粘結剤の種類は溶剤に粘結剤が溶け
ることと溶剤が攪拌途中で揮発するものであることと、
粘結剤が焼結を阻害しなければどのようなものでもかま
わないが、特に好ましくは溶剤としてトルエン、粘結剤
としてパラフィンが適当である。この場合トルエン中の
パラフィン量は1〜10重量%で充分であろう。Next, in the present invention, the mixture is mechanically stirred and mixed by placing the mixture in a container such as a mortar containing a solvent (eg, toluene) in which At powder, PB powder, and binder (eg, paraffin) are dissolved. The types of solvent and binder are that the binder dissolves in the solvent, and that the solvent evaporates during stirring.
Any binder may be used as long as it does not inhibit sintering, but toluene is particularly preferred as the solvent and paraffin as the binder. In this case, an amount of paraffin in toluene of 1 to 10% by weight may be sufficient.
次いで攪拌混合を続けて行くと、溶剤は揮発し粉体と溶
剤の混合液は粘性を増すが、粘性が丁度泥状を呈したな
ら攪拌を止め、残シの溶剤の揮発分を完全に取り除くた
めの乾燥処理を行う。充分φこ乾燥した粉体同志は粘結
剤(例えばパラフィン)で結合された状態にあり、多少
の振動を加えてもAt粉、Pb粉、庫粉の粉体同志の結
合がこわれて分離することがない。Next, as stirring and mixing are continued, the solvent evaporates and the mixture of powder and solvent increases in viscosity, but when the viscosity becomes just muddy, the stirring is stopped and the volatile content of the remaining solvent is completely removed. Perform a drying process for Sufficiently dried powders are bound together by a binder (e.g. paraffin), and even if some vibration is applied, the bonds between At powder, Pb powder, and stored powder will break and separate. Never.
次いで本発明は、上記の混合方法による混合物を圧縮成
形後焼結する。ここでの圧縮成形及び焼結は、常法に従
っておこない、例えば圧縮成形3ton l am”又
はそれ以下の加圧力で焼結を500〜1−4
1700υ、真空度10〜loIT1m)ig程度で0
.5〜2.0時間おこなう。Next, in the present invention, the mixture obtained by the above mixing method is compression molded and then sintered. Compression molding and sintering here are performed according to a conventional method, for example, compression molding is performed with a pressure of 3 ton lam" or less at a pressure of 500 ~ 1-4 1700 υ, a degree of vacuum of 10 ~ loIT 1 m) ig,
.. Do this for 5 to 2.0 hours.
この焼結によりMgの活性元素がAt粉末の表面の酸化
膜を破壊し紅粉末同志が活性焼結し、またAt相中ζこ
固溶し合金の強[’t−高める。As a result of this sintering, the active element of Mg destroys the oxide film on the surface of the At powder, active sintering of the red powder occurs, and solid solution of ζ in the At phase increases the strength of the alloy.
更に、得られたAt−Pb−Mg焼結軸受合金は、pb
の潤滑作用によって摩擦摩耗特性が優れており、減衰能
(吸振)特性が良好である。Furthermore, the obtained At-Pb-Mg sintered bearing alloy has pb
It has excellent friction and wear characteristics due to the lubricating action of , and has good damping ability (vibration absorption) characteristics.
以下、本発明の実施例につき説明する。Examples of the present invention will be described below.
以下の実施例においてA7粉末として、8oメツシユを
通過する噴霧粉を、Pb6末として100メツシユを通
過する噴霧粉と、Mg粉として150メツシユを通過す
る粉末をそれぞれ用いた。In the following examples, the A7 powder used was a sprayed powder that passed through an 8o mesh, the Pb6 powder used as a sprayed powder that passed through 100 meshes, and the Mg powder used as a sprayed powder that passed through 150 meshes.
実施例1
(1) At粉粉末9御〜17
体y%、Mg粉粉末3積積チ上記のスラリー混合法によ
って均一混合粉を作成し、ついで金型に入れ、これを成
形圧力3ton1cmで成形し、しかる後節2
結温度650υで真空中(〜10 rr+mH,g
)で1時間焼成し、焼結体を得た。このようにして得ら
れた焼結体(At−16体積%Pb−3体積%Mg合金
)の1例を第1図の顕微鏡写真で示した。又、これらの
焼結体の相対密度と抗折力を第121図および第゛13
1図に示した。Example 1 (1) A homogeneous mixed powder was prepared using the slurry mixing method described above, containing 9 to 17 y% of At powder and 3 volumes of Mg powder, then put into a mold and molded at a molding pressure of 3 tons and 1 cm. Then, in the next section 2, in a vacuum at a freezing temperature of 650 υ (~10 rr + mH, g
) for 1 hour to obtain a sintered body. An example of the sintered body thus obtained (At-16 volume % Pb-3 volume % Mg alloy) is shown in the micrograph of FIG. In addition, the relative density and transverse rupture strength of these sintered bodies are shown in Figures 121 and 13.
It is shown in Figure 1.
(II) At粉末96.7〜92.5体積チ、pb
粉末2.5体積%、Mg粉末0.8〜5体積%に上記の
スラリー混合法で均一混合粉を得、ついで金型に入れ、
これを成形圧力2 ton jam”で成形し、しがる
後節2
結温度650℃で真空中(〜10 mmtig )で
1時間焼成し、焼結体を得た。(II) At powder 96.7-92.5 volume H, pb
A uniform mixed powder was obtained by the above slurry mixing method with 2.5% by volume of powder and 0.8 to 5% by volume of Mg powder, then put into a mold,
This was molded at a molding pressure of 2 ton jam'' and then fired in a vacuum (~10 mmtig) for 1 hour at a sintering temperature of 650°C to obtain a sintered body.
この焼結体の抗折強度及び焼結密度の測定値を第4図に
併記して示した。The measured values of the bending strength and sintered density of this sintered body are also shown in FIG.
実施例2
実施例1で示した焼結体につき無潤滑状態で比摩耗量を
測定し、その耐摩耗性を調べた。その結果を第5図に示
す。これと比較するために鉛青銅第4穐(LBC4)、
銅鉛3柚(KJ3)、ホワイトメタル(WJI)につき
比摩耗量を測定し、その結果を第6図に併記する。Example 2 The specific wear amount of the sintered body shown in Example 1 was measured in a non-lubricated state to examine its wear resistance. The results are shown in FIG. For comparison, lead bronze No. 4 (LBC4),
The specific wear amount was measured for copper lead 3 (KJ3) and white metal (WJI), and the results are also shown in FIG.
なお、この場合試験機は、大越式迅速摩耗試験機を用い
、摩擦速度を3 m 62 m l s e c s最
終荷重を2・i kg 1血l!とじた。In this case, the test machine used was an Okoshi type rapid abrasion tester, and the friction speed was 3 m 62 ml sec, and the final load was 2.i kg 1 blood 1! Closed.
実施例3
実施例1で示した焼結体につき潤滑状態で比摩耗量を測
定し、その耐摩耗性を調べた。その結果を第5図に示す
。これと比較するために銅鉛第3棟軸受材(KJ3)に
つき比摩耗量を測定し、その結果を第6図に併記する。Example 3 The specific wear amount of the sintered body shown in Example 1 was measured in a lubricated state, and its wear resistance was investigated. The results are shown in FIG. In order to compare this, the specific wear amount was measured for the copper-lead third ridge bearing material (KJ3), and the results are also shown in FIG.
本発明による焼結合金は広いpb組成で銅鉛系合金より
良好である。The sintered alloy according to the invention is better than copper-lead based alloys over a wide range of pb compositions.
第5図および第6図から本発明番こ係る焼結合金が従来
のものに比べて*擦特性が優れていることがわかる。It can be seen from FIGS. 5 and 6 that the sintered alloy according to the present invention has superior friction properties compared to the conventional one.
実施例4
実施例1で示した焼結体の減衰能を測定し、これを第7
図に示す。これと比較するために鉛青銅第424[LB
C4(No、44 )及びAt−4,4Cn−0,8S
i −0,4Mg焼結軸受材につき減衰能を測定し、こ
れを第7図に併記する。なおここで減衰能は歪振幅に依
存しない時の値で、両端自由自在横振動法により振動数
300〜600 C10で測定した。Example 4 The damping capacity of the sintered body shown in Example 1 was measured, and this was measured in the seventh example.
As shown in the figure. For comparison, lead bronze No. 424 [LB
C4 (No, 44) and At-4,4Cn-0,8S
The damping capacity of the i-0,4Mg sintered bearing material was measured, and this is also shown in FIG. Note that the damping capacity here is a value that does not depend on the strain amplitude, and was measured at a frequency of 300 to 600 C10 by the both-end free lateral vibration method.
第7図から減衰能特性が従来のものより良好であり軸受
の騒音源となる振動を低下できることがわかる。It can be seen from FIG. 7 that the damping performance characteristics are better than the conventional ones, and vibrations that are a source of noise in the bearing can be reduced.
以上の如く本発明によれば、スラリ混合法という簡単な
製造方法で均一に分散したAt −Pb −Mg焼結軸
受合金を得ることができ、また得られた合金の摩擦摩耗
特性及び減衰能特性が優れ、軸受材としてきわめて有効
である。As described above, according to the present invention, it is possible to obtain a uniformly dispersed At-Pb-Mg sintered bearing alloy by a simple production method called slurry mixing method, and also the friction and wear characteristics and damping capacity characteristics of the obtained alloy. It has excellent properties and is extremely effective as a bearing material.
第1図はスラリー混合法で製造したAt−16体積%−
3体積%Mg焼結合金の顕微鏡組織写真、第2図は焼結
体のpb量と相対密度の関係を示す図、第3図は焼結体
のPb1lと抗折力との関係を示す図、第4図はMgi
と焼結体の相対密度および抗折力の関係を示す図、第5
図はpb量と無潤滑状態での比摩耗量の関係を示す因、
第6図はpb量と潤滑状態での比摩耗量の関係を示す図
、第7図はpb量と減衰能の関係を示す図である。
井目
同 伊地山
孔1口
X會會×Mン
襄/、i21
慕7図Figure 1 shows At-16 volume% produced by slurry mixing method.
Microscopic structure photograph of 3 volume% Mg sintered alloy, Figure 2 is a diagram showing the relationship between the amount of Pb and relative density of the sintered body, and Figure 3 is a diagram showing the relationship between Pb1l of the sintered body and transverse rupture strength. , Figure 4 shows Mgi
Figure 5 showing the relationship between the relative density of the sintered body and the transverse rupture strength.
The figure shows the relationship between the amount of pb and the amount of specific wear in a non-lubricated state.
FIG. 6 is a diagram showing the relationship between the amount of pb and specific wear amount in a lubricated state, and FIG. 7 is a diagram showing the relationship between the amount of pb and damping capacity. Ime same Ijiyama hole 1x meeting x Mn sho/, i21 Mu 7 figure
Claims (1)
0.0体積チ、Mgが0.5〜5.0体積チとなるよう
に調合し、その後この調合物を粘結剤が溶かし込まれた
溶剤中に浸漬させ、その後調合物と溶剤とを混合させな
がら溶剤を徐々に揮発させ、その後その混合物がスラリ
ー状になったら混合を停止するとともに残りの溶剤を揮
発させ、その後M粉末、Pb粉末およびMg粉末を所定
形状に焼結することを特徴とするAL −Pb −Mg
系焼結軸受合金の製造方法。a powder, Pb powder, and Mg powder, Pb powder is 1.0 to 8
The mixture is mixed so that the volume of Mg is 0.0 volume and the Mg is 0.5 to 5.0 volume.Then, this mixture is immersed in a solvent in which a binder is dissolved, and then the mixture and the solvent are mixed. The method is characterized by gradually volatilizing the solvent while mixing, and then, when the mixture becomes a slurry, stopping the mixing and volatilizing the remaining solvent, and then sintering the M powder, Pb powder, and Mg powder into a predetermined shape. AL -Pb -Mg
A method for producing a sintered bearing alloy.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57198885A JPS5989736A (en) | 1982-11-15 | 1982-11-15 | Production of al-pb-mg sintered bearing alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57198885A JPS5989736A (en) | 1982-11-15 | 1982-11-15 | Production of al-pb-mg sintered bearing alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5989736A true JPS5989736A (en) | 1984-05-24 |
JPS626625B2 JPS626625B2 (en) | 1987-02-12 |
Family
ID=16398543
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57198885A Granted JPS5989736A (en) | 1982-11-15 | 1982-11-15 | Production of al-pb-mg sintered bearing alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5989736A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105385901A (en) * | 2015-11-11 | 2016-03-09 | 苏州阿罗米科技有限公司 | Modifying agent, preparation method thereof, aluminum matrix composite material and manufacturing method of aluminum matrix composite material |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0618016U (en) * | 1992-08-07 | 1994-03-08 | 有限会社イールドキノシタ | Automotive humidifier |
JPH07300644A (en) * | 1994-04-28 | 1995-11-14 | Katsuhiro Nishiyama | Al-pb-g-cu-gr sintered bearing alloy |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52144305A (en) * | 1976-05-27 | 1977-12-01 | Taido Kk | Method of moulding superhard alloy |
JPS5420922A (en) * | 1977-07-15 | 1979-02-16 | Ishikawajima Harima Heavy Ind | Method and apparatus for continuously casting ingots |
-
1982
- 1982-11-15 JP JP57198885A patent/JPS5989736A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS52144305A (en) * | 1976-05-27 | 1977-12-01 | Taido Kk | Method of moulding superhard alloy |
JPS5420922A (en) * | 1977-07-15 | 1979-02-16 | Ishikawajima Harima Heavy Ind | Method and apparatus for continuously casting ingots |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105385901A (en) * | 2015-11-11 | 2016-03-09 | 苏州阿罗米科技有限公司 | Modifying agent, preparation method thereof, aluminum matrix composite material and manufacturing method of aluminum matrix composite material |
Also Published As
Publication number | Publication date |
---|---|
JPS626625B2 (en) | 1987-02-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4106932A (en) | Lubricants for powdered metals, and powdered metal compositions containing said lubricants | |
US4406857A (en) | Alloy for antifriction bearing layer and process of forming an antifriction layer on steel supporting strip | |
JP2512477B2 (en) | Copper-based sliding material | |
CN102471853B (en) | Iron-based sintered sliding part and manufacturing method thereof | |
JPS5989736A (en) | Production of al-pb-mg sintered bearing alloy | |
JP2021099134A (en) | Sintered oil-impregnated bearing and manufacturing method of the same | |
JPH01275735A (en) | Sintered alloy material and its manufacture | |
JPH01136944A (en) | Sintered metallic material | |
US2196875A (en) | Bronze bearing and method of manufacture | |
JP2002309303A (en) | Metal particle composition for alloy formation | |
US5861217A (en) | Composite material having anti-wear property and process for producing the same | |
JPH01230740A (en) | Sintered alloy material for oiliness bearing and its manufacture | |
CA2568890C (en) | Tungsten-iron projectile | |
JPH06141514A (en) | Composite material | |
JPS6149375B2 (en) | ||
JP2009007433A (en) | Copper-based oil-containing sintered sliding member and method for producing the same | |
JP2974738B2 (en) | Sintered copper sliding material | |
JPS5881946A (en) | Al-based sintered bearing alloy and its manufacturing method | |
JPS6140028B2 (en) | ||
JPH01283346A (en) | Sintered alloy material and its production | |
JPH0913101A (en) | Iron-based mixture for powder metallurgy and method for producing the same | |
JPH04124248A (en) | Sintered alloy for oilless bearing and its production | |
JPH116021A (en) | Copper-based sintered friction material and its manufacturing method | |
JPH101704A (en) | Sliding material and manufacturing method thereof | |
JPH02290905A (en) | Grease-free sliding material and its manufacturing method |