JPS5989712A - Heat treatment of steel by high density energy - Google Patents

Heat treatment of steel by high density energy

Info

Publication number
JPS5989712A
JPS5989712A JP20022782A JP20022782A JPS5989712A JP S5989712 A JPS5989712 A JP S5989712A JP 20022782 A JP20022782 A JP 20022782A JP 20022782 A JP20022782 A JP 20022782A JP S5989712 A JPS5989712 A JP S5989712A
Authority
JP
Japan
Prior art keywords
laser beam
heat
steel
laser
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP20022782A
Other languages
Japanese (ja)
Inventor
Katsuhiro Minamida
勝宏 南田
Hideo Takato
高藤 英生
Toshihiko Takahashi
高橋 稔彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP20022782A priority Critical patent/JPS5989712A/en
Publication of JPS5989712A publication Critical patent/JPS5989712A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/06Surface hardening
    • C21D1/09Surface hardening by direct application of electrical or wave energy; by particle radiation

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PURPOSE:To perform efficient heat treatment on the surface of steel by irradiating a laser beam to the surface of the steel to melt the surface and heating the surface to be treated by using the other heat source before or after the irradiation. CONSTITUTION:A tubular work R, such as a rolling roll or the like, which is kept rotated around a revolving shaft RL, is preheated in the position to be heat-treated, at the heat energy smaller than the heat energy of the succeeding laser working, by the arc AC1 generated from a TIG torch T1 for preheating under the supply of inert gas G1 from a gas supply nozzle N1. The position to be heat-treated is then melted by a laser beam LB irradiated via a condenser lens 4 while the inert gas NG introduced through the supply port 2 for nozzle gas of a laser working head 1 is ejected from a hozzle hole 3. The steel is maintained at a prescribed temp. or above without being melted by the arc AC2 generated from a TIG torch T2 for after heat treatment to perform the after heat treatment of the position to be heat-treated, whereby the heat-treated part LP is obtd.

Description

【発明の詳細な説明】 本発明は、レーザービームと他の熱源とを併用すること
による効率の高い鋼表面の熱処理方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for highly efficient heat treatment of steel surfaces by using a laser beam in combination with other heat sources.

周知のように、レーザービームのエネルギー密度は極め
て高く、アーク溶接などに比べて10万倍以上にするこ
とも容易である。例えば、酸素アセチレン炎のエネルギ
ー密度W/Cm2は103程度、アルゴンアーク(20
0A)のエネルギー密度は1、5 X to4程度であ
るのに対し、連続レーザービームの場合は10g、パル
スレーザのエネルギー密度は1013にもなる。従って
このような高エネルギー密度のレーザービームを用いる
と、綱材の表面焼入れ,溶接穿孔,切断などの加工が容
易であるので、従来から各方面で実施されている。この
ようにレーザービームは非常に有用であるが、必ずしも
問題がない訳ではない。すなわち、レーザービームによ
る鋼材の溶融効率は、 ■レーザーパワーの自乗に比例し、 ■ビーム径の4乗に比例し、 ■エネルギー吸収率の自乗に比例する。
As is well known, the energy density of a laser beam is extremely high, and can easily be increased to more than 100,000 times that of arc welding. For example, the energy density W/Cm2 of an oxyacetylene flame is about 103, and the energy density W/Cm2 of an argon arc (20
The energy density of 0A) is about 1.5 x to 4, whereas the energy density of a continuous laser beam is 10g and that of a pulsed laser is as high as 1013. Therefore, the use of such a high-energy-density laser beam facilitates processing such as surface hardening, welding and cutting of steel materials, and has been used in various fields in the past. Although laser beams are thus very useful, they are not necessarily without problems. That is, the efficiency of melting steel by a laser beam is: (1) proportional to the square of the laser power, (2) proportional to the fourth power of the beam diameter, and (2) proportional to the square of the energy absorption rate.

このうち■および■は、レーザー発振器によって定まる
が、■は照射技術によって大きく左右される。そこで鋼
材表面でのエネルギー吸収率を高めることが必要である
が、そのためには、1)表面粗度による多重反射効果の
利用、2)酸化膜による波長吸収性の向上、 3)レーザープラズマ等による二次的効果を利用して間
接的にエネルギー効率を上げる、 等の手段が必要である。
Of these, ■ and ■ are determined by the laser oscillator, but ■ is greatly influenced by the irradiation technique. Therefore, it is necessary to increase the energy absorption rate on the steel surface, and for this purpose, 1) utilizing the multiple reflection effect due to surface roughness, 2) improving wavelength absorption with an oxide film, 3) using laser plasma, etc. Measures such as indirectly increasing energy efficiency using secondary effects are necessary.

本発明は、このような事情に対応して発明されたもので
、鋼表面の熱処理を効率良く行い得るようにしたもので
ある。すなわち本発明は、鋼の表面にレーザービームを
照射して表面を溶融させ表面性状を改質する鋼の熱処理
方法において、レーザービームの照射前後に、レーザー
ビームによる被処理面を別の熱源、例えばTIGアーク
高周波加熱、直接通電、ガスバーナー、前記レーザー族
・置以外の装置によるレーザービーム等の熱源を用いて
加熱し、しかもこのとき該熱源による加熱はレーザービ
ームの熱エネルギー以下とすることを特徴とするもので
ある。
The present invention was invented in response to these circumstances, and is intended to efficiently heat treat the surface of steel. That is, the present invention provides a steel heat treatment method in which the surface of the steel is irradiated with a laser beam to melt the surface and modify the surface properties. Heating is performed using a heat source such as TIG arc high-frequency heating, direct energization, a gas burner, or a laser beam from a device other than the above-mentioned laser group/device, and at this time, the heating by the heat source is less than or equal to the thermal energy of the laser beam. That is.

以下図面を参照して本発明の詳細な説明する。The present invention will be described in detail below with reference to the drawings.

第1図は、レーザービーム照射法を示す説明図で、■は
レーザー加工ヘッド、4はその内部に設けた集光レンズ
でレーザービームLIIが被加工物Rの表面Rsに焦点
を結ぶように配置しである。
Fig. 1 is an explanatory diagram showing the laser beam irradiation method, where ■ is a laser processing head, 4 is a condensing lens provided inside the head, and is arranged so that the laser beam LII is focused on the surface Rs of the workpiece R. It is.

3はレーザービームLBが通過するノズル孔である。3 is a nozzle hole through which the laser beam LB passes.

一方、レーザー加工ヘッド1にはノズルガス供給口2を
設けてあり、該ノズルガス供給口2から不活性ガスNG
をレーザー加工ヘッド1内に供給し、レーザービームL
Bによる溶融域(キーホール)から発生する蒸発物が集
光レンズ4に付着しレンズの透過率を阻害したり、破損
させたりすることを防止するとともに、ノズル孔3から
レーザービーム照射部位に噴出させて被加工物の酸化を
防止する。
On the other hand, the laser processing head 1 is provided with a nozzle gas supply port 2.
is supplied into the laser processing head 1, and the laser beam L
This prevents the evaporated matter generated from the melting region (keyhole) caused by B from adhering to the condenser lens 4 and impairing the transmittance of the lens or damaging it, as well as ejecting it from the nozzle hole 3 to the laser beam irradiation site. to prevent oxidation of the workpiece.

本発明はこのようなレーザービーム照射装置を用い、さ
らに他の熱源を併用するもので、該熱源としてTIGア
ークを使用した場合を第2図に示す。
The present invention uses such a laser beam irradiation device and also uses another heat source, and FIG. 2 shows a case where a TIG arc is used as the heat source.

第2図は本発明を圧延ロールの熱処理に適用した例を示
すもので、T1はレーザー加工ヘッド1の前方に設けた
予備加熱用TIGトーチ、T2はレーザー加工ヘッドl
の後方に設けた後熱処理用TIGトーチ、N1およびN
2は、それぞれ該]〜−チT1およびT2に設けたガス
供給ノズル、G1およびG2は該ノズルN1およびN2
に供給されるイナートガス、Ac1およびA c 2は
それぞれトーチT1およびT2と被加工物(ロール)R
の表面Rsとの間に発生するアークである。またRLは
回転軸、 LPは熱処理完了部である。
FIG. 2 shows an example in which the present invention is applied to heat treatment of rolling rolls, where T1 is a preheating TIG torch provided in front of the laser processing head 1, and T2 is the laser processing head l.
TIG torches for post-heat treatment installed behind the N1 and N
2 are the gas supply nozzles provided in the ~-chi T1 and T2, respectively; G1 and G2 are the nozzles N1 and N2;
The inert gases, Ac1 and Ac2, are supplied to the torches T1 and T2 and the workpiece (roll) R, respectively.
This is an arc that occurs between the surface Rs and the surface Rs. Further, RL is the rotating shaft, and LP is the heat-treated part.

本発明方法を実施するには、策ず、被加工物Rの熱処理
部位を予備加熱用TIGトーチT1からのアークAc1
により、予備加熱する。このとき熱処理部位に投入する
熱エネルギー量は、後続のレーザー加工ヘッドlから供
給される熱エネルギー量より少くする。次いで、予備処
理を行った部位にレーザー加工ヘッド1からレーザービ
ームLBを照射し熱処理を行う。
In order to carry out the method of the present invention, the heat treatment area of the workpiece R must be heated by an arc Ac1 from a preheating TIG torch T1.
Preheat. At this time, the amount of thermal energy input into the heat-treated area is set to be smaller than the amount of thermal energy supplied from the subsequent laser processing head l. Next, the laser beam LB is irradiated from the laser processing head 1 onto the pre-treated area to perform heat treatment.

第3図はそれぞれTIGトーチ、レーザービーム、TI
Gトーチ+レーザービーム加熱による溶融部の断面形状
を示すもので、ATlはTIG 50A、 l0V(7
)場合を、Ar1は丁IG 250A、 l0V(7)
場合を、ALtは2Kwのレーザービームによる場合を
、ALl4よ3Kwのレーザービームによる場合を示し
、さらに^TLIはATlとALlを併用した場合を、
ATl2 LまAr1とAl1を併用した場合を示す。
Figure 3 shows TIG torch, laser beam, and TI, respectively.
It shows the cross-sectional shape of the melted part due to G torch + laser beam heating, ATl is TIG 50A, 10V (7
) case, Ar1 is Ding IG 250A, l0V (7)
In the case, ALt indicates the case using a 2Kw laser beam, ALl4 indicates the case using a 3Kw laser beam, and ^TLI indicates the case when ATl and ALl are used together.
The case where ATl2L and Ar1 and Al1 are used together is shown.

これらの組合せを第4b図に示す。第4a図はこのとき
の投入エネルギー量と溶融断面積との関係を示すもので
These combinations are shown in Figure 4b. Figure 4a shows the relationship between the input energy amount and the melting cross-sectional area at this time.

この図から明らかなように、レーザー2KwとTlG5
0Aとの複合溶融断面積ALT1はレーザ−3Kw単独
による溶接断面積にほぼ等い1゜すな4〕ち本発明方法
は予めTIGアークで被加工部位を予熱した後、レーザ
ービームを照射するので、レーザービームの効率を高め
ることができるのである。またこの場合、TIG 50
Aの溶融断面積AT1はレーザ−2Kw単独による溶融
断面積よりもはる力’ Ic /J%さいので、複合溶
融による効果は最終的に番よレーザービームによる溶融
特性が支配的となり、従って被加工部位はレーザーの高
エネルギー密度による晶速溶融凝固現象を呈することに
なり、その結果超微細化組織を得ることができる。なお
、このときTIGアークによる入熱量を入方150A以
上、特に250 Aにすると、その溶融断面積訂、はレ
ーザー2Kwの溶融断面積AL2より大きくなり、その
結果溶融域の最終特性はTIGアークによるものが支配
的になってしまうので、レーザーの特性を活すためには
レーザー出力を増加するが、あるいはTIGの久方を減
少させる必要がある。
As is clear from this figure, the laser 2Kw and TlG5
The composite welding cross-sectional area ALT1 with 0A is approximately equal to the welding cross-sectional area by laser 3Kw alone, 1°, or 4. In other words, in the method of the present invention, the workpiece is preheated with a TIG arc and then irradiated with the laser beam. , the efficiency of the laser beam can be increased. Also in this case, TIG 50
Since the melting cross-sectional area AT1 of A is much smaller than the melting cross-sectional area by the laser 2Kw alone (Ic/J%), the effect of composite melting is ultimately dominated by the melting characteristics by the Banyo laser beam, and therefore, the effect of composite melting becomes dominant. The processed area exhibits a crystal fast melting and solidification phenomenon due to the high energy density of the laser, and as a result, an ultra-fine structure can be obtained. Note that if the heat input by the TIG arc is 150 A or more, especially 250 A, the melting cross-sectional area correction will be larger than the melting cross-sectional area AL2 of the 2Kw laser, and as a result, the final characteristics of the molten area will be the same as that of the TIG arc. Therefore, in order to take advantage of the characteristics of the laser, it is necessary to increase the laser output or reduce the duration of TIG.

さらに本発明においては、レーザービーム照射後、レー
ザー加工ヘッドlの後方に設けた後熱処理用TIGトー
チT2により、被加工部位に熱を加える。
Further, in the present invention, after the laser beam irradiation, heat is applied to the processed region by a TIG torch T2 for post-heat treatment provided at the rear of the laser processing head l.

第5図はレーザー照射による被加工部の温度変化を示し
たものであるが、レーザーを用いて前記のような鋼の熱
処理(表面改質)を行う場合、該図の曲線りに示すよう
な比較的速度の速い冷却を行うと、被処理錆の特性によ
っては割れが発生し、脆くなることがあるので、徐冷処
理を行うことが必要である。本発明方法は、このような
場合に好適なもので、後熱処理用TIGトーチT2によ
り、鋼を溶融させない程度の温度に加熱し、第5図の曲
線Tに示すような冷却速度にして割れの発生を防止する
ことができる。
Figure 5 shows the temperature change of the processed part due to laser irradiation. When heat treatment (surface modification) of steel as described above is performed using a laser, the temperature changes as shown in the curved line in the figure. If cooling is performed at a relatively high rate, cracks may occur depending on the characteristics of the rust to be treated and the rust may become brittle, so it is necessary to perform slow cooling treatment. The method of the present invention is suitable for such cases, in which the TIG torch T2 for post-heat treatment is used to heat the steel to a temperature that does not melt it, and the cooling rate is set as shown by curve T in Figure 5 to prevent cracking. Occurrence can be prevented.

次に本発明の実施例を示す。Next, examples of the present invention will be shown.

実施例1 1.4%C−0,7%5i−0,7%Mn−17%Cr
−0.8%W−1,2%MOを主成分とするシームレス
パイプ圧延用のプラグの表面を、温度が600℃になる
ようにTIGアークによって予熱した後、レーザービー
ムで表層溶融処理を行った。このプラグを圧延に供した
ところ、プラグに割れが発生して廃却されるまでの寿命
は。
Example 1 1.4%C-0,7%5i-0,7%Mn-17%Cr
- After preheating the surface of a seamless pipe rolling plug containing 0.8% W-1.2% MO to a temperature of 600°C using a TIG arc, the surface layer was melted using a laser beam. Ta. When this plug is subjected to rolling, how long will it last until it cracks and is discarded?

無処理のものに比べて、120%増加した。一方、TI
Gアークによって予熱しない場合には、レーザービーム
照射後焼割れが生じ、圧延に供することが出来なかった
It increased by 120% compared to the untreated one. On the other hand, T.I.
If preheating was not performed using a G arc, quench cracking occurred after laser beam irradiation, and the product could not be rolled.

失態■ス 1.5%G−0.5%5i−0.5%Mn−25%Cr
−3%Niを主成分とするシームレスパイプ圧延用のプ
ラグの表面を、温度が450℃になるようにTiGアー
クによって予熱したあと、レーザービームで表層溶融処
理を行い、更に後熱処理用TIGトーチで後熱して徐冷
させた。実施例1のプラグに比べて本プラグはクロム炭
化物量が多いためにレーザービームによる表層溶融・急
冷凝固処理の効果が顕著で、本処理によって割れ発生ま
での寿命は約3倍に増加した。本プラグの場合には、T
IGアークによる予熱に加えて、後熱も実施しないと処
理後の割れは防止できなかった。
Mistake 1.5%G-0.5%5i-0.5%Mn-25%Cr
- After preheating the surface of a plug for seamless pipe rolling whose main component is 3% Ni with a TiG arc to a temperature of 450°C, the surface layer is melted with a laser beam, and then with a TIG torch for post-heat treatment. It was then heated and slowly cooled. Compared to the plug of Example 1, this plug has a large amount of chromium carbide, so the effect of surface melting and rapid solidification treatment using a laser beam was remarkable, and this treatment increased the life until cracking approximately three times. In the case of this plug, T
Cracking after treatment could not be prevented unless postheating was performed in addition to preheating by IG arc.

大蓋■l 実施例2と同一組成のシームレスパイプ圧延用のガイド
シューを、やはり実施例2と同じ方法で処理した。この
ガイドシューの寿命は無処理のものに比べて2.5倍に
増加した。
Large lid ■l A guide shoe for seamless pipe rolling having the same composition as in Example 2 was also treated in the same manner as in Example 2. The life of this guide shoe was increased by 2.5 times compared to the untreated one.

叉胤鍬土 3.3%G−1.5%5i−2%M n−1%Mo及び
3.5%c−i、s%5i−0.5%Mn−0,4%N
i−0,6%Crを主成分とするシームレスパイプ圧延
用のプラグ及びガイドシューをその表面温度が600℃
になるように予熱し、レーザービームで表層溶融処理を
行った。本処理によって割れ発生までの寿命は2倍に向
上した。この場合にも予熱がないとレーザー処射後割れ
が生じた。
Grain hoe soil 3.3%G-1.5%5i-2%M n-1%Mo and 3.5%ci, s%5i-0.5%Mn-0,4%N
i-Plug and guide shoe for seamless pipe rolling whose main component is 0.6% Cr whose surface temperature is 600℃
The surface was melted using a laser beam. This treatment doubled the lifespan until cracking occurred. In this case too, cracking occurred after laser treatment without preheating.

大旗(9+15 0.85%G−0.8%5i−0.4%Mn−3,0%
Cr−0,3%Mo−0,1%Vを主成分とする冷却ロ
ールの表面を温度が300℃になるようにTIGアーク
トーチで予熱し、レーザービームで表層溶融処理した。
Big flag (9+15 0.85%G-0.8%5i-0.4%Mn-3,0%
The surface of a cooling roll mainly composed of Cr-0.3% Mo-0.1% V was preheated with a TIG arc torch to a temperature of 300° C., and the surface layer was melted with a laser beam.

凝固組織が超微細化されたため、圧延鋼材量500tの
時点での肌粗度は無処理のものに比べて175にまで向
上した。
Since the solidification structure was made ultra-fine, the surface roughness at the time of 500 tons of rolled steel improved to 175 compared to the untreated steel.

予熱がない場合にはレーザー照射後割れが生じた。In the absence of preheating, cracking occurred after laser irradiation.

失胤匠旦 3.0%G−0.5%5i−1.0%Mn−1,5%N
i−16%Cr−3%M。
Lost Tane Takudan 3.0%G-0.5%5i-1.0%Mn-1.5%N
i-16%Cr-3%M.

を主成分とする冷延ロールの表面をTIGアークによっ
て400℃に加熱した後、レーザービームで表層溶融処
理した。鋼材500を圧延後の粗度は無処理のものに比
べl/6に向上した。予熱なしでは割れた。
The surface of a cold-rolled roll mainly composed of was heated to 400° C. by a TIG arc, and then the surface layer was melted with a laser beam. The roughness after rolling the steel material 500 was improved to 1/6 compared to the untreated material. It cracked without preheating.

去]11L 1.7%G−0.5%5i−0,9%Mn−1%Cr−
1%Ni−0,5%M。
] 11L 1.7%G-0.5%5i-0.9%Mn-1%Cr-
1%Ni-0.5%M.

を主成分とする熱延ロールを表面温度450℃にTIG
アークによって予熱した後、レーザービームで表層溶融
処理した。本ロールの耐肌荒性は著しく向上し、ロール
削量を173に向上した。予熱がない場合にはレーザー
照射後割れが生じた。
TIG a hot-rolled roll mainly composed of
After preheating with an arc, the surface layer was melted with a laser beam. The roughness resistance of this roll was significantly improved, and the roll removal amount was increased to 173. In the absence of preheating, cracking occurred after laser irradiation.

大五皿工 2.9%C−0,5%5i−1%Mn−18%Cr−1
%MO−1%V−1%Niを主成分とする熱延ロールの
表面温度を700℃にTIGアークによって予熱後、レ
ーザービームで表層溶融処理し、更にTIGアークで加
熱して徐冷させた。本ロールの耐肌荒性は実施例7のも
のに比べ更に著しく1ロ〜ル削量は無処理のものの11
5に向上した。本ロールでは、予熱・後熱をしないと処
理後割れが生じた。
Daigosarako 2.9%C-0.5%5i-1%Mn-18%Cr-1
After preheating the surface temperature of a hot rolling roll mainly composed of %MO-1%V-1%Ni to 700°C by TIG arc, the surface layer was melted by a laser beam, and further heated by TIG arc and slowly cooled. . The surface roughness resistance of this roll is even more remarkable than that of Example 7, and the amount of material removed per roll is 11% compared to that of the untreated roll.
Improved to 5. With this roll, cracks occurred after treatment unless preheating and postheating were performed.

なお、上記の説明および実施例においては、レーザー照
射前後の加熱源として1′IGアークを用いた場合につ
いて述べたが、T’IGアーク以外の熱源、例えば高周
波加熱、直接通電、ガスバーナー、前記主熱源のレーザ
ー以外のレーザー装置によるレーザービーム等々任意の
熱源を使用することができ、全く同様の効果を達つする
ことができる。
In the above description and examples, a case was described in which a 1'IG arc was used as a heating source before and after laser irradiation, but a heat source other than a T'IG arc, such as high frequency heating, direct energization, gas burner, Any heat source can be used, such as a laser beam from a laser device other than the main heat source laser, and exactly the same effect can be achieved.

第1図はレーザービーム照射法を示す説明図、第2図は
本発明の実例を示す説明図、第3図はTIGトーチ、レ
ーザービーム、TIGトーチ+レーザービーム加熱によ
る溶融部の断面形状を示す図。
Fig. 1 is an explanatory diagram showing a laser beam irradiation method, Fig. 2 is an explanatory diagram showing an example of the present invention, and Fig. 3 is a cross-sectional diagram of a melted part by TIG torch, laser beam, and TIG torch + laser beam heating. figure.

第4a図は第3図に示す場合の投入エネルギー量と溶融
断面積との関係を示す図、第4b図は、第3図に示す加
熱の組合せを区分して示す平面図。
FIG. 4a is a diagram showing the relationship between the input energy amount and the melting cross-sectional area in the case shown in FIG. 3, and FIG. 4b is a plan view showing the heating combinations shown in FIG. 3 in sections.

第5図はレーザー照射による被加工部の温度変化を示す
図である。
FIG. 5 is a diagram showing the temperature change of the processed part due to laser irradiation.

1:レーザー加工ヘッド 2:ノズルガス供給口 3:ノズル孔       4;集光レンズLB:レー
ザービーム    NG:不活性ガスR:被加工物 R9:表面 T1:予備加熱用TIG トーチ T2:後熱処理用TIGトーチ N1 、N2 :ガス供給ノズル G1pG2”イナートガス Ac1 p Ac2 :アーク Rシ:回転軸 しP;熱処理完了部 第・ 1 図 第 2 図 第4a図 第4b図 第5図 時間rsec−,9 手続補正書(自発) 特許庁長官 若杉 和夫 殿 1、事件の表示 昭和57年特許願第200227号2
、発明の名称    高密度エネルギーによる鋼の熱処
理方法3、補正をする者 事件との関係   特許出願人 住所    東京都千代田区大手町二丁目6番3号名称
    (665)新日本製鐵株式會社代表者 武 1
) 豊 4、代理人〒104  電03−543−86945、
補正の対象 図面 6、補正の内容
1: Laser processing head 2: Nozzle gas supply port 3: Nozzle hole 4: Condensing lens LB: Laser beam NG: Inert gas R: Workpiece R9: Surface T1: TIG for preheating Torch T2: TIG torch for post heat treatment N1, N2: Gas supply nozzle G1pG2'' Inert gas Ac1 p Ac2: Arc R: Rotation axis P; Heat treatment completed section Fig. 1 Fig. 2 Fig. 4a Fig. 4b Fig. 5 Time rsec-, 9 Procedure amendment (Voluntary) Director of the Japan Patent Office Kazuo Wakasugi 1, Indication of the case Patent Application No. 200227 of 1981 2
, Title of the invention Method for heat treatment of steel by high-density energy 3, Relationship with the amended case Patent applicant address 2-6-3 Otemachi, Chiyoda-ku, Tokyo Name (665) Representative of Nippon Steel Corporation Takeshi 1
) Yutaka 4, agent 104 Telephone 03-543-86945,
Drawing subject to amendment 6, contents of amendment

Claims (3)

【特許請求の範囲】[Claims] (1)鋼の表面にレーザービームを照射して表面を溶融
させ表面性状を改質する鋼の熱処理方法において、レー
ザービームの照射前後に、レーザービームによる被処理
面を別の熱源を用いて加熱することを特徴とする高密度
エネルギーによる鋼の熱処理方法。
(1) In a steel heat treatment method in which a laser beam is irradiated onto the surface of the steel to melt the surface and modify the surface properties, the surface to be treated by the laser beam is heated using a separate heat source before and after irradiation with the laser beam. A method of heat treating steel using high-density energy.
(2)レーザービーム照射前の別の熱源による加熱は、
レーザービームによる溶融量を越えないように設定する
ことを特徴とする特許 第(1)項記載の高密度エネルギーによる鋼の熱処理方
法。
(2) Heating with another heat source before laser beam irradiation:
A method of heat treating steel using high-density energy as described in Patent No. (1), characterized in that the temperature is set so as not to exceed the amount of melting by a laser beam.
(3)レーザービーム照射後の別の熱源による加熱は,
鋼を溶融させず、かつ所定温度以上に保持するように設
定することを特徴とする前記特許請求の範囲第(1)項
記載の高密度エネルギーによる鋼の熱処理方法。
(3) Heating by another heat source after laser beam irradiation:
A method of heat treating steel using high-density energy according to claim 1, characterized in that the temperature is set so as not to melt the steel and to maintain it at a predetermined temperature or higher.
JP20022782A 1982-11-15 1982-11-15 Heat treatment of steel by high density energy Pending JPS5989712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20022782A JPS5989712A (en) 1982-11-15 1982-11-15 Heat treatment of steel by high density energy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20022782A JPS5989712A (en) 1982-11-15 1982-11-15 Heat treatment of steel by high density energy

Publications (1)

Publication Number Publication Date
JPS5989712A true JPS5989712A (en) 1984-05-24

Family

ID=16420919

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20022782A Pending JPS5989712A (en) 1982-11-15 1982-11-15 Heat treatment of steel by high density energy

Country Status (1)

Country Link
JP (1) JPS5989712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972694A3 (en) * 2007-03-23 2010-11-10 Yamaha Hatsudoki Kabushiki Kaisha Crankshaft, internal combustion engine, transportation apparatus, and production method for crankshaft

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140348A (en) * 1976-05-19 1977-11-22 Hitachi Ltd Optical device for photo-processing

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52140348A (en) * 1976-05-19 1977-11-22 Hitachi Ltd Optical device for photo-processing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972694A3 (en) * 2007-03-23 2010-11-10 Yamaha Hatsudoki Kabushiki Kaisha Crankshaft, internal combustion engine, transportation apparatus, and production method for crankshaft

Similar Documents

Publication Publication Date Title
EP1285719B1 (en) Method for making wear-resistant surface layers using laser
KR101860128B1 (en) Method for laser welding one or more workpieces made of hardenable steel in a butt joint
Shelyagin et al. Multi-pass laser and hybrid laser-arc narrow-gap welding of steel butt joints
KR20040093461A (en) Electron beam welding method providing post-weld heat treatment
CN109693026A (en) A kind of combination overlaying method for outer circle large area stellite hardfacing
Alphonsa et al. Plasma nitriding on welded joints of AISI 304 stainless steel
CN111801192A (en) Welding pretreatment method for coated steel plate
JP2003094184A (en) Lap laser-beam welding method for galvanized steel sheet
JPS5989712A (en) Heat treatment of steel by high density energy
CN106238915A (en) A kind of laser assembly solder method of titanium microalloying carbon manganese steel
JPS58184081A (en) Composite tempering welding method using laser
GB2099349A (en) Laser working process
Stelling et al. Vertical-up and-down laser plasma powder hybrid welding of a high nitrogen austenitic stainless steel
TWI806303B (en) Laser welding method and laser welding device for Si-containing steel plate
CN114892100B (en) Alloy powder for laser cladding of small cold-rolled working roll and cladding method
JPS6092074A (en) Method of pre-processing of metal
JPH0394909A (en) Manufacture of hard build-up welding roll or roller
Dilthey et al. Perspectives offered by combining a laser beam with arc welding procedures
Deacon Material degradation in heavy steel plates caused by bending with a laser.
JPH09201688A (en) Manufacture of welded steel tube excellent in strength in weld zone
WO2023042636A1 (en) Laser welding method for si-containing steel sheets
JPH07188737A (en) Corrosion resistant treatment of corrosion resistant apparatus for nuclear fuel reprocessing plant
JPH05317928A (en) Method for repairing rolling roll
JPH09310189A (en) Descaling method for metallic material
Mandal et al. Plate Cutting