JPS5987957A - Casting mold in continuous casting - Google Patents

Casting mold in continuous casting

Info

Publication number
JPS5987957A
JPS5987957A JP19959182A JP19959182A JPS5987957A JP S5987957 A JPS5987957 A JP S5987957A JP 19959182 A JP19959182 A JP 19959182A JP 19959182 A JP19959182 A JP 19959182A JP S5987957 A JPS5987957 A JP S5987957A
Authority
JP
Japan
Prior art keywords
mold
slab
width
formula
casting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19959182A
Other languages
Japanese (ja)
Other versions
JPS6143135B2 (en
Inventor
Kosaku Ozawa
小澤 浩作
Chihiro Yamaji
山地 千博
Kiyomi Yadori
宿利 清巳
Tetsuo Ohashi
大橋 徹郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19959182A priority Critical patent/JPS5987957A/en
Publication of JPS5987957A publication Critical patent/JPS5987957A/en
Publication of JPS6143135B2 publication Critical patent/JPS6143135B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/04Continuous casting of metals, i.e. casting in indefinite lengths into open-ended moulds
    • B22D11/043Curved moulds

Abstract

PURPOSE:To form the section of a billet to a prescribed size and shape and to economize energy in the succeeding stage in a curved type continuous casting wherein the unsolidified billet is unbent and set by forming a casting mold into the shape wherein the relation among the thickness and radius of curvature of the billet as well as the width on the top and bottom surfaces of the casting mold is specified. CONSTITUTION:The shape of a casting mold with which the equations ( I ), (II) hold is selected with respect to the width sizes Lu, Ll on the top and bottom surfaces of the mold and the average LM of Lu and Lu where the average width size on the top and bottom surfaces of a straight billet at an ordinary temp. is designated as lMC, the thickness of the billet as (t) and the radius of curvature of the mold as R. The specified sectional size and shape of the straight billet are thus obtd. by such casting and therefore the efficiency in the succeeding stage is improved.

Description

【発明の詳細な説明】 本発明は、連続鋳造機における鋳型に関するものである
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mold for a continuous casting machine.

第1図は、わん曲鋳造軸をもつわん曲型連続鋳造機の説
明図で、鋳型(1)の中で鋳片の外殻が作られ、鋳片は
曲線状の軌道(Tl)に泪って降下しつつ冷却されて次
第に内部に向って凝固が進行し、水平軌道(10上をし
ばらく進んだところで完全に凝固する。この凝固搬送過
程の矯正個所Uにおいて、わん曲した鋳片は曲げ戻し矯
正され真直にされて水平軌道上を進む。鋳片は未凝固状
態で曲げられるため、矯正時に変形を起し、鋳型でつく
られた時とは異った断面形状、寸法の鋳片に変る。即ち
、第2図に示す矩形断面の鋳型から引抜かれたQ片は特
開昭56−5760号公報に示される様に断面が台形化
する。このような台形化を補償し、矯正後の断面形状が
矩形断面の鋳片を製造するには、前記特開昭56−57
60号公報に記載されているように第3図に示す台形断
面の鋳型を使用する必要がある。
Figure 1 is an explanatory diagram of a curved continuous casting machine with a curved casting shaft.The outer shell of the slab is made in the mold (1), and the slab falls on a curved track (Tl). The slab is cooled while descending, and solidification progresses gradually toward the inside, and it solidifies completely after traveling on the horizontal track (10) for a while. At the correction point U in this solidification and conveyance process, the curved slab is bent. It is straightened and straightened and moves on a horizontal track.Since the slab is bent in an unsolidified state, it is deformed during straightening, resulting in a slab with a different cross-sectional shape and dimensions than when it was made in the mold. That is, the Q piece drawn from the mold with a rectangular cross section as shown in Fig. 2 has a trapezoidal cross section as shown in Japanese Patent Application Laid-Open No. 56-5760. In order to manufacture a slab having a rectangular cross-sectional shape, the above-mentioned Japanese Patent Application Laid-Open No. 56-57
As described in Japanese Patent No. 60, it is necessary to use a mold having a trapezoidal cross section as shown in FIG.

又、前記特開昭56−5760号公報は、鋳型の上面巾
寸法(Lu)と下面巾寸法(Lc)の比が次式の関係を
満足する台形断面の鋳型(台形鋳型)を用いることにへ
よシ矯正後に矩形断面の鋳片が得られることを開示して
いる。
In addition, the above-mentioned Japanese Patent Application Laid-Open No. 56-5760 discloses that a mold with a trapezoidal cross section (trapezoidal mold) is used in which the ratio of the upper surface width dimension (Lu) and the lower surface width dimension (Lc) of the mold satisfies the following relationship. It is disclosed that a slab with a rectangular cross section can be obtained after straightening the warp.

但し t:@片厚さ 几;鋳型のわん曲半径 aピ0.2 又、特公昭44−8481号公報においては、几=60
00.4000.2000mのとき、それぞれのそれぞ
れtlは1.5 、2.0 、2.5%である台形断面
の鋳型を用いることにより矩形断面の鋳片が得られるこ
とを開示している。
However, t: @ piece thickness 几; radius of curvature of the mold a pi 0.2 Also, in Japanese Patent Publication No. 44-8481, 几 = 60
00.4000.2000 m, it is disclosed that a slab with a rectangular cross section can be obtained by using molds with a trapezoidal cross section with tl of 1.5, 2.0, and 2.5%, respectively.

しかしながらこれら公知の上、下面巾寸法の台形鋳型は
、矯正後に矩形断面の鋳片になるにははなはだ不充分な
ものであシ、これらの式に基づく鋳型を用いても必ずし
も矩形断面の鋳片が得られない。それは、鋳片の偏平比
(IJ M/ t )によシ矯正時における。L回申と
下面d】との変化割合いが異なυ、更に矯正時の土、下
面中の寸法変化量は上下面のそれぞれの温度によっても
変化するからである。
However, these known trapezoidal molds with a bottom width dimension are extremely insufficient to produce slabs with a rectangular cross section after straightening, and molds based on these formulas do not necessarily yield slabs with a rectangular cross section. I can't do it. This is due to the aspect ratio (IJ M/t) of the slab during straightening. This is because the rate of change between L rotation and lower surface d] is different, and the amount of dimensional change in the soil and lower surface during straightening also changes depending on the respective temperatures of the upper and lower surfaces.

一方、従来矯正時における上、下面1]の寸法変化は、
上、下面対称に変形を生じ従って鋳片の上下面平均中の
変化は生じないものとし、熱収縮による縮み式のみを考
慮して鋳型の平均巾を決めてい念。しかるに実際には矯
正個所での上下押圧力による鋳片表面の拘束は等しくな
いために、下面の巾が広くなる程には上面の巾は狭くな
らず、上下面は非対称に変形し、上下面平均rlJは変
る。
On the other hand, the dimensional changes of the upper and lower surfaces 1 during conventional correction are as follows:
It is assumed that deformation occurs symmetrically on the top and bottom surfaces, so there is no change in the average of the top and bottom surfaces of the slab, and the average width of the mold is determined by considering only the shrinkage formula due to heat shrinkage. However, in reality, the restraint of the surface of the slab due to the vertical pressing force at the straightening point is not equal, so the width of the top surface does not become narrower as the width of the bottom surface becomes wider, and the upper and lower surfaces deform asymmetrically, causing the upper and lower surfaces to become narrower. The average rlJ changes.

又特開昭52−52126.55−5115号公報等で
示されるように内部割れを防止する手段として、」二面
のm度を低クシ、下面の温度を高くした場合、上面と下
面との鋳造方向変形割合いは著しく非対称となり、これ
に伴ない上下血中の寸法変化も著しく非゛対称となシ、
上、下面平均中は変る。
Furthermore, as shown in Japanese Patent Application Laid-Open No. 52-52126.55-5115, as a means to prevent internal cracking, when the temperature of the lower surface is raised and the temperature of the lower surface is raised, The deformation rate in the casting direction becomes significantly asymmetrical, and along with this, the dimensional changes in the upper and lower blood vessels also become significantly asymmetrical.
The upper and lower average values change.

このため、上下面平均中の変化を考慮せず熱収縮による
縮み式のみを考慮して平均巾を決定した台形鋳型では所
望の平均巾の鋳片を得ることができない。
Therefore, with a trapezoidal mold in which the average width is determined by considering only the shrinkage formula due to heat shrinkage without considering the change in the average of the upper and lower surfaces, a slab with the desired average width cannot be obtained.

従って、本発明は未凝固鋳片の曲げ戻し矯正に伴なう断
面形状、寸法の変化を、鋳型の上面中、下面中を適切な
寸法にすることにょシ、長方形断面で、且つ所望の巾の
鋳片を得ることができる連続鋳造における鋳型を提供す
ることを目的とする。
Therefore, the present invention aims to correct the changes in the cross-sectional shape and dimensions caused by unbending and straightening the unsolidified slab by adjusting the upper and lower surfaces of the mold to appropriate dimensions. The object of the present invention is to provide a mold for continuous casting that can obtain slabs of 1.

本発明の連続鋳造における鋳型は、未凝固鋳片の曲げ戻
し矯正を行うわん臼型連続鋳造において常温鋳片の上、
下面平均巾寸法をLMo%鋳片厚さをt、鋳型のわん曲
半径をRとしたとき、鋳型の上、下面巾寸法Lu 、 
LL、及びLuとLLの平均TJMに関し、 −=  1+(1−γ)Xt/2几・・山・・・・・・
・(1)t の関係を有する上、下面巾寸法としたことを特徴とする
連続鋳造における鋳型である。
The mold for continuous casting of the present invention is used for the continuous casting of the unsolidified slab for straightening the bending process.
When the average width of the lower surface is LMo%, the thickness of the slab is t, and the radius of curvature of the mold is R, the upper and lower width dimensions of the mold are Lu,
Regarding the average TJM of LL and Lu and LL, -= 1+(1-γ)Xt/2几...Mountain...
- (1) A mold for continuous casting characterized by having upper and lower surface width dimensions having the relationship of t.

但し、(11、[21式において 0.0’6X(’Lu+LA )/2t<r<(1,1
X(T、u+L2 )/2t0.4〈β〈08+Δ’I
’/100 α=0.035(鋳片の熱収縮率) Δ=TL−Tu Tu:矯正点における上面温度 TL;矯正点における上面温度 とする。
However, (11, [0.0'6X('Lu+LA)/2t<r<(1,1
X(T, u+L2)/2t0.4〈β〈08+Δ'I
'/100 α=0.035 (thermal contraction rate of slab) Δ=TL−Tu Tu: Top surface temperature TL at straightening point; Upper surface temperature at straightening point.

以下本発明の鋳型に到達するまでの過稈について詳細に
説明する。
The overculm until reaching the mold of the present invention will be explained in detail below.

第4図、第5図は第1図のB−’B、O−0位置におけ
る鋳片断面を示す。第6図は常温での鋳片の断面を示す
4 and 5 show cross sections of the cast slab at the B-'B and O-0 positions in FIG. 1. FIG. 6 shows a cross section of the slab at room temperature.

尚、以下の説明において、 Lu:鋳型の上面(内側)中寸法 Lヒ;鋳型の下面(外側)巾寸法 LM:鋳型の上、下面平均巾寸法 tu :矯正前鋳片上面巾寸法 tの:矯正前鋳片下面巾寸法 t’u:矯正直後鋳片下面巾寸法 t2;矯正直後鋳片下面巾寸法 A’uc ;矯正後常温になった鋳片上面巾寸法L′L
c:矯正後常温になった鋳片下面中寸法であり、 tM:矯正前鋳片上、下面平均巾寸法 Z/M ;矯正直後鋳片上、下面平均中寸法tMO;常
温に訃ける鋳片上、下面平均巾寸法とする。
In the following description, Lu: Upper (inner) middle dimension of the mold L; Lower (outer) width of the mold LM: Average width of the upper and lower surfaces of the mold tu: Upper surface width of the slab before straightening t: Straightened Lower surface width of slab before straightening t'u: Lower surface width of slab immediately after straightening t2; Lower surface width of slab immediately after straightening A'uc; Upper surface width of slab at room temperature after straightening L'L
c: Medium dimension of the bottom surface of the slab at room temperature after straightening, tM: Average width dimension of the top and bottom surfaces of the slab before straightening Z/M; Average middle dimension of the top and bottom surfaces of the slab immediately after straightening tMO: Top and bottom surfaces of the slab at room temperature Average width dimension.

まず、矩形断面鋳片を曲げ戻す際に短片側では拘束が無
く、上、下面が1−に変形するものと仮定する。この場
合には、曲げ戻し前後の上、下面の各寸法は単純な塑性
変形上からは(41,、(51式で表わされる。
First, when bending back a rectangular cross-section slab, it is assumed that there is no restraint on the short side and that the upper and lower surfaces are deformed to 1-. In this case, the dimensions of the upper and lower surfaces before and after unbending are expressed by equations (41, (51) from the viewpoint of simple plastic deformation.

tu        R ここで、νはポアソン比で、最大0.5と考えられる。tu       R Here, ν is Poisson's ratio, which is considered to be at most 0.5.

そして、矩形断面鋳型では、tI+=ムであり、一般に
tに比べRは極めて大きいので(41、(51式よρ・
(6)式が近似的に成シ立つ。
In the case of a rectangular cross-section mold, tI+=mu, and since R is generally extremely large compared to t (41, (from formula 51, ρ・
Equation (6) approximately holds true.

L’u          R 次に短片側で変形が完全に拘束されるものと仮定すると
、上、下面の1〕寸法はその拘束された区域内の変化に
とどまシ、矩形断面の鋳片になるように拘束されている
ときには、次の(7)式が成夛立L’u 従って、矯正後の上、下面の巾寸法の比は(8)式の範
囲になる事は容易に推察できる。
L'u R Next, assuming that the deformation is completely restrained on the short side, the dimensions of the top and bottom surfaces will remain unchanged within the restrained area, so that the slab will have a rectangular cross section. When restrained, the following equation (7) is established L'u. Therefore, it can be easily inferred that the ratio of the width dimensions of the upper and lower surfaces after correction falls within the range of equation (8).

しかし、実際の巾寸法の変化は、鋳片厚さく1)と鋳片
の上、下面の巾寸法の比によル左右されること、そして
(9)式でほぼ正確に示される事が研究、実験の結果、
知られた。
However, research has shown that the actual change in width depends on the ratio of the slab thickness 1) and the width dimensions of the top and bottom surfaces of the slab, and that it is almost accurately expressed by equation (9). ,results of the experiment,
known.

なお、γ′は 01式で表わされる範囲の数値である。Note that γ' is a numerical value within the range expressed by formula 01.

212を 又、鋳造過程においては、上面と下面の温度はほぼ等し
く熱収縮の差は#1とんど無視できるので下記のθ11
 、 +12式が成シ立つ。
212, in the casting process, the temperature of the top and bottom surfaces are almost equal and the difference in heat shrinkage is almost negligible, so the following θ11
, +12 formula holds true.

1’ u   L’ut。1’ u L’ut.

nLu そこで予め鋳型の上下面巾寸法を03式((I)式に相
当する。)で示す上下面巾寸法比になる門うにしておけ
ばほとんど台形化しない鋳片が得られる9■JL  t
L 但し、rは04式で定義される範囲の数値である。
nLu Therefore, if you set the upper and lower surface width dimensions of the mold to the upper and lower surface width ratio shown in formula 03 (corresponding to formula (I)) in advance, you can obtain slabs that hardly become trapezoidal.9■JL t
L However, r is a numerical value within the range defined by formula 04.

ここで、γt−(14)式で定義した根拠を〔表−1〕
及び第7図を用いて説明する。
Here, the basis defined by the γt-(14) formula is shown in Table 1.
This will be explained using FIG.

〔表−1〕 〔表−1〕の例1,2.3はR=3000(7)矩形断
面の鋳型の例であシ、例4は前述の特開昭56−567
0号公報に示されている11.=10500の矩形断面
の鋳型の例である。そして、〔表−1〕の(l−γ′)
の欄の数値は (9)式に〔表−1〕のtte’j 、
 tucl 、 t 、 Rを代入して求めたものであ
る。これらの結果を図示したのが第7図である。
[Table-1] Examples 1 and 2.3 of [Table-1] are examples of molds with R=3000 (7) rectangular cross section, and Example 4 is the mold of the above-mentioned JP-A-56-567.
11 shown in Publication No. 0. This is an example of a mold with a rectangular cross section of =10500. And (l-γ′) in [Table-1]
The numerical value in the column is expressed as (9) using tte'j of [Table-1],
It was obtained by substituting tucl, t, and R. FIG. 7 illustrates these results.

これから求めたr ’ iti (11式から求めたγ
′の範囲内にあシ、(11式が良く成ル立っ事が解る。
r' iti calculated from this (γ calculated from equation 11
If it is within the range of ', it is clear that formula 11 is well established.

次に、鋳片を矯正して水平に曲げ戻した時、もし上下ロ
ールの抑圧力による拘束が等しく、上下回申の変形割合
いが対称であれば矯正前及び矯正直後鋳片の上、下面中
の平均寸法J、M及びt/Mについて(41、(51式
より09式が成り立つ。
Next, when the slab is straightened and bent back horizontally, if the restraint by the suppressing force of the upper and lower rolls is equal and the deformation rate of the upper and lower changes is symmetrical, then the upper and lower surfaces of the slab before and after straightening will be Regarding the average dimensions J, M, and t/M (41, (from formula 51, formula 09 holds true.

矩形断面鋳型ではLu=■、を−11Mであるから09
式は簡易化され00式になる。
In a rectangular cross-section mold, Lu=■ is -11M, so 09
The formula is simplified to formula 00.

M しかしながら、実際には、(11式で示される様にはな
らずt M /はTJMjシ広くなる。
However, in reality, it does not become as shown in equation 11, and t M / becomes wider than TJMj.

そこで、上面側の巾寸法Luが矯正前後において全く変
化しないと仮定すると、下記の0η、θネ式%式% (1 又(91、011式より t’i =t’tヒ(1+(l  r’ )X t/2
nl  OSが導き出され、この00式を用いて1式を
導く事が出来る。
Therefore, assuming that the width Lu on the upper surface side does not change at all before and after correction, the following 0η, θne formula% formula% r')Xt/2
nl OS is derived, and formula 1 can be derived using this formula 00.

t/2R)) =1+(1−r’ ) t/4R(+101式は理論上
の最大値を示すものであシ、実際は01式に換えて、(
イ)式を用いる。
t/2R)) = 1+(1-r') t/4R(+101 formula indicates the theoretical maximum value; in reality, instead of 01 formula, (
b) Use the formula.

ここで上式のβの求め方について説明する。Here, how to obtain β in the above equation will be explained.

員式は曲げ戻し矯正前後の鋳片の巾の変化を示している
が、実際に測定できるのは常温鋳片であシ、その間の熱
収縮を考慮すると、(イ)式から下記のel)式((2
)式に相当する。)が導びがれる。
The 3-dimensional equation shows the change in the width of the slab before and after unbending and straightening, but it can actually be measured only when the slab is at room temperature, and considering the thermal contraction during that time, from equation (A), the following el) Formula ((2
) corresponds to the expression. ) will be guided.

LMO(3,+a)=l’M=LM(1+β(1−r)
t/4rL)  oJ)C!η式におけるαは鋳片の熱
収縮率である。
LMO(3,+a)=l'M=LM(1+β(1-r)
t/4rL) oJ)C! α in the η equation is the thermal shrinkage rate of the slab.

tを変更したテスト結果から式(2ηのαを消去しβを
求めることができる。即ち同−鋳型中において、tl、
 t2の2種の厚みで製造された鋳片の室温における上
下面平均巾寸法e L c1* t(2とすると、式Q
1)からaa 、(ハ)式ができる。
From the test results when t is changed, β can be found by eliminating α in the formula (2η. In other words, in the same mold, tl,
If the average width of the upper and lower surfaces at room temperature e L c1 * t (2) of slabs manufactured with two thicknesses of t2, then the formula Q
From 1), aa, formula (c) can be obtained.

t(+(1+α)=LM(1+β・(l r’+)tt
/4n) Cl2tC2(l+α)=T、M(1+β・
(1−γ’2) t2/4R)(2)そしてC+a 、
(ハ)式からαを消去して(財)式を導くことができる
t(+(1+α)=LM(1+β・(l r'+)tt
/4n) Cl2tC2(l+α)=T, M(1+β・
(1-γ'2) t2/4R) (2) and C+a,
By eliminating α from equation (c), equation (goods) can be derived.

Q4)式によシβを求めるため、tを変えて〔表−2〕
に示す条件で試験を行った。
Q4) To find β according to the formula, change t [Table 2]
The test was conducted under the conditions shown below.

上記〔表−2〕のΔTは矯正個所における上面温度Tu
(’C)と下面温度Tt(C)の差であり、(ハ)式で
定義される。
ΔT in [Table 2] above is the upper surface temperature Tu at the correction location.
('C) and the bottom surface temperature Tt(C), and is defined by equation (c).

Δ’l’ = ’I’4− T u         
  ’2’、+1なお〔表−2〕の諸データを求めたと
きの試験条件の一つである上記下面温度’r’t = 
s o o〜1000C℃)である。
Δ'l' = 'I'4- T u
'2', +1 Note that the above bottom surface temperature 'r't = one of the test conditions when obtaining the various data in [Table 2].
s o ~ 1000C°C).

〔表−2〕は、上下面に温度差のない場合には、βの数
値は理論上の上限値(β−1)より小さく、温度差のあ
る場合には理論上の上限値よシも大きくなることを示し
ており、又、α中0.035であることを示している。
[Table 2] shows that when there is no temperature difference between the upper and lower surfaces, the value of β is smaller than the theoretical upper limit (β-1), and when there is a temperature difference, it is smaller than the theoretical upper limit. It shows that the value increases, and also shows that α is 0.035.

C表−2)のΔTとjMoとの関係及びΔTとβとの関
係を第8図及び第9図に示す。
The relationship between ΔT and jMo and the relationship between ΔT and β in Table C-2) are shown in FIGS. 8 and 9.

第9図から、βの値はほぼ(ハ)式の範囲に限定できる
From FIG. 9, the value of β can be approximately limited to the range of equation (c).

0.4〈β〈0.8+ΔT/100      シ(O
第7図の(1−r’ )の範囲と 第9図のβの範囲を
定める式を設定することによって、本発明では鋳型の寸
法を(1)、(2)式の範囲のものに限定することがで
きた。
0.4〈β〈0.8+ΔT/100
By setting the formulas that determine the range of (1-r') in Figure 7 and the range of β in Figure 9, the dimensions of the mold are limited to those in the range of formulas (1) and (2) in the present invention. We were able to.

次に(11、+21式を満足する本発明鋳型の一例を用
いた鋳造結果と特公昭44−8481号公報並びに特開
昭56−5760号公報に開示された従来の考え方にも
とづいて寸法を定めた従来鋳型(1)並びに(2)を用
いた鋳造結果の一例を〔表−3〕に示す。
Next, the dimensions are determined based on the casting results using an example of the mold of the present invention that satisfies formulas (11 and +21) and the conventional concept disclosed in Japanese Patent Publication No. 44-8481 and Japanese Patent Application Laid-open No. 56-5760. An example of casting results using conventional molds (1) and (2) is shown in [Table 3].

〔表−3〕 〔表−3〕における本発明鋳型のf、M 、 IJLI
 +T、Lは次の様に計算したものである。
[Table-3] f, M, IJLI of the mold of the present invention in [Table-3]
+T and L were calculated as follows.

この式にr’=r、tMO=’1050、t=250を
代入しくl−γ)−〇・70が定まる。Q[9式よりβ
=0・8を選び、(l−γ)=0・70.β=0.8、
jMO=1050、α=O−035、t=250.R1
=3000’e(21)式に代入し、LM=1076f
3:求めた。
By substituting r'=r, tMO='1050, and t=250 into this equation, l-γ)-0·70 is determined. Q [β from formula 9
=0.8, (l-γ)=0.70. β=0.8,
jMO=1050, α=O-035, t=250. R1
=3000'e Substitute into formula (21), LM=1076f
3: I asked for it.

TJu+TJL=2LMとの両式に、TIM=1076
、(1−γ)=()・70.t=250、几=3000
を代入してLu=1092、T、z=1060を求めた
In both formulas, TJu+TJL=2LM, TIM=1076
, (1-γ)=()・70. t=250, 几=3000
By substituting , Lu=1092, T, z=1060 were obtained.

〔表−3〕における従来鋳型(11のTJM  、  
J、U 。
Conventional molds in [Table 3] (11 TJMs,
J.U.

T、9は特公昭44−8481号公報の従来法にもとづ
き次のようにして決定したつ 矯正前後で鋳片の上、下面平均中は変化しない即ち、β
=Oであるから、Ql)式は、LMo(1+α)=LM
となり、とノ目てtMc = 1. o 50、α=0
.035を代入して、T、)(=Io87が定プる。
T, 9 was determined as follows based on the conventional method disclosed in Japanese Patent Publication No. 44-8481, and does not change in the average of the upper and lower surfaces of the slab before and after straightening, that is, β
=O, so the Ql) formula is LMo(1+α)=LM
Then, the point tMc = 1. o 50, α=0
.. By substituting 035, T, )(=Io87 is determined.

n= 4000.2000のとき、鋳型の上面11]と
下面中との寸法差(Tlg −Lu )を、上下面平均
中寸法TJMの2 、2,5係に設定し、この寸法差の
しを鋳型のTJ”に均等に加減して上面巾寸法TJLI
、下面巾寸法T、/とするものであるからR−3000
でW −Lu = O−0225LMとなシ、Ll −
Lu−25、Lu =1087+12−5=1099−
5、T、、!!=1087−     ’12・5=1
074.5  とした。なお界−3のt=250、n=
3000を代入して求めたものであるっ 〔表−3〕における従来鋳型(2)のTIM  、  
I、11゜Llは、特開昭56−5760号公報の考え
方にもとづき次の通シ決定した。
When n = 4000.2000, the dimensional difference (Tlg - Lu) between the upper surface 11 of the mold and the lower surface is set to the 2nd, 2nd, and 5th ratio of the average upper and lower surface middle dimension TJM, and the difference in dimension is Adjust the top width dimension TJLI evenly to the mold TJ”
, bottom width dimension T, /, so R-3000
So, W −Lu = O−0225LM and Ll −
Lu-25, Lu = 1087 + 12-5 = 1099-
5, T...! ! =1087-'12・5=1
074.5. Note that t = 250, n =
The TIM of conventional mold (2) in [Table 3] is calculated by substituting 3000.
I and 11°Ll were determined as follows based on the concept of Japanese Patent Application Laid-Open No. 56-5760.

矯正前後で鋳片の上、下面平均中は変化しない、即ち/
=Oであるから従来鋳型(11と同様にTJM=108
7となる。Lu 、 1.J!−については、Jull
           L の両式にn=O−2,LM=1087.t=250、[
L=3000  を代入して T、f=1078、Lu
−1096とした。
There is no change in the average of the top and bottom surfaces of the slab before and after straightening, that is, /
= O, so the conventional mold (TJM = 108 as in 11)
It becomes 7. Lu, 1. J! - For Jull
In both equations of L, n=O-2, LM=1087. t=250, [
Substitute L=3000 and get T, f=1078, Lu
-1096.

〔表−3〕の従来鋳型(11、(21では、目標tMC
に対し、L2ms広く、且つ鋳型(11、(21では下
面中と上面IJの差がそれぞれ5*x、10+uの台形
化が残存しているが、本発明の鋳型を用いた鋳片は、平
均中が2−Ova広いだけであシ、且つ台形化もにとん
ど残ってない。
[Table 3] Conventional molds (11, (21) have target tMC
On the other hand, L2ms is wider and molds (11 and (21) have trapezoidal differences of 5*x and 10+u between the middle and upper surfaces of the lower surface, respectively, but the slabs using the mold of the present invention have an average It's only 2-Ova wide inside, and there's not much left in the trapezoid shape.

従来鋳型の巾と本発明鋳型の巾の差は1%以上もあり、
本発明鋳型を用いる事によシ、それだけ歩留ロスを防止
する事が可能となる。又通常得られた鋳片は次工程の圧
延工程において巾殺しをされるが、その際従来鋳型によ
る鋳片よルも少ない圧下、パスですみ、圧延工程におい
てエネルギーロス、ロールの消耗の著しい軽減が得られ
、きわめて有用な効果がもたらされる。
The difference between the width of the conventional mold and the width of the mold of the present invention is more than 1%.
By using the mold of the present invention, it becomes possible to prevent yield loss. In addition, the obtained slab is usually width-reduced in the next rolling process, but at that time, the billboard does not curl due to the conventional mold, and only a few passes and reductions are required, which significantly reduces energy loss and wear of the rolls in the rolling process. is obtained, with extremely useful effects.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はわん曲型連続鋳造機の説明図、第2図は矩形鋳
型の断面、第3図は台形鋳型の断面図(第1図における
A−A断面に相当する)、第4図。 m5図ui1図17)B−B 、0−OKおけルfJ、
s ’Pr 断面図、第6図は常温での鋳片断面図、第
7図は鋳片の偏平比によ、り台形化の程度を示すノミラ
メ−ター(i−γ′)を示す図表、第8図は矯正個所に
おける上下面温度差により鋳片の上、下平均寸法75菟
変化することを示す図表、第9図は、矯正、aにおける
鋳片の上下面温度差によシ鋳片の」二下面平均巾の変化
度を示すパラメータβを示す図表である。 (1)・・・鋳型、(■)・・・曲線軌道、(■)・・
・水平軌道代理人 弁理士  秋 沢 政 光 外2名
FIG. 1 is an explanatory diagram of a curved continuous casting machine, FIG. 2 is a cross-sectional view of a rectangular mold, FIG. 3 is a cross-sectional view of a trapezoidal mold (corresponding to the A-A cross section in FIG. 1), and FIG. 4. m5 figure ui1 figure 17) B-B, 0-OK er fJ,
s'Pr cross-sectional view, Figure 6 is a cross-sectional view of the slab at room temperature, Figure 7 is a chart showing the chilameter (i-γ') indicating the degree of trapezoidization depending on the aspect ratio of the slab, Fig. 8 is a diagram showing that the upper and lower average dimensions of the slab change by 75 mm due to the temperature difference between the upper and lower surfaces at the straightening point, and Fig. 9 shows the change in the upper and lower average dimensions of the slab due to the temperature difference between the upper and lower surfaces at the straightening point a. It is a chart showing a parameter β indicating the degree of change in the average width of the two lower surfaces of . (1)...Mold, (■)...Curved trajectory, (■)...
・Horizontal Orbit Agent Patent Attorney: Masa Akizawa, 2 Mitsugai

Claims (1)

【特許請求の範囲】[Claims] (1)未凝固鋳片の曲げ戻し矯正を行うわん臼型連続鋳
造において常温鋳片の上、下面平均巾寸法をtMo 、
鋳片厚さをt%鋳型のわん曲半径をRとした時、鋳型の
上、下面中寸法Lu 、 LZ 、及びIJLIとLL
の平均I、Mに関し IJLI −=1+(1−γ)xt/2R・・・・・・・・・・−
・(1)■□え (11、+21式の関係を有する上、下面巾寸法とした
ことを特徴とする連続鋳造における鋳型。 但し、(11、+21式に2いて 0.06X(IJLILA)/2t<γ<0.10X(
Lu+LL)/2tO14<β〈0.8+ΔT/100 α−0,035(鋳片の熱収縮率) ΔT=Tえ −Tu Tu;矯正点における上面温度 TL;矯正点における上面温度 とする。
(1) The average width of the upper and lower surfaces of the room-temperature slab in the bowl-type continuous casting process for straightening the unsolidified slab is tMo,
When the slab thickness is t% and the radius of curvature of the mold is R, the upper and lower middle dimensions of the mold are Lu, LZ, and IJLI and LL.
IJLI −=1+(1−γ)xt/2R・・・・・・・・・・・・−
・(1)■□E(11, +21 formula and a mold for continuous casting characterized by having the lower surface width dimension. However, (11, +21 formula is 2 and 0.06X (IJLILA)/ 2t<γ<0.10X(
Lu+LL)/2tO14<β<0.8+ΔT/100 α−0,035 (thermal contraction rate of slab) ΔT=Te −Tu Tu: Upper surface temperature at the straightening point TL: Upper surface temperature at the straightening point.
JP19959182A 1982-11-13 1982-11-13 Casting mold in continuous casting Granted JPS5987957A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19959182A JPS5987957A (en) 1982-11-13 1982-11-13 Casting mold in continuous casting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19959182A JPS5987957A (en) 1982-11-13 1982-11-13 Casting mold in continuous casting

Publications (2)

Publication Number Publication Date
JPS5987957A true JPS5987957A (en) 1984-05-21
JPS6143135B2 JPS6143135B2 (en) 1986-09-26

Family

ID=16410390

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19959182A Granted JPS5987957A (en) 1982-11-13 1982-11-13 Casting mold in continuous casting

Country Status (1)

Country Link
JP (1) JPS5987957A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928747A (en) * 1987-07-22 1990-05-29 Mannesmann Ag Side wall geometry for molds for casting of thin slabs

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4928747A (en) * 1987-07-22 1990-05-29 Mannesmann Ag Side wall geometry for molds for casting of thin slabs

Also Published As

Publication number Publication date
JPS6143135B2 (en) 1986-09-26

Similar Documents

Publication Publication Date Title
JP4686477B2 (en) Mold cavity for molds for continuous casting of billets and blooms
US3324931A (en) Method of deflecting towards the horizontal a curved continuously cast descending billet
JPS5987957A (en) Casting mold in continuous casting
JP2019111584A (en) Rolled H-shaped steel
JPS6020081B2 (en) Method of forming rough shaped steel pieces
JPH05237616A (en) Production of long rolling stock from molten steel by continuous casting
CN108213210B (en) A kind of molding large plastometric set mold of complex section U-shaped board part, application method
JP2004358541A (en) Method for manufacturing shaped bloom and caliber roll
JP2944847B2 (en) Continuous casting mold and manufacturing method thereof
JPS5819361B2 (en) Manufacturing method of rough shaped steel billet
JPH01218743A (en) Cooling drum for metal strip continuous casting
JPH0216162B2 (en)
JP3397183B2 (en) Hot rolling method for asymmetric U-shaped sheet pile
JPS5837042B2 (en) Manufacturing method of shaped steel
JPS603904A (en) Shape steel sheet having thick part at both ends and manufacture thereof
JP4016733B2 (en) Rolling method for narrow flange width H-section steel
JP2515811B2 (en) Bending method of metal profile
JP3617085B2 (en) Coarse slab rolling method for wide thick H-section steel
PT1022794E (en) PROCESS FOR THE PREPARATION OF LEAD GRIDS
JPS5934444B2 (en) Direct forming method for continuously cast slabs
JPS6023881B2 (en) Method of forming rough shaped steel pieces
JP2973809B2 (en) Manufacturing method of angle iron
JPH02127901A (en) Manufacture of h-shape steel having thin web
JPH10328711A (en) Method for continuously casting steel
JPH1177248A (en) Manufacture of beam blank and producing apparatus