JPS5987411A - Substrate for optical circuit - Google Patents

Substrate for optical circuit

Info

Publication number
JPS5987411A
JPS5987411A JP19868782A JP19868782A JPS5987411A JP S5987411 A JPS5987411 A JP S5987411A JP 19868782 A JP19868782 A JP 19868782A JP 19868782 A JP19868782 A JP 19868782A JP S5987411 A JPS5987411 A JP S5987411A
Authority
JP
Japan
Prior art keywords
layer
plzt
substrate
optical circuit
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19868782A
Other languages
Japanese (ja)
Inventor
Takao Kawaguchi
隆夫 川口
Kenzo Ochi
謙三 黄地
Kentaro Setsune
瀬恒 謙太郎
Hideaki Adachi
秀明 足立
Kiyotaka Wasa
清孝 和佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19868782A priority Critical patent/JPS5987411A/en
Publication of JPS5987411A publication Critical patent/JPS5987411A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/13Integrated optical circuits characterised by the manufacturing method

Abstract

PURPOSE:To form a waveguide reduced at its transmission loss and to apply an electric field efficiently when the titled substrate is used as an electrooptical element by forming a coating layer on the surface of a projected part of a PLZT layer formed like a band on an insulated base body. CONSTITUTION:When the insulated base body 31 is formed as multi-layer constitution by selecting one of MgO, spinel, SrTiO3, and sapphire and a coating layer 33 is constituted by at least one of oxide, nitride and sulfide, transmission light is efficiently shut up in the projected part 321 of the PLZT layer and a substrate effective for the formation of an optical circuit is obtaind. If the difference in level between the projected part 321 and a peripheral part 325 is set up to 100nm or less, the light in the high order mode is not transmitted, and the loss of optical transmission is reduced. When the film layer 33 is constituted by 50-200nm thickness, the electric field is applied to the projected part 321 efficiently with the smal loss of optical transmission.

Description

【発明の詳細な説明】 産業上の利用分野 本発明Q;1、光回路用の基板に関する。特に本発明は
、;:j7膜)に回路用の基板材料とその構成に関して
いる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention Q:1 relates to a substrate for optical circuits. In particular, the present invention relates to a circuit board material and its structure.

従来例の、11,17.成とその問題点従来、この種の
光導波路として、特に電気光学効果を有する薄膜を用い
る光導波路として、リッジ型、ロー=1・゛型導波路か
よく知られている。
Conventional examples 11, 17. Conventionally, as this type of optical waveguide, especially an optical waveguide using a thin film having an electro-optic effect, a ridge type waveguide and a low=1.degree. type waveguide are well known.

以丁にそ71それの導波路の構成とその問題点について
図を用いて説明する。
Next, the structure of the waveguide and its problems will be explained with reference to the drawings.

第1図はリッジ型導波路10を示す。第2商附ロード型
導波路20を示す。これら第1図および第2図において
、11は基板を、12は電気光学効果を有する薄膜を、
13はバッファ層を示す。
FIG. 1 shows a ridge waveguide 10. FIG. A second loaded waveguide 20 is shown. 1 and 2, 11 is a substrate, 12 is a thin film having an electro-optic effect,
13 indicates a buffer layer.

24は帯状の誘電体からなるロード桐材を示す。24 indicates a loaded paulownia material made of a band-shaped dielectric material.

たとえば、リッジ型導波路10においてi(J、光の集
束効果を充分に得るために、12に凸部を設けていた。
For example, in the ridge-type waveguide 10, a convex portion is provided at i(J) 12 in order to obtain a sufficient light focusing effect.

このため凸部の側面15による縛波光の散乱ロスが問題
となっていた。また、導波路上に電極を形成して電気光
学効果を利用した素子を形成する場合、電界が材料12
に効果的に印加てきるように充分1(17いバ・7フア
層13を用いていた。
For this reason, the scattering loss of bound wave light due to the side surface 15 of the convex portion has been a problem. In addition, when forming an electrode on a waveguide to form an element that utilizes the electro-optic effect, the electric field
A sufficient number of 1 (17) buffer and 7 fur layers (13) were used to effectively apply the voltage.

このさき、−上記凸部を被覆するバッファ層13が異常
にl−1<なりバッファ層13」二に設けた電極用金属
膜による光の伝搬損失の増加が問題々なる。
At this point, the buffer layer 13 covering the convex portion becomes abnormally l-1, which causes a problem of increased light propagation loss due to the electrode metal film provided on the buffer layer 13''.

特に誘電率の高い光導波路桐料においては、へソファ層
を薄くしても効果的に電界が印加できないと考えられて
いた。また、ロード41ソ導波路20においても、導波
路上に電極など形成するとき、電極による伝搬損失の増
大を防ぐため、あらかしy)バッファ層を形成していた
。このため、リッジ型導波路の場合と同様、材料12に
電界を印IJIIする吉き、バッファ層13.ロード(
」料24を介するため、有効に印加てきないという問題
点があった。
Particularly in optical waveguide paulownia materials, which have a high dielectric constant, it was thought that an electric field could not be applied effectively even if the hesopha layer was made thin. Also, in the waveguide 20 of the load 41, when forming electrodes on the waveguide, a buffer layer was formed in order to prevent an increase in propagation loss due to the electrodes. For this reason, as in the case of the ridge type waveguide, it is advisable to apply an electric field to the material 12 and the buffer layer 13. Load(
There was a problem in that it could not be applied effectively because it passed through the charge 24.

究明の目的 本発明の目的は、上記従来例の有している問題点を除去
したもので、伝搬損失の小びい導波路と、電気光学素子
としてこの導波路を用いる場合に電界が有効に印加され
るという利点をもつ、電気光学効果を有する涜膜からγ
Sる光回路用基板を提供することである。
Purpose of Investigation The purpose of the present invention is to eliminate the problems of the above-mentioned conventional example, and to provide a waveguide with small propagation loss and a method for effectively applying an electric field when using this waveguide as an electro-optical element. γ from a sacrificial film with an electro-optic effect, which
An object of the present invention is to provide a substrate for an optical circuit.

弁明の村6成 以下−+′究明を、図を用いて説明する。Village of excuses 6sei The −+′ investigation will be explained below using figures.

第3図に1、不弁明にかかる光回路用基板の構造をボす
。同図において、不弁明にかかる光回路用基板は、少1
jくとも絶縁性基体31と」1記絶縁性基体31−1−
に帯状の凸部を設けたPLZT層32と、ルなくとも1
−11己P L Z ’r層の凸部321の表面322
に設けた被複層33から構成したことを特徴とし−Cい
る。
FIG. 3 shows the structure of the optical circuit board according to 1. In the same figure, the optical circuit board related to the inexcusable is a small one.
At least the insulating substrate 31 and the insulating substrate 31-1-
A PLZT layer 32 having a band-shaped convex portion and at least one
-11self P L Z 'r surface 322 of convex part 321 of layer
-C is characterized in that it is constructed from a composite layer 33 provided on the top.

本発明者らは、この構成材料のうち、絶縁性基体31を
MgO、スピネル、  SrTiO3あるいはサファイ
ヤ(fl−*、g2o3)で構成し、第3図の多層(1
η成にしてfJJ、WtZ料を選択すると、PLZT層
32の凸部中を光が伝搬することを元県し、これにより
光回路の形成VC−イi’効1j基板が形成できること
k ll’fli Klしだ。
Among these constituent materials, the present inventors constructed the insulating substrate 31 from MgO, spinel, SrTiO3, or sapphire (fl-*, g2o3), and formed the multilayer (1
If fJJ and WtZ materials are selected with η, it is assumed that light propagates through the convex portions of the PLZT layer 32, and thereby an optical circuit formation VC-II' effect 1J substrate can be formed. It's fli Kl.

すなわち、これらの絶縁性基体32上に、光伝搬損失の
少ないPLZT系薄膜を例えばスパッタ蒸着によりエピ
タキシャル成長させ得ること、びらに、これらのPLZ
T系薄膜がLINbO3単結晶以りの大きい電気光学効
果を持つことなとを発明者らは死児した。
That is, it is possible to epitaxially grow a PLZT-based thin film with low optical propagation loss on these insulating substrates 32 by, for example, sputter deposition.
The inventors had no idea that the T-based thin film would have a greater electro-optic effect than the LINbO3 single crystal.

ざらに、発明者もは、被覆層33をTiO2,Ta20
5゜ZrO,、、Nb2O5,ZnOなどの酸化物、S
i3N4などの窒化物、As2S3. ZnSなどの硫
化物からなる群から選択きれた少なくとも−って構成す
ると伝搬光が効果的にPLZT層凸部321中に閉じこ
められるとさもに、通常光回路使用の妨げとなる高次モ
ードの伝搬光の元生を防ぎ、σらに凸部321の段差部
323の側面324の表面粗さにより生ずる光伝搬損失
を低′Fσぜ得ることを発明者らは死児し、このPLZ
T系薄膜の小さい光伝搬損失と大きい電気光学効果、さ
らに固有の圧電特性を利用すると、従来のこの種の光回
路用基板例えばLiNbO3単結晶基板では実現てきな
い各種の光デバイスが実現しうることを本発明者らけ6
11(認した。
In general, the inventor also made the coating layer 33 by using TiO2, Ta20.
5゜ZrO,, oxides such as Nb2O5, ZnO, S
Nitride such as i3N4, As2S3. If at least one selected from the group consisting of sulfides such as ZnS is configured, the propagating light is effectively confined in the PLZT layer convex portion 321, and at the same time, the propagation of higher-order modes that normally impede the use of optical circuits is prevented. The inventors have discovered that this PLZ can prevent the original generation of light and reduce the light propagation loss caused by the surface roughness of the side surface 324 of the stepped portion 323 of the convex portion 321.
By utilizing the small optical propagation loss, large electro-optic effect, and unique piezoelectric properties of T-based thin films, it is possible to realize various optical devices that cannot be realized with conventional substrates for optical circuits of this type, such as LiNbO3 single crystal substrates. Inventor Rake 6
11 (Acknowledged.

この場合、基体31として用いるサファイヤ(α−アル
ミナ)に、例えば表面研磨された(0001)面の単結
晶板を用いると(111)而のPLZT系f、’j膜が
例えばスパッタ蒸着法でエピタキシャル成長する。スピ
ネルてけ(100)而の工(1結晶を月1いると、同様
に(111)lII′iのPLZT系lν11嘆を形成
し得る。また、マグネシアでは、例えば(100)面の
単結晶板を月1いると、(100)而のPLZT系薄膜
が形成できる。この例の如く、基体の結晶面の選択によ
って、PLZT系1jj7膜の結晶方位を変化σせ得る
から、この種の光デバイス月]基板iJ、例えば光デバ
イス形成のための電極構成・配置の1′−目111M:
が広いという特長もある。なお、この基板は、PLZT
系薄膜がエピタキシャル成長することと、伝搬光がPL
ZT系薄膜に閉じこめられるためにその屈折率がPLZ
T系薄膜の値(285〜26)より小びければよく、サ
ファイヤ、スピネル、マグネシャに限定されたものでに
1ない。また、基体はその表axj層の0,1〜o、5
71mの部分さえ、上記の基体としての必要特性を満足
していればよい。
In this case, if, for example, a surface-polished single crystal plate with (0001) plane is used as the sapphire (α-alumina) used as the substrate 31, a (111) PLZT-based f,'j film can be epitaxially grown by, for example, sputter deposition. do. If one crystal of spinel (100) is used once a month, a PLZT system lv11 of (111)lII'i can be formed in the same way.In addition, in magnesia, for example, a single crystal plate of (100) plane can be formed. When the moon 1 is present, a (100) PLZT-based thin film can be formed.As in this example, the crystal orientation of the PLZT-based 1jj7 film can be changed by selecting the crystal plane of the substrate. ] Substrate iJ, for example, 1'-th electrode configuration/arrangement 111M for forming an optical device:
Another feature is that it is spacious. Note that this board is made of PLZT
The epitaxial growth of the system thin film and the PL
Because it is confined in the ZT-based thin film, its refractive index is PLZ.
It only needs to be smaller than the value of the T-based thin film (285 to 26), and is limited to sapphire, spinel, and magnesia. In addition, the substrate has 0,1 to o,5 of its surface axj layer.
It is sufficient that even the 71 m portion satisfies the above-mentioned necessary characteristics as a base.

びらに究明者もは、本発明にかがる構造のうちPLZT
層凸部121の構造は導波光のモードの制御と、ざらに
伝搬光の電界による制御に非常に有効であるこ♂を死児
した。すなわち、第3図において、PLZT層32層表
2を帯状に残してエツテングする古凸部321が形成き
れ、伝搬光は凸部321に従って導波する。この場合、
凸部321と周辺部326の段差を1100n以″Fに
すると、通常の光回路では雑音となる高次モード光灯伝
搬せず、光伝搬損失も小さいことをう0児した。さらに
、導波路J−,K [極を設ける場合、通常の光回路で
は電極の装荷により光伝搬損が生ずるので、例えば石英
カラスを200OA’以]−バッファ層として心波路表
面を被覆して光伝搬損を防いでいた。このため、PLZ
T系7vi膜のようls制制電電率材料場合、電圧を印
加する杏、へソファ層にがなりの電圧が分圧きれ、有効
に光導波路に成用が印加てきISかった。しか腰不発明
者ら附、TiO2,Ta205ZrO2,N’b205
 、 ZnOなとの酸化物、513N4などの窒化物あ
るいばAs25.、  ZnSなとの硫化物で形成した
被膜層33厚をsonmから200nmで構成すると光
伝搬損も小さくしかも電界が有効に」−記PLZT層凸
部321に印加できることを光見した。
Among the structures according to the present invention, the researchers also found that PLZT
The structure of the layer convex portion 121 was found to be very effective in controlling the mode of guided light and roughly controlling the electric field of propagating light. That is, in FIG. 3, the old convex portion 321 is completely formed by etching the 32-layer PLZT layer 2 in a band-like manner, and the propagating light is guided along the convex portion 321. in this case,
It has been demonstrated that when the height difference between the convex portion 321 and the peripheral portion 326 is set to 1100 nm or more F, higher-order mode light propagation, which causes noise in a normal optical circuit, does not occur and light propagation loss is small. J-, K [When providing poles, since light propagation loss occurs due to the loading of electrodes in ordinary optical circuits, for example, use quartz glass of 200 OA' or more] - Cover the heart wave path surface as a buffer layer to prevent light propagation loss. For this reason, PLZ
In the case of a material with anti-static properties such as the T-based 7VI film, the voltage applied to the apricot and helium layers is partially reduced, and no voltage is effectively applied to the optical waveguide. Attached to the inventors, TiO2, Ta205ZrO2, N'b205
, oxides such as ZnO, nitrides such as 513N4, and As25. It has been found that when the thickness of the coating layer 33 made of a sulfide such as ZnS is set to 200 nm to 200 nm, the optical propagation loss is small and the electric field can be applied effectively to the PLZT layer convex portion 321.

−ノ〜なわち、60 nIn以FKすると電L[C主と
して導波路に分LEされるが、導波路中の伝搬光の被覆
層へのd出し効果により伝搬損失が大きくなり実用的で
ないことを確認した。また、20onm以1、にすると
光伝搬損失は無視しうる目れども、電10弓かなり被覆
層に分圧されるので、導波路に電月−か有効に分圧され
ず、本発明の効!もが充分に生メハびれISいことをf
II忍した。
- In other words, when FK is larger than 60 nIn, the electric current L[C is mainly distributed to the waveguide, but the propagation loss becomes large due to the d-output effect of the propagating light in the waveguide to the coating layer, making it impractical. confirmed. Furthermore, when the thickness is set to 20 onm or more, the optical propagation loss can be ignored, but since the electric voltage is considerably divided into the coating layer, the electric voltage is not effectively divided into the waveguide, and the present invention is not effective. ! Also, please make sure that you have enough raw fins.
II ninja.

したかっ−cl このこと汀、本発明のFfg造により
電気光常動IA、1の大きいPLZTの特性を充分に生
がl7、光デバイスの低電圧駆動化が容易に実現できる
ことを意味している。
This means that the FFG structure of the present invention can fully utilize the characteristics of PLZT with large electro-optic IA and 17, and it is possible to easily realize low-voltage driving of optical devices. .

以−F不発Iνjの内容をより深< 14F1)とされ
るために具体的な実施例をあ目で説明する。
Hereinafter, in order to make the content of F misfire Ivj deeper <14F1), a specific example will be explained with a glance.

実施例の説明 厚さ0.311111+の表向研磨された(0001)
面サファイヤ基体1−に、高周波マクネトロンスパック
−により、厚さ0,4/1mのPLZT系薄膜を蒸着し
た。
Example Description Surface polished (0001) with thickness 0.311111+
A PLZT thin film having a thickness of 0.4/1 m was deposited on the surface sapphire substrate 1 by high-frequency Macnetron spacing.

この場合、スパッタ用ターゲットの組成1.jPLZT
C2810/100)、スパッタ中のサファイヤM体の
温PMは6800G 、スパッタ電力は200Wであっ
た。蒸着されたPLZT系薄膜の構造は、(111)而
の単結晶であり、屈折率は)i:e−Neレーザ(0,
63/)m波長)で、2.6であった。次に、このPL
ZT系薄膜をフォトレジ加工により、表面をエツテング
し凸部を形成した後、この凸部の表向に、筋周波マクネ
トロンスパッタによりTa205の薄膜を厚さ1501
m蒸着して、本発明にかかる光回路用基板を形成した。
In this case, the composition of the sputtering target is 1. jPLZT
C2810/100), the temperature PM of the sapphire M body during sputtering was 6800G, and the sputtering power was 200W. The structure of the deposited PLZT thin film is a (111) single crystal with a refractive index of )i:e-Ne laser (0,
63/)m wavelength), which was 2.6. Next, this PL
After etching the surface of the ZT-based thin film by photoresist processing to form a convex portion, a thin film of Ta205 with a thickness of 1,501 cm was deposited on the surface of the convex portion by myofrequency macnetron sputtering.
A substrate for an optical circuit according to the present invention was formed by vapor deposition.

以北の実施例では、PLZT系薄j模の組成としてPL
ZT (2810/100)について示したが、スパッ
タ用のターゲットの組成を変えるだけで、イ]:意の組
成のPLZT系7W膜が形成され、光伝搬路として用い
ることができる。
In the examples to the north, PL is used as the composition of the PLZT thin model.
ZT (2810/100) is shown, but by simply changing the composition of the sputtering target, a PLZT-based 7W film with the desired composition can be formed and used as a light propagation path.

弁明の効果 本発明にかかる光回路用基板では、PLZT糸、(す膜
中全光が伝搬するため、PLZT系固有の大きい電気光
学効用と、圧電性を利用した音響光学効用、例えは表面
波による光の回折が同時に得られる特徴がある。σらに
、これらの伝搬光の光伝損が小さく、しかも伝搬光の制
御も低電圧駆動をびぜ得るという利点がある。したがっ
て、この種の基板を用いると、各種の微小光学素子の集
積化が容易にISす、名種のγj17膜光ICが実現さ
れるので本発明にかかる光回路用基板の工業的価値は商
い。
Effects of Excuse In the optical circuit board according to the present invention, since all the light propagates in the PLZT thread, the PLZT system has a large electro-optic effect unique to the PLZT system, and an acousto-optic effect using piezoelectricity, such as a surface wave. σ et al. have the advantage that the optical propagation loss of these propagating lights is small and that the control of the propagating lights also requires low voltage driving.Therefore, this kind of If the substrate is used, a famous γj17 film optical IC can be realized in which various microscopic optical elements can be easily integrated, so the optical circuit substrate according to the present invention has great industrial value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図ii 4rY:来の光回路用基板の構成を示す図
、第2図は(JT来の光回路用基板の他の構成を示す図
、IIT 3図1本発明の〜実施例における光回路用基
板の構成を示す図である。 31・・・・〕1(板、32・・・・・PLZT層、3
3・・・・被復層、321・・・・・・P L Z T
 @凸部、322 ・・・PLZT)lrf l’−’
l ffμ表面、323・・・PLZT層段差部、32
4・・・・・PLZT層段差層側差部側面6・・・PL
ZT層周辺部。 代理人の氏名 弁理士 中 尾 敏 男 はか1名第1
図 第2図 第3図
Fig. 1 ii 4rY: A diagram showing the structure of the conventional optical circuit board, Fig. 2 is a diagram showing another structure of the conventional optical circuit board, IIT 3 Fig. 1. It is a diagram showing the configuration of a circuit board. 31...] 1 (board, 32... PLZT layer, 3
3...Restored layer, 321...P L Z T
@Protrusion, 322...PLZT)lrf l'-'
l ffμ surface, 323...PLZT layer step portion, 32
4...PLZT layer step layer side difference part side surface 6...PL
Around the ZT layer. Name of agent: Patent attorney Toshio Nakao (1st person)
Figure 2 Figure 3

Claims (1)

【特許請求の範囲】 (1)絶縁性ノ、(体と、」1記絶縁性基体上に帯状の
凸部を設(−1だPLZT層と、少なくとも上記PLZ
T層の凸部の表向に設けた被覆層とを有することを特徴
とする光回路用基板。 構成することを特徴とする特許請求の範囲第1項記載の
光回路用基板。 群 (3)被覆層を酸化物、窒化物、および硫化物の件から
選択きれた少なくとも一つで構成することを特徴とする
特許請求の範囲第1項記載の光回路用基板。 (4)PLZTの凸部において、」二記凸部七周辺部と
段差か1001m f::越えないことを特徴とする特
許請求の範囲第1項記載の光回路用基板。 (6)被覆層厚をsonmから200nmで構成する特
許iff°J求の範囲第1項記l威の光回路用基板。
[Scope of Claims] (1) An insulating body, a band-shaped convex portion is provided on the insulating substrate (-1), and at least the above-mentioned PLZT layer.
1. A substrate for an optical circuit, comprising a coating layer provided on the surface of the convex portion of the T layer. An optical circuit board according to claim 1, characterized in that the optical circuit board comprises: 2. The optical circuit board according to claim 1, wherein the group (3) coating layer is made of at least one selected from oxides, nitrides, and sulfides. (4) The optical circuit board according to claim 1, wherein the height difference in the PLZT convex portion does not exceed 1001 m f:: from the peripheral portion of the second convex portion. (6) A substrate for an optical circuit according to the scope of the patent application, item 1, wherein the thickness of the coating layer is from 200 nm to 200 nm.
JP19868782A 1982-11-11 1982-11-11 Substrate for optical circuit Pending JPS5987411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19868782A JPS5987411A (en) 1982-11-11 1982-11-11 Substrate for optical circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19868782A JPS5987411A (en) 1982-11-11 1982-11-11 Substrate for optical circuit

Publications (1)

Publication Number Publication Date
JPS5987411A true JPS5987411A (en) 1984-05-21

Family

ID=16395371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19868782A Pending JPS5987411A (en) 1982-11-11 1982-11-11 Substrate for optical circuit

Country Status (1)

Country Link
JP (1) JPS5987411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064684A (en) * 1989-08-02 1991-11-12 Eastman Kodak Company Waveguides, interferometers, and methods of their formation
JP2000305117A (en) * 1999-02-19 2000-11-02 Fuji Xerox Co Ltd Optical device, method for driving optical device and production of optical device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5064684A (en) * 1989-08-02 1991-11-12 Eastman Kodak Company Waveguides, interferometers, and methods of their formation
JP2000305117A (en) * 1999-02-19 2000-11-02 Fuji Xerox Co Ltd Optical device, method for driving optical device and production of optical device

Similar Documents

Publication Publication Date Title
US4037176A (en) Multi-layered substrate for a surface-acoustic-wave device
US11573435B2 (en) Composite substrate for electro-optic element and method for manufacturing the same
JP2020173479A (en) Composite substrate for electro-optical device
US20220004030A1 (en) Composite substrate for electro-optic element and method for manufacturing the same
US20030108264A1 (en) Optical waveguide device and method for fabricating the same
JPS5987411A (en) Substrate for optical circuit
US6195191B1 (en) Optical devices having improved temperature stability
JPS5944004A (en) Substrate for thin-film optical circuit
JP2007122038A (en) Optical control device
JPS5930507A (en) Substrate for optical circuit
JPS59176731A (en) Optical switch
EP1348992B1 (en) Optical waveguide device
JPS5917510A (en) Optical waveguide
JPH05264840A (en) Optical waveguide
JP7401639B2 (en) Composite substrate for electro-optical elements
WO2023188195A1 (en) Optical waveguide element, optical modulation device using same, and optical transmission device
JP2003114346A (en) Method for manufacturing optical waveguide element
KR100439960B1 (en) PMN-PT optical waveguides by thermal diffusion and fabrication methods thereof
JPS5930505A (en) Substrate for optical device
JP2001185975A (en) Surface acoustic wave element
JP2624199B2 (en) Light control device and manufacturing method thereof
JPS5938169B2 (en) Method for forming transparent ferroelectric thin film
JPS63200119A (en) Optical switch
JPH0527278A (en) Surface acoustic wave optical deflecting element
JPS5930506A (en) Substrate for optical device