JPS598721B2 - Steam generator operation control device - Google Patents

Steam generator operation control device

Info

Publication number
JPS598721B2
JPS598721B2 JP15493875A JP15493875A JPS598721B2 JP S598721 B2 JPS598721 B2 JP S598721B2 JP 15493875 A JP15493875 A JP 15493875A JP 15493875 A JP15493875 A JP 15493875A JP S598721 B2 JPS598721 B2 JP S598721B2
Authority
JP
Japan
Prior art keywords
flow rate
flow
measurement
fluid
heated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP15493875A
Other languages
Japanese (ja)
Other versions
JPS5279101A (en
Inventor
昭 鈴置
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15493875A priority Critical patent/JPS598721B2/en
Publication of JPS5279101A publication Critical patent/JPS5279101A/en
Publication of JPS598721B2 publication Critical patent/JPS598721B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Control Of Steam Boilers And Waste-Gas Boilers (AREA)

Description

【発明の詳細な説明】 本発明は蒸気発生器、特に高速増殖炉に使用されるシェ
ルアンドチューブ型の蒸気発生器の運転方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of operating a steam generator, particularly a shell-and-tube steam generator used in a fast breeder reactor.

相変化などにより大きな比体積の変化を伴う流れには、
常に流動不安定現象が発生する可能性がある。
For flows with large changes in specific volume due to phase changes,
There is always a possibility that flow instability phenomena may occur.

ボイラでは伝熱管内に被加熱流体例えば水の流動不安定
現象が発生すると直ちに伝熱管の焼損を招くため、被加
熱側流体が流れる流路の途中に複数個の管寄せ部を設け
、この管寄せ部で多都の伝熱管内を流れる被加熱側流体
を混合し、同時に均圧化することにより不安定現象の発
生を防止している。
In a boiler, if the flow of the heated fluid, such as water, becomes unstable in the heat transfer tubes, the heat transfer tubes will immediately burn out. The fluid to be heated flowing through the multi-layer heat transfer tube is mixed at the gathering part and the pressure is equalized at the same time, thereby preventing the occurrence of unstable phenomena.

シェルアンドチューブ型蒸気発生器(以下蒸気発生器と
称す)では被加熱側流体の流れる伝熱管内に不安定現象
が発生しても、伝熱管が焼損することはない。
In a shell-and-tube steam generator (hereinafter referred to as a steam generator), even if an unstable phenomenon occurs within the heat exchanger tube through which the fluid to be heated flows, the heat exchanger tube will not burn out.

しかし伝熱管の健全性は不安定現象に伴う温度サイクル
および機械的振動により著しく損われる。
However, the integrity of heat transfer tubes is severely compromised by temperature cycling and mechanical vibrations associated with instability phenomena.

高速増殖炉に適用される蒸気発生器においては、シェル
側を加熱側流体である高温ナトリウムが流れ、伝熱管側
を被加熱側流体である水が流れるため、水はナトリウム
により加熱され過熱蒸気となって蒸気発生器より流出す
る。
In a steam generator applied to a fast breeder reactor, high-temperature sodium, which is a heating fluid, flows on the shell side, and water, which is a heated fluid, flows on the heat transfer tube side, so the water is heated by the sodium and turns into superheated steam. and flows out from the steam generator.

このような蒸気発生器では不安定現象の発生により伝熱
管の健全性が損われると、水かナトリウム側に噴出して
爆発的な化学的反応を引き起すので、伝熱管内の安定化
のために伝熱管の給水口部に絞りを設ける方法が採用さ
れている。
In such steam generators, if the integrity of the heat transfer tubes is compromised due to the occurrence of an unstable phenomenon, water or sodium will be ejected to the side and cause an explosive chemical reaction. In this method, a method is adopted in which a restriction is provided at the water supply port of the heat exchanger tube.

上記のいづれの方法を採用するとしても、起動時および
部分負荷時を含めた蒸気発生器のあらゆる運転条件にお
いて、伝熱管内の被加熱側流体の流動の安定性を保障す
ることは困難である。
Even if any of the above methods is adopted, it is difficult to guarantee the stability of the flow of the heated fluid in the heat transfer tubes under all operating conditions of the steam generator, including during startup and partial load. .

したかって蒸気発生器をあらゆる運転条件において健全
に運転するためには、不安定現象が発生していない場合
でも、その状態における安定度余裕を定量的に検出する
ことにより、安定領域でのみ蒸気発生器を運転するだめ
の制御方法を確立することができれば運転上より一層好
都合である。
Therefore, in order to operate the steam generator soundly under all operating conditions, it is necessary to quantitatively detect the stability margin in that state, even if no instability phenomenon occurs, so that steam generation is possible only in the stable region. It would be even more convenient for the operation if a control method for operating the equipment could be established.

本発明の目的は、上昇管のみの伝熱管を有する蒸気発生
器においても安定に運転できる蒸気発生器の運転制御装
置を提供することにある。
An object of the present invention is to provide an operation control device for a steam generator that can operate stably even in a steam generator having heat transfer tubes including only riser tubes.

本発明の他の目的は、良好な過渡特性か得られてしかも
安定な運転が可能な蒸気発生器の運転制御装置を提供す
ることにある。
Another object of the present invention is to provide an operation control device for a steam generator that provides good transient characteristics and is capable of stable operation.

本発明の第1の特徴は、伝熱管と並列に配置され、かつ
その両端部か伝熱管の両端部に接続される被加熱側流体
供給管と被加熱側流体排出管にそれぞれ接続される計測
配管と、前記シェル外で計測配管に設けられた流量制御
手段と、シェル外で言輔11配管に設けられて計測配管
内の被加熱側流体の第1流量を測定する第1流量測定手
段と、被加熱側流体供給管に設けられた第2流量測定手
段と、前記第1流量を減ずる流量宙]脚手段の操作時に
おける第1流量に基づいて計測配管内の流動不安定を検
出する手段と、第2流量測定手段の出力信号に基づいて
得られた伝熱管一本当りの被加熱側流体の第2流量と流
動不安定検出手段が流動不安定信号を出力した時点にお
ける第1流量とに基づいて伝熱管内の流動の安定度を判
別する手段と、流動安定度判別手段の出力信号に基づい
て伝熱管内の被加熱側流体の流動が安定する範囲内に加
熱測流体と被加熱側流体の流量比を調節する手段とを有
することにある。
The first feature of the present invention is that the measurement device is arranged in parallel with the heat transfer tube and is connected to the heated side fluid supply pipe and the heated side fluid discharge pipe, which are connected to both ends of the heat transfer tube or both ends of the heat transfer tube. a pipe, a flow rate control means provided on the measurement pipe outside the shell, and a first flow rate measurement means provided on the 11 pipe outside the shell to measure a first flow rate of the fluid to be heated in the measurement pipe. , a second flow rate measuring means provided in the fluid supply pipe on the heated side, and means for detecting flow instability in the measurement pipe based on the first flow rate when the flow rate leg means for reducing the first flow rate is operated. , the second flow rate of the heated fluid per heat transfer tube obtained based on the output signal of the second flow rate measuring means, and the first flow rate at the time when the flow instability detection means outputs the flow instability signal. means for determining the stability of the flow in the heat transfer tube based on the flow stability determination means; and means for adjusting the flow rate ratio of the side fluids.

本発明の第2特徴は、伝熱管と並列に配置され、かつそ
の両端部が伝熱管の両端部に接続される被加熱側流体供
給管と被加熱側流体排出管にそれぞれ接続される計測配
管と、シェル外で計測配管に設けられた流量制御手段と
、シェル外で計測配管に設けられて計測配管内の被加熱
側流体の第1流量を測定する第1流与測定手段と、被加
熱側流体供給管に設けられた第2流量測定手段と、第1
流量を減する流量制御手段の操作時における第1流量に
基づいて計測配管内の流動不安定を検出する手段と、第
2流量測定手段の出力信号に基づいて得られた伝熱管一
本aりの被加熱側流体の第2流量と流動不安定検出手段
が流動不安定信号を出力した時点における第1流量とに
基づいて伝熱管内の流動の安定度を判別する手段と、蒸
気発生器に流入する加熱側流体の温度を検出する手段で
、流動安定度判別手段及び温度検出手段の出力信号に基
づいて加熱側流体の流量を制御する手段とを有すること
にある。
The second feature of the present invention is that the measurement piping is arranged in parallel with the heat transfer tube and is connected to a heated side fluid supply pipe and a heated side fluid discharge pipe, respectively, and both ends thereof are connected to both ends of the heat transfer tube. a flow rate control means provided in the measurement piping outside the shell; a first flow measurement means provided in the measurement piping outside the shell to measure a first flow rate of the fluid to be heated in the measurement piping; a second flow rate measuring means provided on the side fluid supply pipe;
means for detecting flow instability in the measurement piping based on the first flow rate when operating the flow rate control means for reducing the flow rate; and one heat transfer tube a detected based on the output signal of the second flow rate measuring means means for determining the stability of the flow in the heat transfer tube based on the second flow rate of the fluid on the heated side and the first flow rate at the time when the flow instability detection means outputs the flow instability signal; It is a means for detecting the temperature of the heating side fluid flowing in, and includes means for controlling the flow rate of the heating side fluid based on the output signal of the flow stability determining means and the temperature detecting means.

以下本発明の一実施例を図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図において、1は高速増殖炉に適用される蒸発発生
器で、加熱側流体(升トリウム)の流通するシエル2と
、このシエル2内に収納され被加熱側流体(水)の流通
する多数の伝熱管3から構成され、この各伝熱管3は一
端が給水管4に、他端が蒸気管5に接続されている。
In Fig. 1, 1 is an evaporation generator applied to a fast breeder reactor, which includes a shell 2 through which a heating side fluid (thorium) flows, and a shell 2 housed in this shell 2 through which a heated side fluid (water) flows. It is composed of a large number of heat transfer tubes 3, and each heat transfer tube 3 is connected to a water supply pipe 4 at one end and to a steam pipe 5 at the other end.

上記シエル2内のナトリウムはポンプ10で昇圧され配
管8を経て熱源7(例えば原子炉、中間熱交換器)に流
入して加熱される。
The sodium in the shell 2 is pressurized by a pump 10, flows through a pipe 8 into a heat source 7 (for example, a nuclear reactor, an intermediate heat exchanger), and is heated.

この加熱されたナトリウムは配管9を経てシエル2内に
流入賦伝熱管3を流通する水と熱交換して降湿し配管8
を経て再びポンプ10に戻される。
This heated sodium flows into the shell 2 via the pipe 9, exchanges heat with the water flowing through the heat transfer tube 3, and becomes humid.
It is then returned to the pump 10 again.

一方、水はポンプ6で昇圧され給水管4を経て蒸気発生
器1に流入し、蒸気発生器1内で多数の伝熱管3に均等
に分配され、ナトリウムとの熱交換により予熱、沸謄、
過熱されて再び集められて蒸気管5へ流出される。
On the other hand, water is pressurized by a pump 6, flows into the steam generator 1 via the water supply pipe 4, is evenly distributed to a large number of heat transfer tubes 3 within the steam generator 1, and is preheated, boiled, and heated by heat exchange with sodium.
It is superheated, collected again and discharged into steam pipe 5.

この流出蒸気は動力用または工業用に利用されるが、そ
の温度および圧力は負荷側から指定されるのが普通であ
り、蒸気条件の設定は圧力設定信号17および温度設定
信号18により行われる。
This outflow steam is used for power or industrial purposes, but its temperature and pressure are usually specified from the load side, and the steam conditions are set by the pressure setting signal 17 and temperature setting signal 18.

蒸気圧力は圧力計11により測定され、この測定さ′れ
た圧力の信号11aは加算器24に送られて圧力設定信
号17と比較される。
Steam pressure is measured by a pressure gauge 11, and the measured pressure signal 11a is sent to an adder 24 and compared with a pressure setting signal 17.

この両信号11a,17に差かある場合には、その偏差
信号はポンプ6に送られて、その回転数を調節して蒸気
圧力が設定値に等しくなるように制御する。
If there is a difference between the two signals 11a and 17, the deviation signal is sent to the pump 6, and its rotation speed is adjusted so that the steam pressure is equal to the set value.

蒸気温度は温度計12により測定され、この温度信号1
2aは加算器25に送られて温度設定信号18と比較さ
れる。
The steam temperature is measured by a thermometer 12, and this temperature signal 1
2a is sent to an adder 25 and compared with the temperature setting signal 18.

この両者12a,1Bに差がある場合には、その偏差信
号は調節器15を経て熱源7に送られ、熱源70発熱量
を調節して蒸気温度が設定値に等しくなるように制御す
る。
If there is a difference between the two 12a and 1B, the deviation signal is sent to the heat source 7 via the regulator 15, and the heat source 70 adjusts the calorific value so that the steam temperature becomes equal to the set value.

圧力の偏差信号によりポンプ6の給水流量が変化すると
蒸気温度も当然に変化するので、その補償としての圧力
の偏差信号を調節器15を介して熱源70発熱量の調節
に利用するようにすればより良好な制御性をうろことが
できる。
If the water supply flow rate of the pump 6 changes due to the pressure deviation signal, the steam temperature will naturally change, so if the pressure deviation signal is used to compensate for the change in the amount of heat generated by the heat source 70 via the regulator 15. Allows for better control.

ナトリウムの流量は原理的には任意に選定することがで
きるが、その最高温度は蒸気温度との関係で許容できる
範囲内でなるべく低くなるように選定するのが普通であ
る。
In principle, the flow rate of sodium can be arbitrarily selected, but the maximum temperature is usually selected to be as low as possible within an allowable range in relation to the steam temperature.

熱源7で昇温されたナトリウムは温度計13により温度
を測定され、この温度信号13aは加算器26に送られ
て負荷との関係で予めプログラムされているナトリウム
温度設定信号19と比較される。
The temperature of the sodium heated by the heat source 7 is measured by a thermometer 13, and this temperature signal 13a is sent to an adder 26 and compared with a sodium temperature setting signal 19 preprogrammed in relation to the load.

その両信号13a,19の間に差がある場合には、この
偏差信号22は加算器28を経てポンプ100回転数の
調節に使用される。
If there is a difference between the two signals 13a, 19, this deviation signal 22 is passed through an adder 28 and used to adjust the pump 100 rotational speed.

一方、伝熱管3内の水側の流動状態は安定度検出装置1
4により測定され、この安定度信号21は加算器27に
送られて安定度余裕信号20と比較される。
On the other hand, the flow state on the water side in the heat transfer tube 3 is determined by the stability detection device 1.
4, this stability signal 21 is sent to an adder 27 and compared with the stability margin signal 20.

その両信号21.20の間に差がある場合には、この偏
差信号は整流回路16により整流されて正の信号はカッ
トされ、負の偏差信号23のみがポンプ100回転数の
調節に使用される。
If there is a difference between the two signals 21, 20, this deviation signal is rectified by the rectifier circuit 16, the positive signal is cut off, and only the negative deviation signal 23 is used to adjust the pump 100 rotation speed. Ru.

すなわち偏差信号22,23の和信号によりポンプ10
0回転数の調節が行われる。
In other words, the sum signal of the deviation signals 22 and 23 causes the pump 10 to
The zero rotation speed is adjusted.

偏差信号22は良好な追従性かえられるように予めプロ
グラムされた運転状態からのずれを代表する信号であり
、他方の偏差信号23は蒸気発生器1の安定な運転を継
続するために必要な安定度余裕の不十分を示す信号であ
る。
The deviation signal 22 is a signal representing a deviation from a pre-programmed operating state so that good followability can be changed, and the other deviation signal 23 is a signal representing a deviation from a pre-programmed operating state so that good followability can be changed. This is a signal indicating that there is insufficient power margin.

両信号22,23のバランスのうえでナトリウム側流量
を決定することにより、良好な追従性と十分な安定性を
有する運転状態において蒸気発生器の運転を行うことが
できる。
By determining the sodium side flow rate based on the balance between both signals 22 and 23, the steam generator can be operated in an operating state with good followability and sufficient stability.

前記安定度検出器14の具体的構成を第2図について説
明する。
The specific structure of the stability detector 14 will be explained with reference to FIG.

安定度検出器14は流量計29、計測用伝熱管30、流
量計31、流量調節弁32、流量不安定判別器34、安
定度演算器35から構成されている。
The stability detector 14 includes a flow meter 29, a measurement heat transfer tube 30, a flow meter 31, a flow rate control valve 32, a flow rate instability discriminator 34, and a stability calculator 35.

計測用伝熱管30はシエル2内では伝熱管3と並列に配
設され、この伝熱管30の一端は流量調節弁31を介し
て給水管4に、他端は流量計32を介して蒸気管5にそ
れぞれ接続されている。
The heat exchanger tube 30 for measurement is arranged in parallel with the heat exchanger tube 3 in the shell 2, one end of this heat exchanger tube 30 is connected to the water supply pipe 4 via a flow rate control valve 31, and the other end is connected to a steam pipe via a flow meter 32. 5 respectively.

寸だ給水管4のポンプ6出口側には流量計29が設けら
れている。
A flow meter 29 is provided on the pump 6 outlet side of the water supply pipe 4.

上記安定度検出器14により伝熱管3内の水の流動安定
度を検出する場合には、まず弁駆動装置33により流量
調節弁32を徐々に閉じて計測用伝熱管30への給水流
量を減少する。
When the stability detector 14 detects the flow stability of water in the heat transfer tube 3, first, the valve driving device 33 gradually closes the flow control valve 32 to reduce the flow rate of water supplied to the measurement heat transfer tube 30. do.

すると計測用伝熱管30ではその内部を流通する水の流
量と外部を流通するナ} IJウムの流量の比が大きく
なるため、計測用伝熱管30内の水の流動に不安定現象
を発生する。
Then, in the heat exchanger tube for measurement 30, the ratio of the flow rate of water flowing inside the tube and the flow rate of the water flowing outside the tube becomes large, and an unstable phenomenon occurs in the flow of water inside the heat exchanger tube for measurement 30. .

この不安定現象が発生したか否かは流量計31からの流
量信号36を流動不安定判別器34で波形分析すること
により判別される。
Whether or not this unstable phenomenon has occurred is determined by analyzing the waveform of the flow rate signal 36 from the flow meter 31 using the flow instability discriminator 34.

また安定度演算器35では流量計29により測定された
全給水流量の測定信号38から伝熱管3の一本当りの給
水流量が演算され、この演算値と流動不安定判別器34
から送られてくる不安定現象発生時点における計測用伝
熱管30内を流れる給水流量の平均値3γが比較され、
両者37,38の関係より伝熱管3内の水の流動安定度
が定量的に演算される。
In addition, the stability calculator 35 calculates the feed water flow rate per heat transfer tube 3 from the measurement signal 38 of the total feed water flow rate measured by the flow meter 29, and this calculated value and the flow instability discriminator 34 calculate the feed water flow rate per heat transfer tube 3.
The average value 3γ of the flow rate of water flowing through the measurement heat exchanger tube 30 at the time of occurrence of the unstable phenomenon sent from
From the relationship between both 37 and 38, the flow stability of water in the heat exchanger tube 3 is quantitatively calculated.

また計測用伝熱管30に不安定流動の発生したことを示
す信号39が発生すると同時に安定信号21がホールド
され、さらに弁駆動装置33の動作により流量調節弁3
2は最初の状態にリセットされる。
Further, at the same time as the signal 39 indicating that unstable flow has occurred in the measurement heat transfer tube 30 is generated, the stability signal 21 is held, and furthermore, the flow control valve 3 is held by the operation of the valve drive device 33.
2 is reset to the initial state.

貫流型蒸気発生器の負荷状態における水側およびナトリ
ウム側の温度分布を示すと第3図のようになり、この図
の左端が給水入口およびナ} IJウム出口の位置に相
当し、右端が蒸気出口およびナトリウム入口の位置に相
当する。
Figure 3 shows the temperature distribution on the water side and sodium side under load of a once-through steam generator. Corresponds to the outlet and sodium inlet locations.

またこの図には給水流量、給水温度、蒸気温度は等しい
が運転状態の異なる2種類の温度分布が示されている。
This figure also shows two types of temperature distributions in which the feed water flow rate, feed water temperature, and steam temperature are the same, but the operating conditions are different.

すなわち実線40.42でそれぞれ示すナトリウム温度
Aおよび水一蒸気温度Aの組合わせはナトリウム流量が
少ない代りにナトリウム入口温度が高い場合の運転状態
Aの例であり、破線41.43でそれぞれ示すナトリウ
ム温度Bおよび水一蒸気温度Bの組合わせはナトリウム
流量が多い代りにナトリウム入口温度が低い場合の運転
状態Bの例である。
In other words, the combination of sodium temperature A and water-vapor temperature A shown by solid lines 40.42 is an example of operating state A when the sodium flow rate is low but the sodium inlet temperature is high, and the sodium temperature combination shown by broken lines 41.43, respectively The combination of temperature B and water-steam temperature B is an example of operating state B in which the sodium inlet temperature is low in exchange for a high sodium flow rate.

前者の運転状態Aは後述するように水一蒸気系の流動が
安定であるが、ナトリウム入口温度と蒸気出口温度の温
度差が大きいため、給水流量の変化があった場合のよう
な過度状態では蒸気出口温度の変動幅が大きくなり蒸気
温度の制御上から好ましくない。
In the former operating state A, the flow of the water-steam system is stable, as will be described later, but because the temperature difference between the sodium inlet temperature and the steam outlet temperature is large, it is difficult to operate in a transient state such as when there is a change in the feed water flow rate. This increases the fluctuation range of the steam outlet temperature, which is undesirable from the viewpoint of steam temperature control.

後者の運転状態Bは逆に水一蒸気系の流動が不安定にな
りやすいが、ナトリウム入口温度と蒸気出口温度の温度
差はきわめて小さいため、給水流量の変化に対して過度
状態でも大幅な蒸気温度の変動を生ずることはないから
制御上好ましい。
In the latter operating condition B, on the contrary, the flow of the water-steam system tends to become unstable, but because the temperature difference between the sodium inlet temperature and the steam outlet temperature is extremely small, even in transient conditions, there is a large amount of steam in response to changes in the feedwater flow rate. This is preferable in terms of control because it does not cause temperature fluctuations.

このように流動の安定性を確保することおよび好捷しい
過度特性をうろことは互に相反する運転状態を要′求す
るわけであるので、ナトリウム流量は上記二つの要求が
満足される範囲内で選定することが望ましへ前記安定度
検出装置14により伝熱管3内の水一蒸気系の流動安定
性を監視して妥当な安定度余裕を確保し、さらにナトリ
ウム温度を良好な過度特性かえられる範囲内でプログラ
ムされたナトリウム温度の設定値に近ずけるようにナト
リウムポンプ100回転数を調節すれば、安定な流動と
良好な負荷追従性を有する状態において蒸気発生器を運
転することが可能になる。
In this way, ensuring flow stability and achieving favorable transient characteristics require mutually contradictory operating conditions, so the sodium flow rate must be within a range that satisfies the above two requirements. It is preferable to use the stability detection device 14 to monitor the flow stability of the water-steam system in the heat transfer tube 3 to ensure a reasonable stability margin, and to change the sodium temperature to have good transient characteristics. By adjusting the sodium pump 100 rotation speed so that it approaches the programmed sodium temperature set point within the range specified, it is possible to operate the steam generator with stable flow and good load following. become.

流動不安定判別器34を用いているので、蒸気発生器1
の如く上昇管部のみからなる伝熱管3内の流動の不安定
現象を確実に検出できる。
Since the flow instability discriminator 34 is used, the steam generator 1
It is possible to reliably detect the phenomenon of unstable flow within the heat exchanger tube 3 consisting of only the riser tube portion as shown in FIG.

第4図は長さ50mの伝熱管を有するナ} IJウム加
熱蒸気発生器を給水温度240℃、蒸気温川約500℃
蒸気圧力1 7 0ky/cmの条件で運転した場合の
解析結果を、縦軸に1〜3次の固有振蹴モードの振幅の
増幅率をとり、横軸にナトリウムと水の流量比をとって
示したもので、増幅率の逆符号の値が流動の安定度を定
量的に示しているものと考え名ことができる。
Figure 4 shows an IJ heating steam generator with a heat exchanger tube 50 m long, with a feed water temperature of 240°C and a steam temperature of approximately 500°C.
The analysis results when operating under the condition of steam pressure 170 ky/cm are plotted by plotting the amplification factor of the amplitude of the 1st to 3rd order natural vibration mode on the vertical axis and plotting the flow rate ratio of sodium and water on the horizontal axis. It can be considered that the value with the opposite sign of the amplification factor quantitatively indicates the stability of the flow.

すなわち増幅率が正のモードの場合には、振製振幅は時
間と共に増幅して流動は不安定となり、逆に増幅率が負
のモー。
In other words, in a mode where the amplification factor is positive, the vibration amplitude increases over time and the flow becomes unstable, and conversely, in a mode where the amplification factor is negative.

の場合には、振動が生じてもその振幅は時間と共に減衰
するから流動は安定である。
In this case, even if vibration occurs, the amplitude attenuates over time, so the flow is stable.

第4図に示した例ではナトリウムと水の流量比が11:
4以下であれば、いずれのモードについても不安定流動
を生ずることがなく、ナトリウム流量が少ない運転条件
など流動の安定度が向上す不ことがわかる。
In the example shown in Figure 4, the flow rate ratio of sodium and water is 11:
It can be seen that if it is 4 or less, unstable flow does not occur in any mode, and the stability of flow is improved under operating conditions where the sodium flow rate is low.

上述の実施例では水側の流動の安定をはかるための操作
としてナトリウム側の流量を減少させる方法を採用した
が、蒸気発生器が負荷に追従せず逆に負荷側が蒸気発生
器に追従するタイプの原子炉にあっては、ナトリウム流
量を減少させる代りに給水流量を増加させることにより
同様の効果をうろことができる。
In the above example, a method of reducing the flow rate on the sodium side was adopted as an operation to stabilize the flow on the water side, but in this case, the steam generator does not follow the load, but instead the load side follows the steam generator. In a nuclear reactor, a similar effect can be obtained by increasing the feedwater flow rate instead of decreasing the sodium flow rate.

本発明の第1の特徴によれば、上昇管部のみからなる伝
熱管内の流動不安定を確実に検出でき、蒸気発生器を安
定に運転することができる。
According to the first feature of the present invention, it is possible to reliably detect flow instability in the heat transfer tube consisting of only the riser pipe portion, and it is possible to stably operate the steam generator.

また、第2の特徴によれば、相反する運転状態である流
動の安定性確保と好しい過渡特性の達成を同時に得るこ
とができる。
Furthermore, according to the second feature, it is possible to simultaneously secure flow stability and achieve favorable transient characteristics, which are contradictory operating conditions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の蒸気発生器の運転方法を示す系統図、
第2図は本発明に使用される安定度検出装置の構成を示
す系統図、第3図は蒸気発生器の運転状態を示す説1明
図、第4図は伝熱管内の流動の不安定特性を示す説明図
である。 符号の説明 1・・・蒸気発生器、2・・・シェル、3
・・・伝熱管、6,10・・・ポンプ、14・・・安定
度検出装置、30・・・計測用伝熱管。
FIG. 1 is a system diagram showing the method of operating the steam generator of the present invention;
Figure 2 is a system diagram showing the configuration of the stability detection device used in the present invention, Figure 3 is an explanatory diagram showing the operating status of the steam generator, and Figure 4 is unstable flow in the heat transfer tube. FIG. 3 is an explanatory diagram showing characteristics. Explanation of symbols 1...Steam generator, 2...Shell, 3
...Heat transfer tube, 6,10...Pump, 14...Stability detection device, 30...Measurement heat transfer tube.

Claims (1)

【特許請求の範囲】 1 内部に加熱側流体が流れるシェルと、前記シェル内
に配置されて内部に被加熱側流体が流れる複数の伝熱管
とを有する蒸気発生器の運転制御装置において、前記伝
熱管と並列に配置され、かつその両端部が前記伝熱管の
両端部に接続される被加熱側流体供給管と被加熱側流体
排出管にそれぞ減接続される計測配管と、前記シェル外
で前記計測配管に設けられた流量制御手段と、前記シェ
ル外で前記計測配管に設けられて前記計測配管内の被加
熱側流体の第1流量を測定する第1流量測定手段と、前
記被加熱側流体供給管に設けられた第2流量測定手段と
、前記第1流量を城ずる前記流量制御手段の操作時にお
ける前記第1流量に基づいて前記計測配管内の流動不安
定を検出する手段と、前記第2流量測定手段の出力信号
に基づいて得られた前記伝熱管一本aりの被加熱側流体
の第2流量と前記流動不安定検出手段が流動不安定信号
を出力した時点における前記第1流量とに基づいて前記
伝熱管内の流動の安定度を判別する手段と、前記流動安
定度判別手段の出力信号に基づいて前記伝熱管内の被加
熱側流体の流動が安定する範囲内に加熱側流体と被加熱
側流体の流動比を調節する手段とからなる蒸気発生器の
運転匍御装置。 2 内部に加熱側流体が流れるシェルと、前記シェル内
に配置されて内部に被加熱側流体が流れる複数の伝熱管
とを有する蒸気発生器の運転制御装置において、前記伝
熱管と並列に配置され、かつその両端部が前記伝熱管の
両端部に接続される被加熱側流体供給管と被加熱側流体
排出管にそれぞれ接続される計測配管と、前記シェル外
で前記計測配管に設けられた流量制御手段と、前記シェ
ル外で前記計測配管に設けられて前記計測配管内の被加
熱側流体の第1流量を測定する第1流量測定手段と、前
記被加熱側流体供給管に設けられた第2流量測定手段と
、前記第1流量を減ずる前記流量制御手段の操作時にお
ける前記第1流量に基づいて前記計測配管内の流動不安
定を検出する手段と、前記第2流量測定手段の出力信号
に基づいて得られた前記伝熱管一本当りの被加熱側流体
の第2流量と前記流動不安定検出手段が流動不安定信号
を出力した時点における前記第1流量に基づいて前記伝
熱管内の流動の安定度を判別する手段と、前記蒸気発生
器に流入する加熱側流体の温度を検出する手段と、前記
流動安定度判別手段及び前記温度検出手段の出力信号に
基づいて加熱側流体の流量を制御する手段とからなる蒸
気発生器の運転制御装置。
[Scope of Claims] 1. An operation control device for a steam generator having a shell in which a heating fluid flows, and a plurality of heat transfer tubes disposed within the shell and in which a heated fluid flows. A measurement pipe arranged in parallel with the heat tube and whose both ends are connected to the heated side fluid supply pipe and the heated side fluid discharge pipe, respectively, and outside the shell a flow rate control means provided on the measurement pipe; a first flow rate measurement means provided on the measurement pipe outside the shell to measure a first flow rate of the fluid on the heated side in the measurement pipe; a second flow rate measurement means provided in the fluid supply pipe; and means for detecting flow instability in the measurement pipe based on the first flow rate when operating the flow rate control means that controls the first flow rate; the second flow rate of the fluid on the heated side of the heat exchanger tube a obtained based on the output signal of the second flow rate measuring means and the second flow rate at the time when the flow instability detection means outputs the flow instability signal; a means for determining the stability of the flow in the heat exchanger tube based on the flow rate; and a means for determining the stability of the flow in the heat exchanger tube based on the output signal of the flow stability determination means; A steam generator operation control device comprising means for adjusting the flow ratio of a heating side fluid and a heated side fluid. 2. An operation control device for a steam generator having a shell in which a heating fluid flows, and a plurality of heat transfer tubes disposed within the shell and in which a heated fluid flows, the heat transfer tubes being arranged in parallel with the heat transfer tubes. , and measurement piping whose both ends are connected to the heated side fluid supply pipe and the heated side fluid discharge pipe, respectively, and the flow rate provided in the measurement piping outside the shell. a control means, a first flow rate measuring means provided in the measurement piping outside the shell and measuring a first flow rate of the heated fluid in the measurement piping, and a first flow rate measuring means provided in the heated fluid supply pipe. 2 flow rate measuring means, means for detecting flow instability in the measurement piping based on the first flow rate when the flow rate control means is operated to reduce the first flow rate, and an output signal of the second flow rate measuring means. The second flow rate of the heated fluid per heat transfer tube obtained based on the flow rate and the first flow rate at the time when the flow instability detection means outputs the flow instability signal. means for determining the stability of the flow; means for detecting the temperature of the heating fluid flowing into the steam generator; and determining the flow rate of the heating fluid based on the output signals of the flow stability determining means and the temperature detecting means. A steam generator operation control device comprising means for controlling.
JP15493875A 1975-12-26 1975-12-26 Steam generator operation control device Expired JPS598721B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15493875A JPS598721B2 (en) 1975-12-26 1975-12-26 Steam generator operation control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15493875A JPS598721B2 (en) 1975-12-26 1975-12-26 Steam generator operation control device

Publications (2)

Publication Number Publication Date
JPS5279101A JPS5279101A (en) 1977-07-04
JPS598721B2 true JPS598721B2 (en) 1984-02-27

Family

ID=15595206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15493875A Expired JPS598721B2 (en) 1975-12-26 1975-12-26 Steam generator operation control device

Country Status (1)

Country Link
JP (1) JPS598721B2 (en)

Also Published As

Publication number Publication date
JPS5279101A (en) 1977-07-04

Similar Documents

Publication Publication Date Title
Takitani et al. Density wave instability in once-through boiling flow system,(I) Experiment
KR830009424A (en) Water supply
US4272962A (en) Pressure controller for dual purpose steam turbine power plant
KR870001610A (en) Power Plant Plant Control System
US4654186A (en) Device for determination of the power of a pressurized water nuclear reactor
US3213835A (en) Recirculating system having partial bypass around the center wall
JPS598721B2 (en) Steam generator operation control device
US3164135A (en) Monotube boiler feedwater and steam temperature control
JP3549603B2 (en) Flow measurement probe
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JPS6371625A (en) Measuring device for heat absortion quantity of heat conduction pipe
Waszink et al. Hydrodynamic stability and thermal performance test of a 1-MWt sodium-heated once-through steam generator model
EP1770716A2 (en) Improved on-line steam flow measurement device and method
JPH0152642B2 (en)
JPS61213403A (en) Monitor device for stress of boiler
JPS5949484B2 (en) Steam generator water level control device
Hunsbedt et al. Thermal-Hydraulic Performance of a 2 MWt Sodium-Heated, Forced Recirculation Steam Generator Model
JPS6115004A (en) Thermal-medium circulating heat exchanger
JPS58219982A (en) Connecting plant of nuclear power installation and sea water desalting apparatus
JP2625422B2 (en) Boiler control device
JPS63241389A (en) Monitor for state of plant
JPS6135442B2 (en)
JP2008196754A (en) Steam temperature control method and steam temperature control device for multitubular once-through boiler
JPS6159104A (en) Controller for water level in drum
JPS5838683B2 (en) Deaerator water level control device