JPS63241389A - Monitor for state of plant - Google Patents

Monitor for state of plant

Info

Publication number
JPS63241389A
JPS63241389A JP62074419A JP7441987A JPS63241389A JP S63241389 A JPS63241389 A JP S63241389A JP 62074419 A JP62074419 A JP 62074419A JP 7441987 A JP7441987 A JP 7441987A JP S63241389 A JPS63241389 A JP S63241389A
Authority
JP
Japan
Prior art keywords
flow rate
plant
steam generator
pressure
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62074419A
Other languages
Japanese (ja)
Inventor
恵 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP62074419A priority Critical patent/JPS63241389A/en
Publication of JPS63241389A publication Critical patent/JPS63241389A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [発明の目的コ (産業上の利用分野) 本発明は原子力発電プラント等の蒸気発生器を備えたプ
ラントにおいてプラントの運転状形を監視するプラント
状態監視装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Purpose of the Invention (Industrial Field of Application) The present invention relates to a plant condition monitoring device for monitoring the operating condition of a plant including a steam generator such as a nuclear power plant.

(従来の技術) 一般に原子力発電プラント等では発電用タービンの駆動
流体として蒸気が用いられる。その蒸気の熱源として高
速増殖炉を用いるプラントでは第3図に示すように蒸気
発生器1の1次側に2次ナトリウム系配管2を通じて高
温の液体ナトリウムを導入し、蒸気発生器1の2次側に
は給水配管3を通じて水を導入することにより液体ナト
リウムの熱で蒸気を発生させている。
(Prior Art) Steam is generally used as a driving fluid for power generation turbines in nuclear power plants and the like. In a plant that uses a fast breeder reactor as a heat source for the steam, high-temperature liquid sodium is introduced into the primary side of the steam generator 1 through the secondary sodium system piping 2, as shown in Figure 3. By introducing water through the water supply pipe 3 to the side, steam is generated by the heat of liquid sodium.

このようにして蒸気発生器1で発生した蒸気は蒸気配管
4を通ってタービン5へ送られ、タービン5を駆動した
後、復水器6で凝縮される。そして、覆水器6で凝縮さ
れた蒸気は復水となり、給水加熱器7で予熱された後、
給水ポンプ8により給水配管3を通って再び蒸気発生器
1の2次側に導入される。また、蒸気発生器1から流出
した液体ナトリウムはナトリウムポンプ9により図示し
ない中間熱交換器の2次側に導入され、中間熱交換器の
1次側を流れる高温の液体ナトリウムと熱交換を行った
後、再び蒸気発生器1の1次側2次ナトリウム系配管2
に導入される。
The steam generated in the steam generator 1 in this manner is sent to the turbine 5 through the steam pipe 4, drives the turbine 5, and is then condensed in the condenser 6. Then, the steam condensed in the water covering device 6 becomes condensed water, and after being preheated in the feed water heater 7,
The water is introduced into the secondary side of the steam generator 1 again through the water supply pipe 3 by the water supply pump 8 . In addition, the liquid sodium flowing out from the steam generator 1 was introduced into the secondary side of an intermediate heat exchanger (not shown) by the sodium pump 9, and exchanged heat with the high-temperature liquid sodium flowing on the primary side of the intermediate heat exchanger. After that, connect the primary side secondary sodium system piping 2 of the steam generator 1 again.
will be introduced in

ところで、このようなプラントでは蒸気発生器1の給水
流量、1次側入口温度、蒸気圧力、給水流量と液体ナト
リウム流星との流量比などの運転パラメータで変化する
運転状態により給水流量か密度波型の振動を発生するこ
とがある。そして、このような不安定現象か発生すると
高温の液体ナトリウムが流通する蒸気発生器1内の伝熱
管に悪影響を及ぼし、プラントの健全性が損われる可能
性がある。この場合、給水inの振動は蒸気発生器1の
2次側入口圧力と2次側出口圧力との圧力差、すなわち
圧損量の増大に伴って発生することが判明しており、従
来では第3図の如く給水配管3と蒸気配管4との間に差
圧計10を設けて蒸気発生器1の2次側圧損量を測定し
、その測定値が第4図に示す安定限界圧根基曲線Aを越
えないように各運転パラメータを変更してプラントの運
転を行っている。
By the way, in such a plant, the feed water flow rate or the density wave pattern varies depending on the operating conditions, which vary depending on the operating parameters such as the feed water flow rate of the steam generator 1, the primary side inlet temperature, the steam pressure, and the flow rate ratio between the feed water flow rate and the liquid sodium meteor. may generate vibrations. If such an unstable phenomenon occurs, it may have an adverse effect on the heat transfer tubes in the steam generator 1 through which high-temperature liquid sodium flows, and the health of the plant may be impaired. In this case, it has been found that vibrations in the feed water in occur as a result of the pressure difference between the secondary side inlet pressure and the secondary side outlet pressure of the steam generator 1, that is, an increase in the amount of pressure loss. As shown in the figure, a differential pressure gauge 10 is installed between the water supply piping 3 and the steam piping 4 to measure the secondary side pressure loss of the steam generator 1, and the measured value corresponds to the stability limit pressure root base curve A shown in Figure 4. The plant is operated by changing each operating parameter so as not to exceed the limit.

なお、第4図は蒸気発生器の2次側圧損量と給水流量と
の関係を示す曲線図で、圧損量の増加とともに給水流量
が増加することを示している。
Note that FIG. 4 is a curve diagram showing the relationship between the amount of pressure loss on the secondary side of the steam generator and the flow rate of feed water, and shows that the flow rate of feed water increases as the amount of pressure loss increases.

(発明が解決しようとする問題点) しかしながら、プラントの運転パラメータには上記した
如く給水流量、1次側入口温度、蒸気圧力、1次側と2
次側との流量比などがあり、各運転パラメータに対する
安定度やどの運転パラメータをどの程度変更した場合に
どのような運転状態となるかの判断は運転員の経験に顆
っているのが現状である。このため、従来はプラントの
運転操作を全て運転員の経験に顆ることになり、これに
より運転員の負担増加を招くとともに、運転員の判断ミ
スによりプラントの健全性が損われる可能性がある。
(Problem to be solved by the invention) However, as mentioned above, the plant operating parameters include the feed water flow rate, primary side inlet temperature, steam pressure, primary side and secondary side.
There is a flow rate ratio with the next side, etc., and the current situation is that the operator's experience is the key to determining the stability of each operating parameter and what kind of operating state will result when changing which operating parameter and how much. It is. For this reason, in the past, all plant operations were based on the operator's experience, which increased the burden on the operator and could potentially damage the health of the plant due to operator errors in judgment. .

上述したように従来はプラントの各運転パラメータに対
する安定度の予測判断を運転員の経験に頼っていたため
、運転員への負担増加を招くとともに、運転員の判断ミ
スによりプラントの健全性が損われる可能性がある。
As mentioned above, in the past, predicting the stability of each plant operating parameter relied on the operator's experience, which resulted in an increased burden on the operator and also resulted in damage to the health of the plant due to operator errors in judgment. there is a possibility.

本発明はこのような事情に基づいてなされたもので、そ
の目的は蒸気発生器を有するプラントの安定状態をCR
7表示により監視してプラントの運転信頼性および操作
性が向上するプラント状態監視装置を提供することにあ
る。
The present invention was made based on these circumstances, and its purpose is to improve the stable state of a plant having a steam generator.
It is an object of the present invention to provide a plant status monitoring device that improves the operational reliability and operability of a plant by monitoring with 7 displays.

[発明の構成] (問題点を解決するための手段) 本発明のプラント状態監視装置は、蒸気発生器の1次側
を流通する高温流体の流量を検出する高温流体流量検出
器と、前記蒸気発生器の2次側に導入される給水流量を
検出する給水流量検出器と、前記蒸気発生器の2次側か
ら導出される蒸気圧力を検出する蒸気圧検出器と、前記
蒸気発生器の2次側入口圧力と2次側出口圧力との圧力
差を検出する差圧検出器と、これら各検出器からの検出
信号に基づいて蒸気発生器2次側の圧損量の対数と給水
流量の対数とを表すグラフをCRTに表示し、そのグラ
フ上に安定限界圧根基を示す直線と現在のプラント状態
を表示することを特徴としている。
[Structure of the Invention] (Means for Solving the Problems) The plant condition monitoring device of the present invention includes a high temperature fluid flow rate detector that detects the flow rate of high temperature fluid flowing through the primary side of a steam generator, and a high temperature fluid flow rate detector that detects the flow rate of high temperature fluid flowing through the primary side of a steam generator. a feed water flow rate detector that detects the feed water flow rate introduced into the secondary side of the generator; a steam pressure detector that detects the steam pressure derived from the secondary side of the steam generator; A differential pressure detector that detects the pressure difference between the next side inlet pressure and the second side outlet pressure, and the logarithm of the pressure drop on the secondary side of the steam generator and the logarithm of the feed water flow rate based on the detection signals from each of these detectors. The present invention is characterized by displaying a graph representing the above on the CRT, and displaying a straight line indicating the stable limit pressure base and the current plant status on the graph.

(作用) 本発明に係わるプラント状態監視装置は蒸気発生器の水
側圧損と給水流量との関係により蒸気発生器の安定状態
をCR7表示により監視する。
(Function) The plant condition monitoring device according to the present invention monitors the stable condition of the steam generator using the CR7 display based on the relationship between the water side pressure loss of the steam generator and the feed water flow rate.

このCR7表示により確認してプラントの運転信頼性の
向上および操作性の向上をはかることができる。
By checking this CR7 display, it is possible to improve the operational reliability and operability of the plant.

(実施例) 第1図を参照しながら本発明に係わるプラント状態監視
装置の一実施例を説明する。
(Example) An example of a plant condition monitoring device according to the present invention will be described with reference to FIG.

第1図中符号1は蒸気発生器を示しており、この蒸気発
生器1の1次側には2次ナトリウム系配管2を流れた高
温の液体ナトリウムが流通している。給水配管3を通じ
て蒸気発生器1の2次側に導入された水は液体ナトリウ
ムの熱によって蒸気化され、蒸気配管4および蒸気加減
弁11を通ってタービン5へ送られ、タービン5を駆動
した後に復水器6で凝縮される。そして、復水器6で凝
縮された蒸気は復水となり、給水予熱器7で予熱された
後、給水ポンプ8により給水流量調整弁12を介し給水
配管3を通って再び蒸気発生器1の2次側に導入される
ようになっている。一方、蒸気発生器1から流出した液
体ナトリウムはナトリウムポンプ9により図示しない中
間熱交換器の2次側に導入され、中間熱交換器の1次側
を流れる高温の液体ナトリウムと熱交換を行った後、2
次ナトリウム系配管2を通じて再び蒸気発生器1の1次
側に導入されるようになっている。
Reference numeral 1 in FIG. 1 indicates a steam generator, and high-temperature liquid sodium that has flowed through a secondary sodium system pipe 2 flows through the primary side of the steam generator 1. Water introduced into the secondary side of the steam generator 1 through the water supply pipe 3 is vaporized by the heat of the liquid sodium, and is sent to the turbine 5 through the steam pipe 4 and the steam control valve 11, and after driving the turbine 5. It is condensed in the condenser 6. Then, the steam condensed in the condenser 6 becomes condensate, and after being preheated in the feed water preheater 7, the steam is passed through the water supply pipe 3 via the feed water flow rate adjustment valve 12 by the feed water pump 8, and is returned to the 2 of the steam generator 1. It is designed to be introduced on the next side. On the other hand, the liquid sodium flowing out from the steam generator 1 was introduced into the secondary side of an intermediate heat exchanger (not shown) by the sodium pump 9, and exchanged heat with the high-temperature liquid sodium flowing on the primary side of the intermediate heat exchanger. After, 2
The sodium is introduced into the primary side of the steam generator 1 again through the sodium system piping 2.

上記ナトリウムポンプ9の上流側には蒸気発生器1の1
次側を流通する液体ナトリウム流量W2を検出するため
のナトリウム流量検出器13が設けられている。
1 of the steam generator 1 is provided on the upstream side of the sodium pump 9.
A sodium flow rate detector 13 is provided to detect the flow rate W2 of liquid sodium flowing on the next side.

また、前記給水流量調整弁12の下流側には蒸気発生器
1の2次側に導入される給水流u W 2を検出するた
めの給水流量検出器14が設けられ、さらに蒸気圧加減
弁11の上流側には蒸気発生器1の2次側から導出され
る蒸気圧力Pを検出するための蒸気圧検出器15が設け
られている。
Further, a feed water flow rate detector 14 for detecting the feed water flow u W 2 introduced into the secondary side of the steam generator 1 is provided on the downstream side of the feed water flow rate adjustment valve 12 . A steam pressure detector 15 for detecting the steam pressure P derived from the secondary side of the steam generator 1 is provided on the upstream side of the steam generator 1 .

ナトリウム流量検出器13から出力されるナトリウム流
量検出信号W1、給水流量検出器14から出力される流
水流星検出信号W2、及び蒸気圧検出器15から出力さ
れる蒸気圧力検出信号Pは、プラント状態監視装置20
に入力される。
The sodium flow rate detection signal W1 outputted from the sodium flow rate detector 13, the water meteor detection signal W2 outputted from the feed water flow rate detector 14, and the steam pressure detection signal P outputted from the steam pressure detector 15 are used for plant state monitoring. device 20
is input.

なお、図中符号10は蒸気発生器1の2次側入口圧力と
2次側出口圧力との圧力差△Pを検出するための差圧検
出器で、この差圧検出器10がら出力される2次側圧損
検出信号はプラント状B監視装置20に供給されている
In addition, the reference numeral 10 in the figure is a differential pressure detector for detecting the pressure difference ΔP between the secondary side inlet pressure and the secondary side outlet pressure of the steam generator 1, and the differential pressure detector 10 outputs the pressure difference ΔP. The secondary side pressure loss detection signal is supplied to a plant-like B monitoring device 20.

上記プラント状態監視装置20は入力部20a、演算制
御部20b 、CRT20cがら構成され、各検出器1
3.14.15.16がらの検出信号は入力部20aを
介して演算制御部20bに入力される。この演算制御部
20bは入力された信号に基づいてプラントの安定度F
を算出し、算出した安定度Fがプラントの安苓運転上か
ら定まる運転制限値εを逸脱する場合には、CRT20
cがら警報を発する。
The plant condition monitoring device 20 is composed of an input section 20a, an arithmetic control section 20b, and a CRT 20c.
The detection signals of 3.14.15.16 are input to the calculation control section 20b via the input section 20a. This arithmetic control unit 20b calculates the stability of the plant based on the input signal.
is calculated, and if the calculated stability F deviates from the operation limit value ε determined from the plant operation, the CRT20
c to issue an alarm.

次に、゛このように構成された装置の動作例について、
第2図に示したCRT20cに表示された一例を参照し
て説明する。
Next, regarding an example of the operation of a device configured in this way,
This will be explained with reference to an example displayed on the CRT 20c shown in FIG.

蒸気発生器1の安全限界圧損量△p maxは、一般に
給水流量W2の対数値の1次関数の指数関数で近似され
、ΔP naxとW2とは次のような関係にある。
The safe limit pressure drop amount Δp max of the steam generator 1 is generally approximated by an exponential function of a linear function of the logarithm of the feed water flow rate W2, and ΔP nax and W2 have the following relationship.

I n△PIllaX +a HI nW2+b =O
”・・” (1)(ただし、a:負の値の定数、b=定
数である。)この関係に基づく安全限界圧損量を示す直
線LaをCRT20Cに表示された蒸気発生器1の2次
側の圧損量の対数と、給水流量の対数を表すグラフ30
上に引く、また、入力されるΔp、w2から現在のプラ
ント状態Saをグラフ30上にプロットする。この場合
、Saが直線Laより上の領域にある時安定であり、直
線Laより上の領域にある時不安定を意味する。
I n△PIllaX +a HI nW2+b =O
``...'' (1) (However, a: a constant with a negative value, b = a constant.) The straight line La indicating the safe limit pressure loss based on this relationship is the secondary of the steam generator 1 displayed on the CRT 20C. Graph 30 showing the logarithm of the side pressure drop and the logarithm of the water supply flow rate
The current plant state Sa is plotted on the graph 30 from the input Δp and w2. In this case, when Sa is in the region above the straight line La, it is stable, and when it is in the region above the straight line La, it is unstable.

つまり、上記発生器1の2次側圧損ΔPが△Pmax以
下の場合、プラントの安定性が確保されることからプラ
ントの安定度Fは下記のように定義することができ、F
の値が小さいほどプラントの安定性が良いと言える。
In other words, when the pressure drop ΔP on the secondary side of the generator 1 is equal to or less than ΔPmax, the stability of the plant is ensured, so the stability F of the plant can be defined as follows,
It can be said that the smaller the value, the better the stability of the plant.

F=In△P+a −I nW2 +b−・−・・・・
・(2)そこで運転状態監視装置20の演算制御部20
aでは蒸気発生器1の2次側圧損ΔPと給水流量W2を
読み込み、(2)式で定義されたプラントの安定度Fを
算出する。
F=In△P+a −I nW2 +b−・−・・・・
(2) Therefore, the calculation control unit 20 of the operating state monitoring device 20
In a, the secondary side pressure loss ΔP of the steam generator 1 and the feed water flow rate W2 are read, and the stability F of the plant defined by equation (2) is calculated.

次に算出した安定度Fを予め設定した運転制限値εと比
較して、Fがεがら逸脱する場合には、CRT20C上
に警報安定性劣化Aaを表示する。
Next, the calculated stability F is compared with a preset operating limit value ε, and if F deviates from ε, an alarm stability deterioration Aa is displayed on the CRT 20C.

このとき運転制限値εは給水流量W2あるいは他のプラ
ント状態の関数であってもよい、蒸気発生器1の2次側
圧損ΔPと給水流Ek W 2とは、一般に次の関係式
により近似される。
At this time, the operation limit value ε may be a function of the feed water flow rate W2 or other plant conditions.The secondary side pressure drop ΔP of the steam generator 1 and the feed water flow Ek W 2 are generally approximated by the following relational expression. Ru.

In△P+f (P、W+ /W2 > ・I nW2
+g (P、W+ /W2 )=O・・・(3)ここで
、上記ΔPの対数値とW2の対数値の関係は1次式で表
され、その係数は蒸気圧力Pと、1次側流星W1および
2次側流量W2の流星比との関数で表される。入力され
たプロセス量から定まるP、及びW、/W2よりf (
P 、 W+ /W2 )、及びg (P、W+ /W
2 )を求め、(3)式の関係に基づく直線Lb 1c
RT20cのグラフ30上に引く。
In△P+f (P, W+ /W2 > ・I nW2
+g (P, W+ /W2) = O... (3) Here, the relationship between the logarithm of ΔP and the logarithm of W2 is expressed by a linear equation, and the coefficient is the steam pressure P and the primary side It is expressed as a function of the meteor ratio of the meteor W1 and the secondary flow rate W2. From P and W determined from the input process amount, /W2, f (
P , W+ /W2 ), and g (P, W+ /W
2), and the straight line Lb 1c based on the relationship of equation (3)
Draw on the graph 30 of RT20c.

このLbにより、現在のP、及びW 1/ W 2を一
定のままに、ΔPあるいはW2を運転操作により変更し
た場合の安定状態の推移がわかる。
This Lb shows the transition of the stable state when ΔP or W2 is changed by driving operation while keeping the current P and W 1/W 2 constant.

以上述べた実施例では、蒸気発生器1の2次側圧損ΔP
と給水流量W2どの関係を表したCRT2Oc上のグラ
フ30からプリントの安全性を一目で判断することが可
能となる。
In the embodiment described above, the secondary side pressure loss ΔP of the steam generator 1
It is possible to judge the printing safety at a glance from the graph 30 on the CRT2Oc showing the relationship between the water supply flow rate W2 and the water supply flow rate W2.

また、PおよびW、/W2一定の下で、八P。Also, under constant P and W, /W2, 8P.

W2を変更した場合の安定状態の推移もまた、CRT2
OC上のグラフ30から予測可能となる。
The stable state transition when changing W2 also shows that CRT2
This can be predicted from the graph 30 on the OC.

[発明の効果] 本発明によれば、プラントの運転状態の安定性をCRT
により確実に確認することができるとともに、プラント
の信頼性を大幅に向上させることができるプラント状態
監視装置を提供できる。
[Effects of the Invention] According to the present invention, the stability of the operating state of a plant can be
It is possible to provide a plant condition monitoring device that can be confirmed more reliably and significantly improve the reliability of the plant.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示すプラント状態監視装置
の構成図、第2図は第1図におけるCRT表示の一例を
示す動作状態図、第3図は従来の高速増殖炉発電プラン
トの蒸気発生器からタービン系を示す系統図、第4図は
第3図における蒸気発生器の2次側圧損と給水流量との
関係を示す線図である。 1・・・・・・・・・蒸気発生器 13・・・・・・・・・ナトリウム流量検出器14・・
・・・・・・・給水流量検出器15・・・・・・・・・
蒸気圧検出器 16・・・・・・・・・差圧検出器 20・・・・・・・・・プラント状態監視装置20a・
・・・・・入力部 20b・・・・・・演算制御部 20C・・・・・・CRT 代理人 弁理士 則 近 憲 佑 同  王侯弘文 jb 第1 図 第2図 謔水龜i 第4図
Fig. 1 is a block diagram of a plant status monitoring device showing an embodiment of the present invention, Fig. 2 is an operating state diagram showing an example of the CRT display in Fig. 1, and Fig. 3 is a diagram of a conventional fast breeder reactor power plant. FIG. 4 is a system diagram showing the turbine system from the steam generator. FIG. 4 is a diagram showing the relationship between the secondary pressure loss of the steam generator and the feed water flow rate in FIG. 3. 1...Steam generator 13...Sodium flow rate detector 14...
......Water supply flow rate detector 15...
Steam pressure detector 16...Differential pressure detector 20...Plant condition monitoring device 20a.
... Input section 20b ... Arithmetic control section 20C ... CRT Agent Patent attorney Rule Chika Ken Yutong Wang Hou Hongwen jb Fig. 1 Fig. 2 謔水龜i Fig. 4

Claims (1)

【特許請求の範囲】[Claims] (1)蒸気発生器の1次側を流通する高温流体の流量を
検出する高温流体流量検出器と、前記蒸気発生器の2次
側に導入される給水流量を検出する給水流量検出器と、
前記蒸気発生器の2次側から導出される蒸気圧力を検出
する蒸気圧検出器と、前記蒸気発生器の2次側入口圧力
と2次側出口圧力との圧力差を検出する差圧検出器と、
これら各検出器からの検出信号に基づいてプラントの安
定状態をCRT表示する手段とを具備したことを特徴と
するプラント状態監視装置。
(1) a high-temperature fluid flow rate detector that detects the flow rate of high-temperature fluid flowing through the primary side of the steam generator; and a water supply flow rate detector that detects the flow rate of feed water introduced into the secondary side of the steam generator;
a steam pressure detector that detects the steam pressure derived from the secondary side of the steam generator; and a differential pressure detector that detects the pressure difference between the secondary side inlet pressure and the secondary side outlet pressure of the steam generator. and,
A plant condition monitoring device characterized by comprising means for displaying a stable condition of the plant on a CRT based on detection signals from each of these detectors.
JP62074419A 1987-03-30 1987-03-30 Monitor for state of plant Pending JPS63241389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62074419A JPS63241389A (en) 1987-03-30 1987-03-30 Monitor for state of plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62074419A JPS63241389A (en) 1987-03-30 1987-03-30 Monitor for state of plant

Publications (1)

Publication Number Publication Date
JPS63241389A true JPS63241389A (en) 1988-10-06

Family

ID=13546655

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62074419A Pending JPS63241389A (en) 1987-03-30 1987-03-30 Monitor for state of plant

Country Status (1)

Country Link
JP (1) JPS63241389A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706062A1 (en) * 1993-05-26 1994-12-09 Toshiba Kk System for displaying conditions of an installation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2706062A1 (en) * 1993-05-26 1994-12-09 Toshiba Kk System for displaying conditions of an installation

Similar Documents

Publication Publication Date Title
US5756880A (en) Methods and apparatus for monitoring water process equipment
EP1017977B1 (en) Methods and apparatus for monitoring water process equipment
US6109096A (en) Methods and apparatus for monitoring water process equipment
JPS63241389A (en) Monitor for state of plant
JP3549603B2 (en) Flow measurement probe
GB2231669A (en) Flowmeters
EP1770716A2 (en) Improved on-line steam flow measurement device and method
US4293853A (en) Method and apparatus for detecting flow instability in steam generator
JP3735458B2 (en) Core flow measurement device
JPS6323811B2 (en)
JP3063514B2 (en) Flow measurement method using pressure sensor
CN107195343A (en) The run-down detection control apparatus of heat-transfer pipe and method in a kind of nuclear reactor
JPS60111279A (en) Operation teaching system for chemical plant
JPH07325617A (en) Abnormality detecting device
JPH10177086A (en) Instrument and method for measuring flow rate of primary coolant of nuclear reactor
JPS6332201A (en) Method of detecting leakage from heat transfer tube
JPH06138282A (en) Abnormality detecting device for pressure tube reactor
JPS61240121A (en) Apparatus for measuring water level of nuclear reactor
JPS60236033A (en) Measuring instrument of flow rate
JPS6031278B2 (en) Leak detection device for high temperature and high pressure media
JPS62255503A (en) Erosion monitoring method for nozzle blade of steam turbine
JPS60249093A (en) Device and method of monitoring nuclear reactor
JPH0242156B2 (en)
JPS6038676B2 (en) How to measure nuclear reactor output
Carbon et al. Tube power limits--Past, present and future