JPS5987962A - Continuous casting method - Google Patents

Continuous casting method

Info

Publication number
JPS5987962A
JPS5987962A JP19838282A JP19838282A JPS5987962A JP S5987962 A JPS5987962 A JP S5987962A JP 19838282 A JP19838282 A JP 19838282A JP 19838282 A JP19838282 A JP 19838282A JP S5987962 A JPS5987962 A JP S5987962A
Authority
JP
Japan
Prior art keywords
cooling
slab
solidification rate
solidification
billet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19838282A
Other languages
Japanese (ja)
Other versions
JPS6234457B2 (en
Inventor
Yasuo Takeda
武田 安夫
Hiromu Fujii
博務 藤井
Ryohei Mizoguchi
溝口 良平
Kiyomi Yadori
宿利 清己
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19838282A priority Critical patent/JPS5987962A/en
Publication of JPS5987962A publication Critical patent/JPS5987962A/en
Publication of JPS6234457B2 publication Critical patent/JPS6234457B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/12Accessories for subsequent treating or working cast stock in situ
    • B22D11/128Accessories for subsequent treating or working cast stock in situ for removing
    • B22D11/1282Vertical casting and curving the cast stock to the horizontal

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Continuous Casting (AREA)

Abstract

PURPOSE:To obtain a high temp. billet which holds always a specified temp. even if the condition for cooling is changed in a curved type continuous casting machine by specifying the solidification rate at the point where spraying of water on the ingot ends. CONSTITUTION:The average temp. at the section of an ingot when it solidifies thoroughly varies with the condition for cooling the billet in a water spraying area if the solidification rate in the stage of ending the water spraying is >=60%. If, however, the solidification rate in the stage of ending the water spraying is <=60%, the average temp. at the section of the billet when it solidifies thoroughly is not affected at all by the condition for cooling the billet in the water spraying area and the billet holding always a suitable high temp. is obtd. The reason for limiting the solidification rate lies in that, if the solidification rate is <=60%, the enthalpy in the unsolidified part is substantially larger with respect to the enthalpy on the shell side and that the influence of the enthalpy on the shell side determined by the cooling condition in the water spraying area on the enthalpy over the entire part of the billet section is lessened.

Description

【発明の詳細な説明】 と連続鋳造機を加熱工程を通すことなく直結するプロセ
スに適した連続鋳造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a continuous casting method suitable for a process in which a continuous casting machine is directly connected without passing through a heating process.

近年、鉄鋼業において連続鋳造機(以下連鋳機と略す)
は著しく発達して連鋳比率及び連鋳適用鋼種は飛躍的な
発展をみせているが、その反面連鋳機への要求もきわめ
て太きい。その中でも近年のエネルギー価格の高騰から
来る省エネルギーへの要求は著しい。特に連鋳−圧延プ
ロセスにおいては、連鋳機と圧延設備との直結化による
省エネルギーニーズは特に太きい。
In recent years, continuous casting machines (hereinafter referred to as continuous casting machines) have been used in the steel industry.
Although the continuous casting ratio and the types of steel that can be continuously cast have shown remarkable progress, the requirements for continuous casting machines are also extremely high. Among these, there is a remarkable demand for energy conservation due to the recent rise in energy prices. Particularly in the continuous casting-rolling process, there is a particularly strong need for energy saving by directly connecting the continuous casting machine and rolling equipment.

鉄鋼業において、従来の連鋳〜圧延プロセスは、大別し
て第1図(a) 、 (b) 、(c)に示す370ロ
セスにわけられる。なお第1図中()内の工程は特殊な
ニーズを除いて通常は通さない。第1図(a)に示すプ
ロセスは以前より広く鉄鋼業において実施されていた。
In the steel industry, conventional continuous casting to rolling processes can be roughly divided into 370 processes shown in FIGS. 1(a), (b), and (c). Note that the steps in parentheses in FIG. 1 are not normally performed except for special needs. The process shown in Figure 1(a) has been widely practiced in the steel industry for some time.

また第1図(h)に示すホットチャージプロセスは近年
鉄鋼業界において、その著しい省エネルギー性より次第
に実用化されつつある。しかし第1図(c)に示す直接
圧延ゾロセスについては、特殊な二−ズを除いて加熱工
程が省略され、かつ、その際に必要とされるエネルギー
が皆無となるだめその開発が切望されている。
Further, the hot charging process shown in FIG. 1(h) has been gradually put into practical use in the steel industry in recent years due to its remarkable energy saving properties. However, the development of the directly rolled Zorrocess shown in Figure 1(c) is strongly desired since the heating process is omitted except for special needs and no energy is required at that time. There is.

第1図(c)に示す直接圧延プロセスでは、連鋳機は高
生産性(高速鋳造)が要求されると共に連続機で鋳造さ
れた鋳片は無欠陥であり、更に連鋳機機端で高温であり
、かつ安定していることが必須条件となる。
In the direct rolling process shown in Fig. 1(c), the continuous casting machine is required to have high productivity (high-speed casting), and the slabs cast by the continuous machine are defect-free. The essential conditions are that the temperature is high and stable.

この高温鋳片を得る有力な手段として、凝固完了まで注
水するのをやめて、未凝固状態で注水を終了して復熱を
行なう未凝固復熱法が知られている。例えば特公昭49
−6974号公報には無欠陥高温鋳片を得るために注水
完了点で凝固率を85〜95%にする未凝固復熱鋳造法
が提案されている。
As an effective means for obtaining this high-temperature slab, there is known an unsolidified reheating method, in which water injection is stopped until solidification is completed, and water injection is ended in an unsolidified state to perform recuperation. For example, special public service in 1973
In order to obtain defect-free high-temperature slabs, Japanese Patent No. 6974 proposes an unsolidified reheat casting method in which the solidification rate is set at 85 to 95% at the point where water injection is completed.

一方連続鋳造機の中でも最もポピユラーな湾曲型連続鋳
造機の場合、モールドで一次冷却された鋳片はモールド
直下より注水して二次冷却するが、表面疵、内部割れ等
を防止し無欠陥鋳片を得るためには、モールド直下より
少女くとも矯正終了点まで注水冷却すると共に鋼種、@
造速度、鋳片ザイズ等によりその冷却条件を適切に選定
する必要があり、凝固係数に一25程度の弱冷からに=
30程度の強冷捷での範囲で鋼種、鋳造速度、鋳片サイ
ズに適した冷却条件を、選定することも知られている。
On the other hand, in the case of a curved continuous casting machine, which is the most popular type of continuous casting machine, the slab that has been primarily cooled in the mold is cooled for the second time by injecting water directly below the mold, which prevents surface flaws, internal cracks, etc., and ensures defect-free casting. In order to obtain a piece, water is poured from just below the mold to the end point of straightening, and the steel type and @
It is necessary to appropriately select the cooling conditions depending on the casting speed, slab size, etc.
It is also known to select cooling conditions suitable for the steel type, casting speed, and slab size within a range of about 30 degrees centigrade.

なお凝固係舷K (m/ mi n2]とシー−ル厚み
d 〔++++nlと時間t (mln〕との間には、
はぼd−に1/Tの関係がある。
Furthermore, the relationship between the solidified embankment K (m/min2), the seal thickness d [++++nl] and the time t (mln) is as follows:
There is a relationship of 1/T with d-.

しかしながら、前述の如く無欠陥鋳片を得るために、鋼
種、鋳造速度、鋳片サイズに応じて前記冷却条件を弱冷
から強冷(例えば凝固係数Kにしてに=25〜30)の
範囲で選定しかつ注水完了点での凝固率を85〜95%
にして未凝固復熱するとその冷却条件により凝固完了点
での47.片断面平均温度が左右され、安定的に高温鋳
片が得られない。
However, as mentioned above, in order to obtain defect-free slabs, the cooling conditions are set in the range of weak cooling to strong cooling (for example, solidification coefficient K = 25 to 30) depending on the steel type, casting speed, and slab size. Select a solidification rate of 85 to 95% at the point where water injection is completed.
When the unsolidified heat is recuperated, the temperature at the solidification completion point is 47. The average temperature of one cross section is affected, making it impossible to stably obtain high-temperature slabs.

即ち、例えば第2図に示す現在多用されている10.5
mHの基準円弧半径の湾曲型スラブ連続鋳造機において
高速鋳造(1,7tj+/m1n)にて、凝固率85−
95係で未凝固復熱を行なう(注水長3077Z−全機
長に対して70チで、注水完了点が水平部14 nz位
置である)とき、注水域の冷却条件かに−25とに二3
0との場合のメニスカスよりの距離と鋳片シェル断面平
均温度との関係は第3図の通りである。また冷却条件と
凝固完了点の鋳片断面平均温度(機端の鋳片断面平均温
度とほぼ等しい)との関係は、第4図の通りである。な
お第3図には、凝固率、(注水長/機長)の推移も併記
している。
That is, for example, the currently widely used 10.5 shown in FIG.
The solidification rate was 85- at high speed casting (1.7tj+/m1n) in a curved continuous slab casting machine with a standard arc radius of mH.
When performing unsolidified heat recuperation in section 95 (water injection length 3077Z - 70 inches for the total length of the aircraft, the water injection completion point is at the horizontal part 14 nz position), the cooling conditions of the injection area are -25 and 23.
The relationship between the distance from the meniscus and the average cross-sectional temperature of the slab shell in the case of 0 is shown in FIG. Further, the relationship between the cooling conditions and the average temperature of the slab cross section at the solidification completion point (approximately equal to the average temperature of the slab cross section at the machine end) is as shown in FIG. Furthermore, Fig. 3 also shows the change in solidification rate and (water injection length/captain length).

これら第3,4図に示す様に冷却条件により、凝固完了
点での鋳片断面平均温度が大きく左右され、無欠陥鋳片
を得るために、Kf1種、鋳片サイズに応じて、冷却条
件を弱冷(K=25程度)から強冷(K=30程度)、
注水比にして0.7//に!7〜1.57/kli’の
範囲で選定すると、凝固完了点の鋳片断面平均温度N、
]240℃〜1160℃とバラツキを生じ、安定的に高
温均一温度の鋳片を得ることができない。
As shown in Figures 3 and 4, the average temperature of the slab cross section at the solidification completion point is greatly influenced by the cooling conditions, and in order to obtain defect-free slabs, the cooling conditions are from weak cooling (K=about 25) to strong cooling (K=about 30),
The water injection ratio is 0.7//! If selected within the range of 7 to 1.57/kli', the average temperature N of the slab cross section at the solidification completion point,
] The temperature varies from 240°C to 1160°C, making it impossible to stably obtain slabs with a high and uniform temperature.

そこで本発明者等は、無欠陥鋳片を得るために、鋼種、
鋳造速度、鋳片サイズに応じてjべ定される注水域での
冷却条件に左右されず安定的に高温鋳片を得る鋳造方法
を確立すべく種々検討し、注水完了点での鋳片凝固率に
着目し、鋳造時の各利i冷却条件下での注水完了点の鋳
片凝固率と、完全凝固時の鋳片断面平均温度について伝
熱計算を行ない解析した結果、注水完了点(未凝固復熱
開始点)での凝固率を60係以下にすることにより、凝
固完了点の鋳片断面平均温度は注水域での冷却条件に左
右されず、注水完了点より凝固完了点までの復熱条件の
みに左右さね、ることを見い出した。
Therefore, in order to obtain defect-free slabs, the present inventors determined the steel type,
We conducted various studies to establish a casting method that stably obtains high-temperature slabs regardless of the cooling conditions in the injection area, which are determined according to the casting speed and slab size. Focusing on the cooling rate, we performed heat transfer calculations and analyzed the solidification rate of the slab at the point where water injection is completed under each cooling condition during casting, and the average temperature of the slab cross section at the time of complete solidification. By setting the solidification rate at the solidification recuperation start point to 60 coefficients or less, the average temperature of the slab cross section at the solidification completion point is not affected by the cooling conditions in the injection area, and the recovery from the water injection completion point to the solidification completion point is It was found that the temperature depended only on the thermal conditions.

本発明は」−記の新知見にもとづきなされたもので、本
発明は湾曲型連続鋳造機において連続鋳造鋳片の注水完
了一点での凝固率を60チ以下にして未凝固復熱するこ
とを特徴とする連続鋳造方法にある。
The present invention has been made based on the new findings described in ``-'', and the present invention is to recuperate unsolidified heat by reducing the solidification rate of continuously cast slabs to 60 degrees or less at one point when water injection is completed in a curved continuous casting machine. The feature lies in the continuous casting method.

なお注水完了点よシを疑固完了点までの復熱条件は、注
水域の冷却条件とは異なり、前記鋼種、!’d造速度、
鋳片ザイズ等によらず、はぼ一定とでき、復熱条件は、
例えば放冷、保温ロール外冷等を適宜採用できる。更に
なお本発明における凝固率は鋳片厚みをDl−ヒ面シェ
ル厚をdL、下面シェル厚をdFとすると、(dX、+
 d、 ’)/Dで定義する。
Note that the recuperation conditions from the water injection completion point to the quasi-solidification completion point are different from the cooling conditions for the water injection area, and the above-mentioned steel types! 'd construction speed,
Regardless of the slab size, etc., the recuperation conditions can be kept almost constant, and the recuperation conditions are as follows.
For example, air cooling, external cooling with a heat insulating roll, etc. can be used as appropriate. Furthermore, the solidification rate in the present invention is expressed as (dX, +
d, ')/D.

以下本発明の詳細な説明する。The present invention will be explained in detail below.

第5図は、前記鋳造時の各種冷却条件下での注水完了点
での鋳片凝固率と完全凝固時の鋳片断面平均温度の伝熱
計算結果の具体例を示したものであり、注水完了時の凝
固率が60チ以上、即ち従来の注水完了点の凝固率85
〜95%の未凝固復熱鋳造法では注水域での鋳片冷却条
件によって完全凝固時の鋳片断面平均温度が異ってくる
が、注水完了時の凝固率が60%以下では完全凝固時の
鋳片断面平均温度は、注水域での鋳片冷却条件には全く
左右されず、常に理想的に病温(1280℃)一定とな
ることを示している。なお第5図は鋳片厚み250胴、
冷却条件;強冷(K=30)弱冷(K=25)、注水完
了時の凝固率O〜100%、復熱条件;放冷復熱の諸条
件下での伝熱計狼−結果である。
Figure 5 shows a concrete example of the heat transfer calculation results of the slab solidification rate at the point of completion of water injection and the average cross-sectional temperature of the slab at the time of complete solidification under various cooling conditions during casting. The solidification rate at the time of completion is 60 inches or more, that is, the solidification rate at the completion point of conventional water injection is 85
In the unsolidified reheating casting method with ~95% solidification, the average temperature of the slab cross section at the time of complete solidification varies depending on the cooling conditions of the slab in the injection area, but if the solidification rate at the time of water injection is completed is 60% or less, it will not be completely solidified. The average cross-sectional temperature of the slab is not affected by the cooling conditions of the slab in the injection area, and is always ideally constant at the disease temperature (1280°C). In addition, Fig. 5 shows a slab thickness of 250 mm,
Cooling conditions: strong cooling (K = 30), weak cooling (K = 25), solidification rate at the completion of water injection O ~ 100%, recuperation conditions: Heat transfer meter results under various conditions of radiation cooling and recuperation be.

なお鋳片厚みを変更した場合、200制では注水完了時
の凝固率60チ以下で一定で1280℃より高くなり、
300 mmでは同様に60チ以下で一定で1280℃
より低くなる傾向を示す。
In addition, when changing the slab thickness, in the 200 system, the solidification rate at the end of water injection is constant at 60 cm or less and becomes higher than 1280 °C,
Similarly, at 300 mm, the temperature is constant at 1280°C below 60 inches.
It shows a tendency to become lower.

また、復熱条件を変更した場合、保温であると上記凝固
率60%以下で一定で1280℃より高くなり、ロール
外冷であると同様に60係以下で一定で1280 ℃よ
り低くなる傾向を示す。
In addition, when changing the reheating conditions, in the case of heat retention, the coagulation rate tends to be constant at 60% or less and higher than 1280 °C, and in the case of external roll cooling, it tends to be constant at 60 coefficient or less and lower than 1280 °C. show.

注水完了点の凝固率を60%以下にすることによシ注水
域の冷却条件が変わっても、凝固完了点の鋳片断面平均
温度が変化せず復熱条件に依存して一定高温になる理由
は次のように考えられる。
By setting the solidification rate at the water injection completion point to 60% or less, even if the cooling conditions of the water injection area change, the average temperature of the slab cross section at the solidification completion point does not change and remains at a constant high temperature depending on the recuperation conditions. The reason may be as follows.

特定凝固率時の凝固シェル側のエンタルピーと未凝固部
のエンタルピーの犬、小関係が、凝固率60チ以下では
未凝固部のエンタルピーがシェル側のエンタルピーに対
して充分に大きくなることにより、シェル側のエンクル
ビー、即ち注水域の冷却条件により決る凝固シェル側の
エンタルピーの鋳片断面全体エンタルピーへの影響が小
さくなるだめと考えられる。
There is a small relationship between the enthalpy of the solidified shell side and the enthalpy of the unsolidified part at a specific solidification rate.When the solidification rate is 60 degrees or less, the enthalpy of the unsolidified part becomes sufficiently larger than the enthalpy of the shell side. It is thought that this is because the influence of the enthalpy on the solidified shell side, which is determined by the cooling conditions of the side enclaves, that is, the injection area, on the enthalpy of the entire slab cross section is reduced.

以上詳述した様に注水完了点の凝固率を60%以下とす
るととにより機端での切片温度が注水域での冷却条件に
左右されず無欠陥鋳片を確保するために、鋼種サイズ速
度に応じて注水1jiQで冷却条件を変更選定しても常
に安定的に高湿り3片を得ることができる。
As detailed above, when the solidification rate at the water injection completion point is set to 60% or less, the section temperature at the end of the machine is not affected by the cooling conditions in the injection area, and in order to ensure defect-free slabs, the steel type size speed Even if the cooling conditions are changed and selected depending on the water injection 1jiQ, 3 pieces of high humidity can always be obtained stably.

なお10.5mR1一点矯正の湾曲型連続鋳造機におい
ては、上記矯正点はメニスカスからの距離で165m位
置であり、例えば鋳片厚250+mn1.鋳造速度1.
7 m/ m + n、冷却条件範囲、凝固係数に−2
5〜30、で、強冷条件例えばに−30が選定されると
、凝固率60%の未凝固鋳片の位置は、メニスカスから
の距離で10.6m位置となり、このイ)7置から未凝
固暖熱すれば上記冷却条件範囲で鋳造しても一定の高温
鋳片を得ることができる。
In a curved continuous casting machine with single point correction of 10.5mR1, the above correction point is located at a distance of 165m from the meniscus, and for example, when the slab thickness is 250+mn1. Casting speed 1.
7 m/m + n, cooling condition range, -2 to solidification coefficient
5 to 30, and if the strong cooling condition, for example -30, is selected, the position of the unsolidified slab with a solidification rate of 60% will be 10.6 m from the meniscus, and the If it is solidified and heated, a constant high temperature slab can be obtained even if it is cast within the above cooling condition range.

しかしながら、未凝固復熱開始点が矯正点以前の湾曲部
であり、かつ溶鋼静圧も太きいから例えば少なくとも上
記開始点から矯正点−までの間の鋳片を、例えば公知の
ウオーキングノ9−等で面皮]寺してバルジング等を減
少しないと内部割れ等の欠陥が生じる可能性が強い。
However, since the unsolidified reheating starting point is a curved part before the straightening point and the molten steel static pressure is also large, the slab from the above-mentioned starting point to the straightening point is, for example, If bulging etc. are not reduced, there is a strong possibility that defects such as internal cracks will occur.

従って本発明の連続鋳造方法は前記鋳造条件で鋳造して
も凝固率60チ位置が燻正点以降の水平部になりかつ溶
鋼静圧も小さくなり、上面面支持磯構を要しないそれ自
体公知の6〜3mRの小円弧半径の湾曲型連続鋳造機で
実施するのが適切である0 次に本発明の詳細な説明する。
Therefore, even if the continuous casting method of the present invention is cast under the above-mentioned casting conditions, the solidification rate 60° position will be a horizontal part after the smoking point, and the static pressure of molten steel will be small, and the continuous casting method does not require a top support rock structure, which is known in itself. It is appropriate to use a curved continuous casting machine with a small arc radius of 6 to 3 mR.Next, the present invention will be described in detail.

実施例1 基準円弧半径3mR,4点矯正、湾曲型スラブ連続T1
造機において、250喘厚の鋳片を鋳造速度1.7m/
minで鋳造するに1gして鋼種に応じて、注水域での
211片の冷却条件をに−25〜30の範囲で選定して
も注水完了点での鋳片の凝固率を60係以−Fにするた
めに、例えばに−30で凝固率42係から注水長を7 
mとした・ なお上記77?1の注水長の注水完了点の1、水平g1
へ237片位置であり、7 m注水長はに−25で決ま
る機長に対して16φとなっている。
Example 1 Standard arc radius 3mR, 4-point correction, continuous curved slab T1
In a casting machine, a slab with a thickness of 250 mm is cast at a speed of 1.7 m/
Even if the cooling conditions for the 211 slabs in the injection area are selected in the range of -25 to 30 depending on the steel type, the solidification rate of the slab at the point of completion of water injection will be lower than 60. In order to make it F, for example, set the water injection length to 7 from the solidification rate of 42 at -30.
1, the horizontal g1 of the water injection completion point of the water injection length of 77?1 above.
The 7 m water injection length is 16φ with respect to the aircraft length determined by -25.

上記注水域でのf4片冷却条件を弱冷(K=25)と強
冷(K=30)で鋳造した際のメニスカスよりの距離と
鋳片シェル断面平均湯度の関係を第6図に示している。
Figure 6 shows the relationship between the distance from the meniscus and the average melt temperature of the slab shell cross section when casting the F4 slab in the above injection area under weak cooling (K = 25) and strong cooling (K = 30). ing.

なお第6図には凝固率、(注水長/機長)の推移も併記
した。また、−」二言己?、IE水J或の鋳片冷却条件
(弱冷に−25から強冷K = 3 +1、注水比0.
71Ag〜1.57/に!?)と7Q固完了時のご4片
tilt面平均温度との関係を第7図に示す。なふ−’
r:+”、 6図から明らかなようにに−25のときの
四E 71(完了点での凝固率は、60チ以下の34%
となっている。
Figure 6 also shows the changes in solidification rate and (water injection length/captain length). Also, -” Two words? , IE water J certain slab cooling conditions (from weak cooling -25 to strong cooling K = 3 +1, water injection ratio 0.
71Ag~1.57/! ? ) and the average temperature of the four-piece tilt surface at the completion of 7Q solidification is shown in Figure 7. Nahu-'
r: +", as is clear from Figure 6, 4E71 at -25 (the solidification rate at the completion point is 34% below 60 cm)
It becomes.

実施例2゜ 基準円弧半径6mR,4点畑正の湾曲4fi17スラブ
一1!1毛続鋳造機において、250++m厚の鋳片を
観ゴ造逼11現1、77?? /ITI f nで鋳造
する際に、鋼種VこKGじて7+水臥。
Example 2゜Reference arc radius 6mR, 4-point curved 4fi 17 slab 1!1 A cast slab with a thickness of 250++ m was cast using a casting machine. ? / When casting with ITI f n, the steel type V is 7 + water.

での鋳片の冷却条件を凝固係73に=25〜30の範囲
で選定しても注水完了点での6り片の6−1率を60係
以下とするだめに、例えばに−30で凝固率60係から
注水長を10.5mとした。
Even if the cooling conditions for the slab are selected in the range of 25 to 30 with a solidification coefficient of 73, in order to keep the 6-1 ratio of the slab at the point where water injection is completed to 60 or less, it is necessary to set the solidification coefficient to -30, for example. The water injection length was set to 10.5 m based on the coagulation rate of 60.

なお上記105mの注水長の注水完了点は、連続鋳造機
水平部1 m位置であり、10.57??注水長は、K
 = 25で決する全機長に対して25%となっている
The water injection completion point for the water injection length of 105 m above is at the 1 m horizontal part of the continuous casting machine, which is 10.57 m. ? Water injection length is K
= 25% of the total captain determined by 25.

上記注水域での鋳片冷却条件を弱冷(K=25)と強冷
(K=30)で鋳造した際のメニスカスよりの距離と鋳
片シエ゛ル断面平均温度の関係を第8図に示している。
Figure 8 shows the relationship between the distance from the meniscus and the average cross-sectional temperature of the slab shell when casting under weak cooling (K = 25) and strong cooling (K = 30) in the above injection area. It shows.

なお第8図には凝固率、(注水長/機長)の推移も併記
した。また上記注水域の鋳片冷却条件(弱冷に−25か
ら強冷に=30、注水比0.7 n /に9〜t、s7
/kg)と凝固完了時の鋳片断面平均温度の関係を第9
図に示す。なお第8図から明らかな様にに−25のとき
の注水完了点での凝固率は60%以下の46係となって
いる。
Figure 8 also shows the changes in solidification rate and (water injection length/captain length). In addition, the slab cooling conditions of the above injection area (weak cooling from -25 to strong cooling = 30, water injection ratio 0.7 n / 9 to t, s7
/kg) and the average temperature of the slab cross section at the completion of solidification.
As shown in the figure. As is clear from FIG. 8, the solidification rate at the point where the water injection is completed at -25 is 46, which is less than 60%.

上記第6〜9図から明らかな如く、本発明の連続鋳造方
法によれば、完全凝固時の鋳片断面平均温度は、注水域
での鋳片の冷却条件によらず、はぼ1.2.8 (1℃
一定となる。
As is clear from FIGS. 6 to 9 above, according to the continuous casting method of the present invention, the average temperature of the slab cross section at the time of complete solidification is approximately 1.2 .8 (1℃
It becomes constant.

この鋳片断面平均温度1280’Ctよ、仮りに注水域
での冷却を水によらず放冷(K=22.5程度)のみに
よった極端な場合の完全凝固時の鋳片断面平均温度の計
算値と一致するものであり、理想的、極限的な温度であ
る。
This average cross-sectional temperature of the slab is 1280'Ct. In an extreme case, if the cooling in the injection area is done only by letting it cool (K = about 22.5), the average temperature of the slab cross-section at the time of complete solidification is This agrees with the calculated value of , which is the ideal and extreme temperature.

以上詳述した様に、本発明の連続鋳造方法によれば、無
欠陥鋳片を得るために、鋼種、鋳造速度、鋳片ザイズに
応じて選定される注水域での鋳片冷却条件に左右されず
、安定的に一定の理想的な極限の高温鋳片を得ることが
でき、直接圧延プロセスを容易に実現できるものである
As detailed above, according to the continuous casting method of the present invention, in order to obtain defect-free slabs, the cooling conditions in the injection area, which are selected according to the steel type, casting speed, and slab size, are affected. Therefore, it is possible to stably obtain a constant, ideal, extremely high temperature slab, and the direct rolling process can be easily realized.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a) 、 (b) 、 (c)は従来の連鋳〜
圧延プロセスを示す図、 第2図、第3図、第4図は従来の連続鋳造方法の欠点の
説明図、 第5図は注水域での鋳片冷却条件をパラメータとする注
水完了点の鋳片凝固率と凝固完了時の−j片断面平均温
度と関係の説明図、 第6図、第7図、第8図及び第9図は、本発明の連続鋳
造方法の実施結果の説明図である。 (、ム        Q 朋)命        J船々 庄&S或ビの波犬向全之 3エノに兜丁日寺の二顛l酉牽(%) (つ。)’J1g<レギ十1r丁4 (%)キ回潰【 z:’、’y、   7   ト又1 第9図 弱ンイ1   ;’F去PB*y K(”=z−Ai’
%)=J!;+(’)。)WWrIBfi’l/T、/
:(%)宰凹六ご 33
Figure 1 (a), (b), and (c) are conventional continuous casting ~
A diagram showing the rolling process. Figures 2, 3, and 4 are explanatory diagrams of the shortcomings of the conventional continuous casting method. Figure 5 is a diagram showing the casting process at the completion point of water injection using the slab cooling conditions in the injection area as a parameter. Figures 6, 7, 8, and 9 are explanatory diagrams of the relationship between the piece solidification rate and the -j piece cross-sectional average temperature at the time of completion of solidification, and are explanatory diagrams of the implementation results of the continuous casting method of the present invention. be. (、Mu Q Tomo) Life J Funansho & S Arubi's Hainumuka Zenno 3 Eno to Kabutocho Nichiji Temple's 2nd day L Toriken (%) (tsu.)'J1g<Regi 11r 4 (%) )K times [z:','y, 7 Tomata 1 Figure 9 weak 1;'F leaving PB*y K("=z-Ai'
%)=J! ;+('). )WWrIBfi'l/T,/
:(%) Zaiko Rokugo 33

Claims (1)

【特許請求の範囲】[Claims] 湾曲型連続鋳造機において連続鋳造鋳片の注水完了点で
の凝固率を60%以下にすることを特徴とする連続鋳造
方法。
A continuous casting method characterized by reducing the solidification rate of continuously cast slabs to 60% or less at the point of completion of water injection in a curved continuous casting machine.
JP19838282A 1982-11-12 1982-11-12 Continuous casting method Granted JPS5987962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19838282A JPS5987962A (en) 1982-11-12 1982-11-12 Continuous casting method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19838282A JPS5987962A (en) 1982-11-12 1982-11-12 Continuous casting method

Publications (2)

Publication Number Publication Date
JPS5987962A true JPS5987962A (en) 1984-05-21
JPS6234457B2 JPS6234457B2 (en) 1987-07-27

Family

ID=16390188

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19838282A Granted JPS5987962A (en) 1982-11-12 1982-11-12 Continuous casting method

Country Status (1)

Country Link
JP (1) JPS5987962A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063991A (en) * 1988-05-13 1991-11-12 Irsid Process for cooling a continuously cast metal product

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5063991A (en) * 1988-05-13 1991-11-12 Irsid Process for cooling a continuously cast metal product

Also Published As

Publication number Publication date
JPS6234457B2 (en) 1987-07-27

Similar Documents

Publication Publication Date Title
JPH09225607A (en) Method for continuously casting steel
JPH11500360A (en) Method and apparatus for operating continuous casting apparatus
JPS5987962A (en) Continuous casting method
JP3401785B2 (en) Cooling method of slab in continuous casting
JPS58167064A (en) Continuous casting method of steel
JPH09327753A (en) Cooling drum of thin cast slab continuous casting apparatus
JP2950152B2 (en) Continuous casting mold for slab
JPH02247049A (en) Manufacture of cast strip
JPH09225592A (en) Tube mold for continuously casting square billet
JP3161293B2 (en) Continuous casting method
JPS58184049A (en) Continuous casting method of steel in curbed type
JPH01202344A (en) Twin roll type casting device
JPH05245594A (en) Twin roll type strip continuous casting method
JPH03133543A (en) Continuous casting method
JPS63171249A (en) Continuous casting method for cast metal strip
JPS5835048A (en) Plug for horizontal continuous casting device
JP2000094006A (en) Production of thin stainless steel strip
JPS6167543A (en) Casting method of steel
JPS5952013B2 (en) Continuous casting method for seawater resistant steel
JPH09271902A (en) Tube mold for continuously casting square billet
JPS6087956A (en) Continuous casting method of metal
JPH07100594A (en) Twin roll type continuous casting method and apparatus thereof
JPS61154750A (en) Continuous casting method
JPS623211B2 (en)
JPH02187236A (en) Gypsum investment casting method