JPS5988989A - Recovery of chemicals from black liquor - Google Patents

Recovery of chemicals from black liquor

Info

Publication number
JPS5988989A
JPS5988989A JP19676982A JP19676982A JPS5988989A JP S5988989 A JPS5988989 A JP S5988989A JP 19676982 A JP19676982 A JP 19676982A JP 19676982 A JP19676982 A JP 19676982A JP S5988989 A JPS5988989 A JP S5988989A
Authority
JP
Japan
Prior art keywords
black liquor
naoh
recovery
chemicals
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19676982A
Other languages
Japanese (ja)
Inventor
幸男 高橋
泰行 西村
忠昭 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP19676982A priority Critical patent/JPS5988989A/en
Publication of JPS5988989A publication Critical patent/JPS5988989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Paper (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 この発明はパルプ製造工程において発生する黒液と称す
る廃液中から苛性ソーダを中心とする薬品を回収する方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for recovering chemicals, mainly caustic soda, from a waste liquid called black liquor generated in a pulp manufacturing process.

製紙工場においてバルブ製造工程では木材成分ノセルロ
ーズ(繊維)とリグニン(Ml 脂) 全分離してセル
ローズのみを取り出すため苛性ソーダ(NaOH)を中
心とした薬品を用いる。魚屑工程を経た溶解リグニンと
NaOHを含有する溶液は黒液と称する廃液として排出
されるが、この黒液を燃焼させることにより熱回収を行
ない、かつ同時にNaOHを回収して再使用する方法が
従来から実施されている。
In the valve manufacturing process at paper mills, chemicals such as caustic soda (NaOH) are used to completely separate the wood components nocellulose (fiber) and lignin (Ml fat) and extract only cellulose. The solution containing dissolved lignin and NaOH that has passed through the fish waste process is discharged as a waste liquid called black liquor, but there is a method that recovers heat by burning this black liquor and at the same time recovers and reuses NaOH. This has been practiced for a long time.

第1図は従来の黒液燃焼およびN a OH回収方法を
示す系統図である。図において水利チップは蒸解工程1
においてNaOHにより含有するりゲニンが除去され、
NaOHとリグニンの混合液は黒液として排出され、黒
液回収ボイラ等の専用の燃焼装置において燃焼2aが行
なわれ、熱回収が図られると共に次式に示す如き反応が
行なわれ、NaOH回収の前提となるべき反応が行なわ
れる。
FIG. 1 is a system diagram showing a conventional black liquor combustion and N a OH recovery method. In the figure, water conservancy chips are in the cooking process 1.
The rigenin contained in it is removed by NaOH,
The mixed solution of NaOH and lignin is discharged as black liquor, and combustion 2a is performed in a dedicated combustion device such as a black liquor recovery boiler to recover heat and the reaction shown in the following equation takes place. The reaction that should occur takes place.

Na、、O+ SOz+20x  −□  Na、5o
4−(1)Nat O+ Co2NazOOs  ・・
・(2)また炉底部ではチャーの燃焼により次式(3)
Na,, O+ SOz+20x -□ Na, 5o
4-(1) Nat O+ Co2NazOOs...
・(2) Also, at the bottom of the furnace, due to the combustion of char, the following equation (3)
.

(4)に示す反応が主として行なわれる。The reaction shown in (4) is mainly carried out.

NazS○4 + 20  →Na2S + 2002
・・・(3)Na2 Co3Naz O−1−002−
(4)すなわち従来方法では燃焼装置内で上述の如き複
雑な反応を行なわせねばならず、これらの反応を良好に
行なわせるため燃焼装置に供給する燃焼用空気も一次、
二次、三次に分け、さらにこれらの空気の制御を精密に
行なわねばならない。次に燃焼において生じたNa2C
o、は溶解工程3aにおいて水を加えられ、苛性化工程
4に送られる。この工程において次式(5)Gこ示すと
おり消石灰〔Ca(OH)2〕と反応してN a、OH
を回収し、再使用する。
NazS○4 + 20 →Na2S + 2002
...(3) Na2Co3Naz O-1-002-
(4) In other words, in the conventional method, the above-mentioned complex reactions must be carried out in the combustion device, and in order to make these reactions occur well, the combustion air supplied to the combustion device is also primary,
It is necessary to separate the air into secondary and tertiary air, and to precisely control these air types. Next, Na2C generated in combustion
o, water is added in the dissolution step 3a and sent to the causticization step 4. In this step, as shown in the following formula (5)G, it reacts with slaked lime [Ca(OH)2] to form Na, OH
Collect and reuse.

Na200s + Ca (OH)2−p−2NaOH
+ 0aOOx  45)しかし」二連の式(5)にお
いて使用する0a(OH)2は苛性化工程4て牛した0
aOOsを加熱し、かつその接水を加えてaa(oH)
2を生成すると1/)う複雑、な工程を経ねばならず、
設備費の増加、エネルギー消費量の増大という問題全土
じている。
Na200s + Ca (OH)2-p-2NaOH
+ 0aOOx 45) However, 0a(OH)2 used in the double equation (5) is 0
Heating aOOs and adding water to it produces aa(oH)
To generate 2, 1/) must go through a complicated process,
The problems of increased equipment costs and increased energy consumption are widespread throughout the world.

すなわちか焼工程5においては通常ライムキルンと称す
る焼成装置が使用され、石油等のエネルギーを大量に消
費することにより次式の反応を行なう。
That is, in the calcination step 5, a calcination device usually called a lime kiln is used, and the following reaction is carried out by consuming a large amount of energy such as petroleum.

C!acos  −)−C!ao +CO2・=(6)
さらにこれにより生じた生石灰(OaO)は消和工程6
において次式(7)の如く消石灰となり苛性化工程で使
用される状態とする。
C! acos-)-C! ao +CO2・=(6)
Furthermore, the quicklime (OaO) produced by this is removed from the slaked step 6.
In this step, the lime becomes slaked lime as shown in the following formula (7) and is ready for use in the causticizing process.

Oa、O+H20−−シーOa (OH)2    ・
・・(7)以上のとおり従来方法はその反応過程がきわ
めて複信1であり、従ってその制御も困&if[lてあ
りさらに複雑+=犬な設0117を必要とし不経済であ
る。
Oa, O+H20--Sea Oa (OH)2 ・
(7) As mentioned above, the reaction process of the conventional method is extremely duplex, and therefore, it is difficult to control and requires a more complicated setup, which is uneconomical.

また、′l”rにか焼工程においては多大なエネルギー
を燃料として消費し、社会的要請である省エネルギー化
を達成することがきわめて困’JMtであった。
Furthermore, the calcination process consumes a large amount of energy as fuel, making it extremely difficult to achieve energy conservation, which is a social requirement.

以上の点に鑑み、発明者等は先に直接苛性化方法と称す
る薬品回収方法を提案している。この方法は後述する如
く大量のエネルギー1消費するか焼工程を不用としたこ
とに最大の利点がある。この直接苛性化法においては酸
化鉄粉としてFe2O3を黒液中に添加することにより
含有するNaOHと反応させるNaFeO2を生成し、
さらにこのNaFeO2を加水分解してNaOHを回収
する方法である。従ってこの方法においてはNaFeO
2の加水分解の効率の良否がNaOH回収効率に直接影
響することになる。しかし直接苛性化法自体が今だ確立
された技術には至っておらず前述の加水分解の効率も低
水準にあるのが実情である。
In view of the above points, the inventors have previously proposed a chemical recovery method called a direct causticization method. The greatest advantage of this method is that it does not require a calcination step that consumes a large amount of energy, as will be described later. In this direct causticizing method, Fe2O3 is added as iron oxide powder to the black liquor to generate NaFeO2, which is reacted with the NaOH contained in the black liquor.
This method further hydrolyzes this NaFeO2 to recover NaOH. Therefore, in this method, NaFeO
The quality of the hydrolysis efficiency of No. 2 directly affects the NaOH recovery efficiency. However, the direct causticization method itself has not yet become an established technology, and the actual situation is that the efficiency of the above-mentioned hydrolysis is still at a low level.

この発明の目的は上述した問題点に鑑み構成したもので
あり回収薬品の取り扱いが容易でしかも薬品回収効率の
高い直接苛性化方法を提供することにある。
An object of the present invention is to provide a direct causticizing method that is constructed in view of the above-mentioned problems and allows for easy handling of recovered chemicals and high efficiency in recovering chemicals.

要するにこの発明はNaFe0zを加水分解する場合に
、反応湿度を回収するN a OHの融点以上に保持し
て加水分解を行い回収したNaOHの取り扱いを容易に
し、かつこの湿度条件での加水分解を可能にするため、
場合によっては使用するH 20を高温の蒸気とし、さ
らにNaFe0zの焼成湿度を可能な限り低下させてl
軸OHの回収効率を高めるようにした直接苛性化方法で
ある。
In short, this invention makes it easier to handle the recovered NaOH by maintaining the reaction humidity above the melting point of NaOH to be recovered when hydrolyzing NaFe0z, and also enables hydrolysis under these humidity conditions. In order to
In some cases, the H20 used is converted into high-temperature steam, and the firing humidity of NaFe0z is lowered as much as possible.
This is a direct causticizing method designed to increase the recovery efficiency of shaft OH.

以下この発明の実施例につき説明する。Examples of the present invention will be described below.

先ずこの発明に係る方法の前提をなす直接苛性化法の概
略を第2図を用いて説明する。
First, the outline of the direct causticization method, which is the premise of the method according to the present invention, will be explained using FIG.

図において、木材チップは蒸解工程1においてNaOH
にJこりリグニンが分離されリグニンおよびN a O
Hを含有する黒液は燃焼過程2またはこの前段において
酸化鉄粉としてFe2Ogを添加することにより燃焼中
に次式の反応を行なう。
In the figure, wood chips are treated with NaOH in cooking step 1.
The lignin is separated into lignin and NaO.
Black liquor containing H undergoes the following reaction during combustion by adding Fe2Og as iron oxide powder in combustion process 2 or in the preceding stage.

2NaOH−1−(EOI−Il−Na2COs +H
20=(8)Na2COs+Fe 20$ −2NaF
eCb + CO2−(9)このうち鉄酸ナトリウム(
NaFe02)は次段階の溶解過程7において加水分解
されN a OHを回収する。
2NaOH-1-(EOI-Il-Na2COs +H
20=(8)Na2COs+Fe 20$ -2NaF
eCb + CO2- (9) Of these, sodium ferrate (
NaFe02) is hydrolyzed in the next dissolution step 7 to recover NaOH.

2NaFe02−1− H2C1→2NaOH+Fe2
es ・H+ (10)つまり第2図に示す直接苛性化
法では(8L (9)(10)の反応を行なうごとによ
りNaOHの回収全行なうことができると共に、この回
収に使用したFe20sを循環再使用することができる
2NaFe02-1- H2C1→2NaOH+Fe2
es ・H+ (10) In other words, in the direct causticization method shown in Figure 2, it is possible to recover all NaOH by performing the reactions (8L (9) and (10)), and the Fe20s used for this recovery can be recycled. can be used.

ここて第3図は各々異なる温度で焼成したNaFeO2
を用いて発明者等がNaOH回収実験を行った際の加水
分解の反応時間と苛性ソータ゛(Na、OH)回収率と
の関係を示す線図である。なお加水分解は50°Cの温
度下で行った。この線図からも明らかなとおり、NaF
eO2の焼成温度力く低いほど苛性ソーダ回収率は高く
、例え4112o。
Here, Figure 3 shows NaFeO2 fired at different temperatures.
FIG. 2 is a diagram showing the relationship between the hydrolysis reaction time and the caustic sorter (Na, OH) recovery rate when the inventors conducted a NaOH recovery experiment using the NaOH sorter. Note that the hydrolysis was performed at a temperature of 50°C. As is clear from this diagram, NaF
The lower the eO2 calcination temperature, the higher the caustic soda recovery rate, for example 4112o.

°C以上の温度で焼成したものは回収率は低く、反応時
間が長くなっても高い回収率を得ることはできなかった
。従ってNaFeO2の焼成温度はできれば]、 OO
0℃以下が望ましい。
The recovery rate was low for those calcined at temperatures higher than °C, and a high recovery rate could not be obtained even if the reaction time was extended. Therefore, the firing temperature of NaFeO2 is preferably], OO
The temperature is preferably 0°C or lower.

第4図は以上の点を考慮して構成した直接苛。Figure 4 shows a direct injection diagram constructed with the above points in mind.

性化方法を含むパルプ製造の系統図を示す。図において
、ライン〕、0からはノイルブの原料である水利チップ
が、ライン20からは、蒸解薬品であるNa、OHが木
菟に供給され、蒸解1が行われる。
Figure 2 shows a systematic diagram of pulp production including the sexualization method. In the figure, water conservancy chips, which are the raw materials for Noilub, are supplied to the Noilbu from line ], 0, and Na and OH, which are cooking chemicals, are supplied to the Noilbu from the line 20, and cooking 1 is performed.

蒸解が完了したならば木菟内の内容物はライン30を経
てブロータンク12に至り、さらにライン40を経て洗
浄機13に至る。ここにおいてノぐルブはライン50を
経て系外に排出され製紙工程に送られる。一方NaOH
を含有する廃液は黒液としてライン60を経て濃縮器1
4に至り、ライン70を経て黒液回Jfiボイラ等の燃
焼装置15に供給され燃焼する。黒液を燃焼装置に供給
する際にライン130を経てFe2O8が黒液中に混入
され、燃焼装置15内で前記(8)及び(9)の反応を
行わせる。
When the cooking is completed, the contents of the mulberry tube pass through the line 30 to the blow tank 12, and further via the line 40 to the washer 13. Here, the noggle is discharged from the system via line 50 and sent to the paper manufacturing process. On the other hand, NaOH
The waste liquid containing black liquor passes through line 60 to concentrator 1
4, and is supplied to a combustion device 15 such as a black liquor recycling Jfi boiler via a line 70, where it is combusted. When the black liquor is supplied to the combustion device, Fe2O8 is mixed into the black liquor through the line 130, and the reactions (8) and (9) described above are carried out in the combustion device 15.

この場合、NaFeO2生成の際の反応湿度はできるた
け低い方が望ましいのは前述のとおりである。
In this case, as described above, it is desirable that the reaction humidity during NaFeO2 production be as low as possible.

燃焼により生じた排ガスはライン90により系外に排出
する。燃焼装置15において生成されたN2LFθ02
はライン80を経て反応器16に供給される。
Exhaust gas generated by combustion is discharged to the outside of the system through line 90. N2LFθ02 generated in the combustion device 15
is fed to reactor 16 via line 80.

この場合14aFθ02の湿度が1200’c以上であ
るとこのNaFeO2は溶融もしくは半溶融の状態とな
っている。この反応器において水を加えて加水分解を行
なうが、NaOHの融点(318,4°C)以上で反応
を行えば、回収したNaOHの取り扱いが容易と/fる
。このため例えばライン100により前記温度より高い
温度の蒸気を加水分解用のN20として供給するのが効
果的である。加水分解の完了したFex OsとN a
 OHはライン]、10を経て分解槽17に至り、分離
されたFθWOSは前述の如く黒液に混入され、一方N
aOHはライン120を経て苛性ソーダタンク18に貯
蔵され、ライン20を経て適宜蒸解過程1に供給される
In this case, if the humidity of 14aFθ02 is 1200'c or more, this NaFeO2 is in a molten or semi-molten state. In this reactor, water is added to carry out hydrolysis, and if the reaction is carried out above the melting point of NaOH (318.4°C), the recovered NaOH can be easily handled. For this reason, it is effective to supply steam at a temperature higher than the above temperature as N20 for hydrolysis through the line 100, for example. Completely hydrolyzed Fex Os and Na
The OH reaches the decomposition tank 17 via the line] and 10, and the separated FθWOS is mixed into the black liquor as described above, while the N
The aOH is stored in the caustic soda tank 18 via line 120 and is supplied to the cooking process 1 via line 20 as appropriate.

この発明によれば直接苛性化方法を効果的に実施するこ
とが可能となり、具体的には薬品を溶融状態で回収でき
るので固形物として回収する場合に比較してその取り扱
いが容易である。
According to the present invention, it becomes possible to carry out the direct causticization method effectively, and specifically, since the chemical can be recovered in a molten state, it is easier to handle compared to the case where the chemical is recovered as a solid substance.

またNaFeO2の反応生成温度を低くすることにより
1JaOHの回収効率を高めることがてきる。
In addition, by lowering the temperature at which the NaFeO2 reaction forms, the recovery efficiency of 1JaOH can be increased.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の薬品回収方法を示す系統図、第2図は直
接苛性化法を示す概略図、第3図は各焼成温度における
Nal1’θ02 の加水分解反応時間と苛性ソーダ回
収率との関係を示す線図、第4図はこの発明に係る方法
を示す直接苛性化方法の系統図である。 15・・・・・・黒液燃焼装置 16・・・・・・反応器 代理人弁理士 岡 OJ 梧部
Figure 1 is a system diagram showing the conventional chemical recovery method, Figure 2 is a schematic diagram showing the direct causticization method, and Figure 3 is the relationship between Nal1'θ02 hydrolysis reaction time and caustic soda recovery rate at each calcination temperature. FIG. 4 is a system diagram of a direct causticizing method illustrating the method according to the present invention. 15...Black liquor combustion device 16...Reactor attorney OJ Gobe

Claims (1)

【特許請求の範囲】 1、 黒液に対してF6B Onを添加してNaFeO
2を反応生成させかつこのNaFeO2を加水分解する
ことによりNaOHを回収する方法において、加水分解
の反応温度をNaOHの溶融点以上とすることを特徴と
する黒液中の薬品の回収方法。 2、 前記加水分解に使用するH2Oを高温の蒸気とす
ることを特徴とする特許請求の範囲第1項記載の黒液中
の薬品の回収方法。 3、 前記Na、Fe0zの反応生成温度を1000°
C以下とすることを特徴とする特許請求の範囲第1項ま
たは第2項記載の黒液中の薬品の回収方法。
[Claims] 1. Adding F6B On to black liquor to make NaFeO
A method for recovering chemicals in black liquor, characterized in that the reaction temperature of the hydrolysis is set to be higher than the melting point of NaOH, in a method of recovering NaOH by reacting and producing NaFeO2 and hydrolyzing the NaFeO2. 2. The method for recovering chemicals in black liquor according to claim 1, characterized in that the H2O used in the hydrolysis is high-temperature steam. 3. The reaction formation temperature of Na and FeOz is set to 1000°.
3. The method for recovering chemicals in black liquor according to claim 1 or 2, characterized in that the concentration is less than or equal to C.
JP19676982A 1982-11-11 1982-11-11 Recovery of chemicals from black liquor Pending JPS5988989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19676982A JPS5988989A (en) 1982-11-11 1982-11-11 Recovery of chemicals from black liquor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19676982A JPS5988989A (en) 1982-11-11 1982-11-11 Recovery of chemicals from black liquor

Publications (1)

Publication Number Publication Date
JPS5988989A true JPS5988989A (en) 1984-05-23

Family

ID=16363314

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19676982A Pending JPS5988989A (en) 1982-11-11 1982-11-11 Recovery of chemicals from black liquor

Country Status (1)

Country Link
JP (1) JPS5988989A (en)

Similar Documents

Publication Publication Date Title
US3560329A (en) Process for low sulfide chemical recovery
JP4502507B2 (en) Partially automatic causticization of alkaline liquids for wood pulping treatment
US2696424A (en) Preparation of calcium bisulfite cooking acid from waste sulfite liquor
JPS5988989A (en) Recovery of chemicals from black liquor
JPS5936793A (en) Method and apparatus for recovering soda from pulp waste liquor
CN102121203A (en) Method for recovering pulping black liquor alkali by virtue of sulfate process
US2774666A (en) Recovery of cooking liquor from spent soda pulping liquors
US3414468A (en) Process of regenerating pulping liquor from cellulose digestion waste liquor
JPS58132192A (en) Direct caustification using fluidized layer furnace
CN205077314U (en) Kraft process alkali recovery system
CA1193406A (en) Process to regenerate kraft liquor
US2738270A (en) Process for utilizing the dry content of sulphite waste liquor
JPS641998Y2 (en)
JPS58132191A (en) Direct caustification method and apparatus in pulping process
JPS58126390A (en) Direct causticification with enhanced efficiency
JPS58126389A (en) Recovery of chemicals from black liquor
JPS60151395A (en) Direct causticization apparatus
CN101328693B (en) Clean production method of chemical pulping paper making and aluminum oxide cogeneration
US2291833A (en) Process of regenerating sulphate pulp cooking liquors
JPS5943183A (en) Method and apparatus for recovering soda from pulp waste liquor
JPS58126391A (en) Direct caustification with enhanced fe203 separating efficiency
JPS6219557B2 (en)
JPH0368152B2 (en)
JPS59164619A (en) Method for recovering soda from waste liquor from pulp manufacturing stage
CA1124016A (en) Catalyzing reduction in a kraft recovery boiler