JPS5989651A - Recovery and purification of methacrylonitrile - Google Patents

Recovery and purification of methacrylonitrile

Info

Publication number
JPS5989651A
JPS5989651A JP20017782A JP20017782A JPS5989651A JP S5989651 A JPS5989651 A JP S5989651A JP 20017782 A JP20017782 A JP 20017782A JP 20017782 A JP20017782 A JP 20017782A JP S5989651 A JPS5989651 A JP S5989651A
Authority
JP
Japan
Prior art keywords
man
water
tower
cooling water
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20017782A
Other languages
Japanese (ja)
Other versions
JPS6133815B2 (en
Inventor
Kazumasa Katsuta
一誠 勝田
Akio Namie
浪江 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Asahi Kasei Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd, Asahi Kasei Kogyo KK filed Critical Asahi Chemical Industry Co Ltd
Priority to JP20017782A priority Critical patent/JPS5989651A/en
Publication of JPS5989651A publication Critical patent/JPS5989651A/en
Publication of JPS6133815B2 publication Critical patent/JPS6133815B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To recover and purify methacrylonitrile, economically, by contacting ammoxidation reaction gas with cooling water, distilling the condensed oil layer after separating from the water layer, and stripping the cooling water separated from the oil layer, thereby separating the dissolved methacrylonitrile. CONSTITUTION:In the process for the recovery and purification of methacrylonitrile (abbreviated as MAN) from the ammoxidation reaction gas composed mainly of methacrylonitrile, the reaction gas is made to contact with cooling water in the cndensation column 18, the condensed gas is extracted together with the cooling water from the bottom of the column and separated in the oil-water separator 20 into an oil layer and a cooling water layer containing MAN and other reaction components, the oil layer is fed to the following distillation column 21 for the removal of cyanic acid and water, and the water is returned to the stripper 15 of the stripping column 13 to recover MAN, and reused as the cooling water. The oil layer is further distilled in the product column 23, and the objective MAN is obtained from the top 24 of the column.

Description

【発明の詳細な説明】 この発明はメタクリロニトリル(以下MANと略称する
)の回収精製法に関する。その目的は回収精製プロセス
を単純化して、設備費、経費の低減を図シ得るMANの
回収精製方法を提案するKあるO MAN拡イソブチレンあるいはターシャリブチルアルコ
ール等とアンモニアおよび酸素との気相接触反応、すな
わちアンモキシデージョン反応によシ生成する。この反
応生成物はMANを主成分とし、メタクロレイン、アセ
トニトリル、アクリロニトリル、青酸、イソブチロニト
リル、プロピオニトリル等の副生物を含有し、高温ガス
状で得られる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering and purifying methacrylonitrile (hereinafter abbreviated as MAN). The purpose is to simplify the recovery and purification process and propose a method for the recovery and purification of MAN that can reduce equipment costs and expenses. It is produced by an ammoxidation reaction. This reaction product contains MAN as a main component, contains by-products such as methacrolein, acetonitrile, acrylonitrile, hydrocyanic acid, isobutyronitrile, and propionitrile, and is obtained in the form of a high-temperature gas.

この反応ガスからMANを回収精製する方法は従来、ア
クリロニトリルのプロセスに準じ行なわれ、第1図に示
すごとくである。すなわち、200℃程度に降温せしめ
たアンモキシデージョン反応ガスを、急冷浴1において
循環系路2を通シ循環する冷却水によシ冷却し、吸収塔
3底部にフィードする。吸収塔3の塔頂に導管4から吸
収水を送シ込み、塔底から上昇する反応ガスと接触せし
めて、反応物を吸収水に吸収捕集する。吸収液は塔底か
ら導管5を通シ回収塔6にフィードし、吸収されないイ
ナートガスは塔頂からオフガスとして排出する。回収塔
6で紘導管7から送シ込み溶媒水とともに吸収液を抽出
蒸留し、アセトニトリルを除去し、その塔頂留出液を脱
青酸・脱水塔8にフィードし、アセトニトリルを含有す
る塔底液は放散塔9に抜出し蒸留して塔頂からアセトニ
トリル等を分離し、水を主体とした塔底液は導管4ある
いは7を経由して吸収水あるいは溶媒水として利用する
。アセトニトリルを除却したプロセス液は脱青酸・脱水
塔8で蒸留し青酸、水を除去した後、低沸分離塔10で
低沸物を除去し、さらに製品塔11において蒸留し、塔
上部の導管12から製品MANを取得する。塔底に濃縮
される高沸物は抜出しプ四−ダウンし、微量残存する低
沸物は塔頂から抜出し除去する。
The method for recovering and purifying MAN from this reaction gas has conventionally been carried out in accordance with the process for acrylonitrile, as shown in FIG. That is, the ammoxidation reaction gas whose temperature has been lowered to about 200° C. is cooled in the quenching bath 1 by cooling water circulating through the circulation path 2, and then fed to the bottom of the absorption tower 3. Absorbed water is sent to the top of the absorption tower 3 through a conduit 4, and is brought into contact with the reaction gas rising from the bottom of the tower, so that the reactants are absorbed and collected by the absorbed water. The absorption liquid is fed from the bottom of the tower through a conduit 5 to a recovery tower 6, and unabsorbed inert gas is discharged from the top of the tower as an off-gas. In the recovery tower 6, the absorption liquid is subjected to extractive distillation along with the solvent water sent through the Hiroshi conduit 7 to remove acetonitrile, and the top distillate is fed to the hydrocyanic acid/dehydration tower 8 to obtain a bottom liquid containing acetonitrile. is extracted to the stripping column 9 and distilled to separate acetonitrile and the like from the top of the column, and the bottom liquid mainly composed of water is passed through the conduit 4 or 7 and used as absorbed water or solvent water. The process liquid from which acetonitrile has been removed is distilled in a hydrocyanic acid removal/dehydration tower 8 to remove hydrocyanic acid and water, and then low-boiling substances are removed in a low-boiling separation tower 10, further distilled in a product tower 11, and passed through a conduit 12 at the top of the tower. Get the product MAN from. High-boiling substances concentrated at the bottom of the column are extracted and drained down, and trace amounts of low-boiling substances remaining are extracted from the top of the column and removed.

従来のMANの回収、精製プロセスは以上のごとくであ
って、MANI)ン当)少なくとも吸収水39トン(M
ANの飽和溶解に要する水量)以上を必要とし、MAN
を水溶液として捕集し、これを水を溶媒とし抽出蒸留す
ることによシ回収し同時にMANと沸点が近いアセトニ
トリルを除去し以降の蒸留による精製手段に移し製品M
ANを取得するものであった。このため、プロセス液量
が増大し、特に吸収塔、回収塔関係設備が大きくなシ設
備費、経費の負担が大であった。
The conventional MAN recovery and purification process is as described above, and requires at least 39 tons of absorbed water (MANI)
(Amount of water required for saturated dissolution of AN)
is collected as an aqueous solution and recovered by extractive distillation using water as a solvent. At the same time, acetonitrile, which has a boiling point close to that of MAN, is removed and transferred to a subsequent distillation purification method to obtain product M.
It was intended to obtain an AN. For this reason, the amount of process liquid increases, and especially the equipment related to the absorption tower and the recovery tower are large, resulting in a large burden of equipment costs and expenses.

この発明は上記事情に鑑みなされたもので、その要旨は
、MANを主成分とするアンモキシデージョン反応ガス
からMANを回収精製するプロセスにおいて、該反応ガ
スを冷却水と接触せしめて凝縮し、油層をなす凝縮物を
冷却水層から分離回収して後段の蒸留精製手段にフィー
ドして精製し、油層と分離した冷却水はストリッピング
して溶存するMANを回収することを特徴とするMAN
の回収精製方法である。
This invention was made in view of the above circumstances, and its gist is that in the process of recovering and refining MAN from an ammoxidation reaction gas containing MAN as a main component, the reaction gas is brought into contact with cooling water and condensed, A MAN characterized in that a condensate forming an oil layer is separated and recovered from a cooling water layer and purified by being fed to a subsequent distillation purification means, and the cooling water separated from the oil layer is stripped to recover dissolved MAN.
This is a recovery and purification method.

この回収精製方法を適用したプロセスの一例を第2図に
示す。このプロセスは200℃程度に降温せしめたアン
モキシデージョン反応ガスをストリッピング塔13の塔
底に導管14からフィードする。塔内を上昇する反応ガ
スは先ず、塔下部を落下する硫酸水溶液に接触して未反
応アンモニア、高沸物が除去される。残った反応ガスは
塔中央部のストリッパ一部15に入シ、その上部から落
下するMANが溶解している吸収水に接触し吸収水(3
) 中のMANをストリップし反応ガス中に抽出して取込み
、塔上部の冷却部16に入る。冷却部16において、反
応ガスは循環落下する冷却水に接触し40℃程度に降温
し、塔頂から導管17を経て凝縮塔18に送り込まれる
An example of a process to which this recovery and purification method is applied is shown in FIG. 2. In this process, an ammoxidation reaction gas whose temperature has been lowered to about 200° C. is fed to the bottom of a stripping column 13 through a conduit 14. The reaction gas rising in the column first comes into contact with the aqueous sulfuric acid solution falling at the bottom of the column to remove unreacted ammonia and high-boiling substances. The remaining reaction gas enters the stripper part 15 in the center of the tower, contacts the absorbed water in which MAN is dissolved and falls from the top, and becomes absorbed water (3
) The MAN in the reactor is stripped and extracted into the reaction gas, which enters the cooling section 16 at the top of the column. In the cooling section 16, the reaction gas comes into contact with circulating and falling cooling water, is cooled to about 40.degree. C., and is sent from the top of the tower through a conduit 17 to a condensation tower 18.

ストリッピング塔13において、MAN吸収水をストリ
ップしてMAN蒸気を取込み冷却された反応ガスは凝縮
塔18の底部から塔内を上昇し、他方ストリッパ一部1
5において、ストリップされた吸収水は冷却器19で冷
却し冷却水として凝縮塔18の塔頂から塔内を落下せし
める。凝縮塔18内において反応ガスは冷却水に接触し
て凝縮し、冷却水とともに塔底から抜出されて油水分離
器20に入ル、凝縮しないイナートガスは塔頂から排出
される。油水分離器20において、油層とMANその゛
他反応成分を溶解した冷却水とを分離し、油層は後段の
蒸留精製′手段である脱青酸脱水塔21にフィードし、
吸収水はストリッピング塔13のストリッパ一部15に
戻してストリップしMANを回収し、水は冷却水として
再生される。
In the stripping tower 13, the MAN-absorbed water is stripped, the MAN vapor is taken in, and the cooled reaction gas rises inside the tower from the bottom of the condensing tower 18, while the stripping tower 18
In step 5, the stripped absorbed water is cooled by a cooler 19 and is allowed to fall from the top of the condensation tower 18 into the tower as cooling water. In the condensation tower 18, the reaction gas comes into contact with the cooling water and is condensed, and together with the cooling water, it is extracted from the bottom of the tower and enters the oil-water separator 20, and the inert gas that is not condensed is discharged from the top of the tower. In the oil-water separator 20, the oil layer is separated from the cooling water in which MAN and other reaction components are dissolved, and the oil layer is fed to the hydrocyanic acid dehydration tower 21, which is a subsequent distillation purification means.
The absorbed water is returned to the stripper section 15 of the stripping tower 13 for stripping to recover the MAN, and the water is regenerated as cooling water.

(4) 油層は、脱青酸脱水塔21で青酸、水を除去した後、低
沸分離塔22で低沸物を除去し、さらに製品塔23にお
いて蒸留し、塔上部の導管24から製品MANを取得す
る。塔底に濃縮される高沸物は抜出しブ四−ダウンし、
微量残存する低沸物は塔頂から抜出し除去する。
(4) After removing hydrocyanic acid and water from the oil layer in a hydrocyanic acid removal tower 21, low-boiling substances are removed in a low-boiling separation tower 22, and further distilled in a product tower 23, and product MAN is released from a conduit 24 at the top of the tower. get. The high-boiling substances concentrated at the bottom of the column are extracted and blown down.
Trace amounts of low-boiling substances remaining are extracted from the top of the column and removed.

この回収精製方法によるプロセスは以上の通夛であシ、
■ アンモキシデージョン反応ガスはa縮せしめ油層と
して回収し、■ MANその他反応物を吸収溶解した冷
却水はストリップしてMANを回収し、同時に冷却水と
し再生し、■油層をなす凝縮物は蒸留によシ精製し製品
MANを取得するものである。
The process using this recovery and purification method is the same as above.
■ The ammoxidation reaction gas is condensed and recovered as an oil layer, ■ The cooling water that has absorbed and dissolved MAN and other reactants is stripped and MAN is recovered, and at the same time it is regenerated as cooling water. ■ The condensate forming the oil layer is The product is purified by distillation to obtain the product MAN.

従来のMANの回収精製プロセスにおいては反応ガスは
水に吸収し、均一水溶液として回収していた。従って飽
和溶解量に見合う、MANI )ン当り39トン以上の
吸収水を必要としたが、この方法では1℃程度に冷却し
た冷却水をgANl)ン当り約14トン使用することに
より回収できる。
In the conventional MAN recovery and purification process, the reaction gas is absorbed into water and recovered as a homogeneous aqueous solution. Therefore, 39 tons or more of absorbed water was required per ton of MANI, which corresponds to the amount of saturated dissolution, but this method can be recovered by using about 14 tons of cooling water cooled to about 1° C. per ton of MANI.

また、従来法ではMANの均一水溶液を蒸気加熱によリ
ストリップしMANを回収するとともに吸収水を再生し
ていたのに比べ、この方法では従来法の35%程度の冷
却水をストリップしてMANを回収し、冷却水を再生で
きる。この結果吸収水再生用の蒸気を節減でき、同時に
、従来のストリッパー(回収塔)廻りのりボイラー、コ
ンデンサー等付属機器装置を不要、あるいは他の小規模
装置に代替できる。
In addition, in the conventional method, a homogeneous aqueous solution of MAN was re-stripped by steam heating to recover the MAN and regenerate the absorbed water. can be recovered and used to regenerate cooling water. As a result, steam for regenerating absorbed water can be saved, and at the same time, the conventional attached equipment such as boilers and condensers around the stripper (recovery tower) can be eliminated or replaced with other small-scale equipment.

この方法では、油層として回収した凝縮物は水を溶媒と
した抽出蒸留(ストリッピング)をすることなく単なる
蒸留によυアセトニトリルを分離除去する。アクリロニ
トリルの回収精製においては、アクリロニトリルとアセ
トニトリルとは沸点がそれぞれ78℃、81℃であシ沸
点差が3℃であって、通常の蒸留による分離では設備費
、経費がコスト高となり実用性が乏しく、このため水に
対する溶解度差を利用した水抽出蒸留を行なう必要があ
った。ところがMANは沸点が90℃であり、アセトニ
トリルとの沸点差が9℃であって、経済的に見合う条件
で蒸留分離できる。
In this method, υacetonitrile is separated and removed from the condensate collected as an oil layer by simple distillation without performing extractive distillation (stripping) using water as a solvent. In the recovery and purification of acrylonitrile, acrylonitrile and acetonitrile have boiling points of 78°C and 81°C, respectively, with a boiling point difference of 3°C, and separation by normal distillation requires high equipment costs and is not practical. Therefore, it was necessary to perform water extractive distillation using the difference in solubility in water. However, MAN has a boiling point of 90°C, and the difference in boiling point from acetonitrile is 9°C, so it can be separated by distillation under economically viable conditions.

この方法で凝縮部18を落下し油水分離器20で分離さ
れた冷却水は、溶存するMANをストリップして再生使
用する。MANの水への溶解度は約2.5%であり、M
AN吸収水と高温気体との間におけるMANの分配率は
高温気体側が極めて大であり、85℃以上の反応ガス、
あるいは水蒸気を用いるならば容易に溶存するMANを
濃度500 ppm以下にストリップしMANを回収し
同時に冷却水を再生できる。また循環使用する冷却水中
のMAN濃度を極めて低くすることができるので、1℃
程度に冷却して使用するならば、凝縮部の塔頂から排出
するオフガス中のMAN濃度を容易に200 ppm 
以下に保つことができる。
In this method, the cooling water that has fallen through the condensing section 18 and is separated by the oil-water separator 20 is recycled and used after stripping dissolved MAN. The solubility of MAN in water is about 2.5%, and M
The distribution ratio of MAN between the AN-absorbed water and the high-temperature gas is extremely large on the high-temperature gas side;
Alternatively, if water vapor is used, dissolved MAN can be easily stripped to a concentration of 500 ppm or less, MAN can be recovered, and cooling water can be regenerated at the same time. In addition, the MAN concentration in the circulating cooling water can be extremely low, making it possible to
If used after being cooled to a certain level, the MAN concentration in the off-gas discharged from the top of the condensing section can easily be reduced to 200 ppm.
Can be kept below.

この回収精製方法でMANを溶解した吸収水を高温の反
応ガスによシストリップするならば、反応ガスの熱の有
効利用が図られ、しかもストリップしたMANを反応ガ
ス中に抽出してMAN全量を凝縮物として回収し後段の
蒸留精製系にフィードして精製でき都合力干よい。しか
し、反応ガスの代りに水蒸気を用いストリップしても差
支えない。
If the absorbed water in which MAN is dissolved is stripped using a high-temperature reaction gas using this recovery and purification method, the heat of the reaction gas can be used effectively, and the stripped MAN can be extracted into the reaction gas to remove the total amount of MAN. It can be recovered as a condensate and fed to the subsequent distillation purification system for purification, making it convenient to dry. However, stripping may be performed using water vapor instead of the reaction gas.

(7。(7.

また、高温反応ガスによるストリップの態様も前記第2
図のものに限定されるものではない。
In addition, the stripping method using the high-temperature reaction gas is also applicable to the second method.
It is not limited to what is shown in the figure.

第3図は、この回収精製方法を適用したプロセスの他の
態様例を示すものである。反応ガス(約200℃)は急
冷凝縮部25の塔底のアンモニア中和部26にフィード
され、未反応アンモニアを中和し、高沸物を除去し、約
90℃に冷却される。
FIG. 3 shows another embodiment of the process to which this recovery and purification method is applied. The reaction gas (approximately 200°C) is fed to the ammonia neutralization unit 26 at the bottom of the rapid cooling condensation unit 25, where unreacted ammonia is neutralized, high-boiling substances are removed, and the gas is cooled to approximately 90°C.

この反応ガスは次に、ストリッパ一部27に入り、MA
Nを吸収溶解した吸収水中のMAN (約2.5wt%
)をストリッピングする。続いて冷却部28にフィード
され、冷却水にて40℃まで冷却されて凝縮部29に入
る。
This reactant gas then enters the stripper portion 27 and enters the MA
MAN in the absorbed water that absorbed and dissolved N (approx. 2.5 wt%
) stripping. Subsequently, it is fed to the cooling section 28, cooled to 40° C. with cooling water, and enters the condensing section 29.

一方ストリッパ一部27でストリップされた吸収水(M
AN約500 ppm)はクーラー31で冷却して(約
40℃)冷熱回収部30にフィードする。冷熱回収部3
0では、凝縮部29の出口ガス(約1℃)と吸収水(4
0℃)が熱交換され、吸収水は約30℃まで冷却され、
続いてクーラー32にて最終的に1℃まで冷却されて凝
縮部29にフィードされる、 (8) 凝縮部29では反応ガスが1℃の吸収水と向流接触し、
MANその他の有機物が凝縮する。凝縮液を含む吸収水
は凝縮部29の塔底から抜出し、油水分離器20で油水
層を分離し、油層は精製系に送シ込まれ、第2図と同様
なプロセスで処理さ     ・れる。水層はストリッ
パ一部27においてMANをストリッピングして回収し
同時に吸収水を再生する。
On the other hand, the absorbed water (M
AN (approximately 500 ppm) is cooled by a cooler 31 (to approximately 40° C.) and fed to the cold heat recovery section 30. Cold heat recovery section 3
0, the outlet gas of the condensing section 29 (approximately 1°C) and the absorbed water (approximately 1°C)
0℃) is heat exchanged, and the absorbed water is cooled to about 30℃,
Subsequently, the reactant gas is finally cooled down to 1°C in the cooler 32 and fed to the condensing section 29. (8) In the condensing section 29, the reaction gas comes into countercurrent contact with the absorbed water at 1°C,
MAN and other organic substances condense. Absorbed water containing condensate is extracted from the bottom of the condensing section 29, an oil-water separator 20 separates the oil-water layer, and the oil layer is sent to the purification system and treated in the same process as shown in FIG. The water layer is recovered by stripping the MAN in the stripper part 27, and at the same time regenerating the absorbed water.

この回収精製方法は以上の構成であυ、この方法による
と従来法に比べ冷却水(吸収水)の量および回収・精製
に要する塔数が減少し、設備費および経費の節減を図る
ことができる。
This recovery and purification method has the above-mentioned configuration. Compared to the conventional method, this method reduces the amount of cooling water (absorbed water) and the number of towers required for recovery and purification, reducing equipment costs and expenses. can.

実施例 (1)塔の構成(第2図のプロセスに基づく)■ スト
リッピング塔−13 下部 ・・・・・ スプV−塔 冷却部 ・・・・ シーブトレイ5段 ■ 凝縮部−18・・ シーブトレイ52段■ 脱青酸
脱水塔−21シーブトレイ55段フィード段 ・・ 下
から数えて34段■ 低沸分離塔−22シーブトレイ1
00段フィード段 ・・ 下から数えて60段■ 製品
塔−23・・ シーブトレイ49段フィード段 ・・ 
下から数えて12段製品サイドカット股  下から数え
て42段(2)塔の蒸気使用量 ■ ストリッピング塔−13ゼロ ■ 凝縮部−18ゼロ ■ 脱青酸脱水塔−210,3T/T−MAN■ 低沸
分離塔−221,8T/T−MAN■ 製品塔−231
,0T/T−MAN合計3.1 T/T−MAN (3)主要流量 ■ ストリッピング塔−13フィードガス量8.9T/
T−MAN ■ 凝縮部−18吸収水量 14T/T−MAN■ 脱
青酸脱水塔−21フィード量 1.3 T/T−MAN
■  但1艷)離層−22フィード量   1.2 T
/T−MAN■ 製品塔−23フィード量 中1.OT
/T−MAN(4)  主要温度 ■ ストリッピング塔−13 フィードガス温度 ・・ 200℃ 下部塔底温度 ・・・・・ 86℃ ストリッパ一部塔底温度  85℃ ストリッパ一部塔頂 1 81℃ ストリッパ一部フィード液l    70℃冷却部塔底
温度 ・・・・ 50℃ 冷却部塔頂温度 ・・・・ 41℃ ■ 凝縮部−18 吸収水温度 ・・・・・・・ 1℃ 塔頂  ′ ・・・・・・・ 1℃ 塔底  ′ ・・・・・・ 35℃ ■ 脱青酸脱水塔−21 塔頂温度 ・・・・・・・ 30℃ 塔底 ′ ・・・・・・ 100℃ ■ 低沸分離塔−22 塔頂温度 ・・・・・・・ 54℃ (11) 塔底温度 ・・・・・・・ 87℃    4■ 製品
塔−23 塔頂温度 ・・・・・・・ 50℃ 塔底温度 ・・・・・・・ 80℃ (5)主要組成(単位wt%) (12)
Example (1) Column configuration (based on the process shown in Figure 2) ■ Stripping tower-13 lower part ... Sprout V-tower cooling section ... 5 sieve trays ■ Condensing section - 18... Sieve tray 52 stages ■ Hydrocyanic acid dehydration tower - 21 sieve tray 55 stages feed stage ... 34 stages counting from the bottom ■ Low boiling point separation tower - 22 sieve tray 1
00th feed stage... 60th stage counting from the bottom■ Product tower-23... Sieve tray 49th stage feed stage...
12-stage product side cut crotch counting from the bottom 42-stage counting from the bottom (2) Steam consumption of the tower ■ Stripping tower - 13 zero ■ Condensing section - 18 zero ■ Hydrocyanic acid dehydration tower - 210,3T/T-MAN ■ Low boiling point separation column - 221,8T/T-MAN ■ Product column - 231
, 0T/T-MAN total 3.1 T/T-MAN (3) Main flow rate■ Stripping tower-13 feed gas amount 8.9T/
T-MAN ■ Condensing section - 18 absorption water amount 14 T/T-MAN ■ Hydrocyanic acid dehydration tower - 21 feed amount 1.3 T/T-MAN
■ However, 1) Delamination-22 Feed amount 1.2 T
/T-MAN■ Product tower-23 feed amount Medium 1. O.T.
/T-MAN (4) Main temperature■ Stripping column-13 Feed gas temperature...200℃ Lower column bottom temperature...86℃ Stripper part bottom temperature 85℃ Stripper part top 1 81℃ Stripper Partial feed liquid l 70°C Cooling section bottom temperature...50°C Cooling section top temperature...41°C ■ Condensing section-18 Absorbed water temperature...1°C Tower top' ・・・・・・・ 1℃ Tower bottom ′ ・・・・・・ 35℃ ■ Hydrocyanic acid removal tower-21 Tower top temperature ・・・・・・ 30℃ Tower bottom ′ ・・・・・・ 100℃ ■ Low-boiling separation column-22 Top temperature: 54℃ (11) Bottom temperature: 87℃ 4■ Product column-23 Top temperature: 50 ℃ Tower bottom temperature 80℃ (5) Main composition (unit: wt%) (12)

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回収精製プロセスのフローシート、第2
図はこの発明になる回収精製プロセスのフローシート、
第3図はこの発明の他の態様例を示すフローシートであ
る。 1・・急冷浴、2・・循環系路、3・・吸収塔、4・・
導管、5・・導管、6・・回収塔、7・・導管、8・・
脱青酸・脱水塔、 9・・放散塔、10・・低沸分離塔、 11・・製品塔、12・・導管、 13− ・ストリッピング塔、14・・導管、15・・
ストリッパ一部、16・・冷却部、17・・導管、18
・・凝縮部、 19・・冷却器、20・・油水分離器、21・・脱青酸
脱水塔、22・・低沸分離塔、23・・製品塔、24・
・導管、 25・・急冷凝縮部、26・・アンモニア中和部、27
・・ストリッパ一部、28・・冷却部、29・・凝縮部
、30・・冷熱回収部、31.32・・クーラー。
Figure 1 is a flow sheet of the conventional recovery and purification process;
The figure is a flow sheet of the recovery and purification process of this invention.
FIG. 3 is a flow sheet showing another embodiment of the present invention. 1...Quiet cooling bath, 2...Circulation system path, 3...Absorption tower, 4...
Conduit, 5... Conduit, 6... Collection tower, 7... Conduit, 8...
Hydrocyanic acid removal/dehydration tower, 9. Stripping tower, 10. Low boiling point separation tower, 11. Product tower, 12. Conduit, 13- Stripping column, 14. Conduit, 15.
Part of stripper, 16...Cooling part, 17...Conduit, 18
... Condensing section, 19.. Cooler, 20.. Oil-water separator, 21.. Hydrocyanic acid removal tower, 22.. Low boiling point separation tower, 23.. Product tower, 24..
- Conduit, 25... Rapid cooling condensation section, 26... Ammonia neutralization section, 27
...Part of stripper, 28.. Cooling section, 29.. Condensing section, 30.. Cold heat recovery section, 31.32.. Cooler.

Claims (1)

【特許請求の範囲】[Claims] (1)  メタクリロニトリルを主成分とするアンモキ
シデージョン反応ガスからメタクリロニトリルを回収精
製するプロセスにおいて、該反応ガスを冷却水と接触せ
しめて凝縮し、油層をなす凝縮物を冷却水層から分離回
収し、後段の蒸留精製手段にフィードして精製し、油層
と分離した冷却水はストリッピングして溶存するメタク
リロニトリルを回収することを特徴とするメタクリロニ
トリルの回収精製方法。
(1) In the process of recovering and refining methacrylonitrile from an ammoxidation reaction gas containing methacrylonitrile as its main component, the reaction gas is brought into contact with cooling water and condensed, and the condensate forming an oil layer is converted into a cooling water layer. A method for recovering and purifying methacrylonitrile, which comprises separating and recovering methacrylonitrile, feeding it to a subsequent distillation purification means for purification, and stripping the cooling water separated from the oil layer to recover dissolved methacrylonitrile.
JP20017782A 1982-11-15 1982-11-15 Recovery and purification of methacrylonitrile Granted JPS5989651A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20017782A JPS5989651A (en) 1982-11-15 1982-11-15 Recovery and purification of methacrylonitrile

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20017782A JPS5989651A (en) 1982-11-15 1982-11-15 Recovery and purification of methacrylonitrile

Publications (2)

Publication Number Publication Date
JPS5989651A true JPS5989651A (en) 1984-05-23
JPS6133815B2 JPS6133815B2 (en) 1986-08-04

Family

ID=16420069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20017782A Granted JPS5989651A (en) 1982-11-15 1982-11-15 Recovery and purification of methacrylonitrile

Country Status (1)

Country Link
JP (1) JPS5989651A (en)

Also Published As

Publication number Publication date
JPS6133815B2 (en) 1986-08-04

Similar Documents

Publication Publication Date Title
JP2007518736A (en) Method for purifying olefinically unsaturated nitriles
JPH1112222A (en) Recovery of acrylic acid
KR20070038559A (en) Improved process for recovery and recycle of ammonia from a vapor stream
EP0000566B1 (en) Process for recovery of olefinic nitriles
JPS6251958B2 (en)
KR840001470B1 (en) Acrylonitrile purification by extravtive distillation
JPS6320219B2 (en)
EP0053518B1 (en) Process for producing unsaturated nitrile
EP0009545A1 (en) Acrylic acid recovery with recycle quench
RU2242459C2 (en) Unsaturated mononitrile production process
US3439041A (en) Oxidation product separation
US4003801A (en) Treatment of water vapor generated in concentrating an aqueous urea solution
JPS5989651A (en) Recovery and purification of methacrylonitrile
US3173961A (en) Process for the separation of the products obtained through the nitration of cyclohexane in gaseous phase
JPS6048505B2 (en) Recovery and purification of acrylonitrile and methacrylonitrile
US6716977B1 (en) Method for making caprolactam from impure ACN wherein ammonia and water are removed from crude caprolactam in a simple separation step and then THA is removed from the resulting caprolactam melt
JPH0333143B2 (en)
KR810001375B1 (en) Press for recovery of olefinic nitriles
US4293494A (en) Method for the purification of raw caprolactam which contains amides and other by-products
JPS6133017B2 (en)
JPS5980650A (en) Method for purifying methacrylonitrile
KR810001374B1 (en) Process for recovery of olefinic nitriles
KR790001107B1 (en) Acrylonitrile and methacrylonitrille recovery and purification system
JPS5953458A (en) Purification and recovery of methacrylonitrile
JPH0132818B2 (en)