JPS5987203A - Stationary blade structure of axial flow-type fluid machine - Google Patents

Stationary blade structure of axial flow-type fluid machine

Info

Publication number
JPS5987203A
JPS5987203A JP57197486A JP19748682A JPS5987203A JP S5987203 A JPS5987203 A JP S5987203A JP 57197486 A JP57197486 A JP 57197486A JP 19748682 A JP19748682 A JP 19748682A JP S5987203 A JPS5987203 A JP S5987203A
Authority
JP
Japan
Prior art keywords
blade
divided
split
fixed
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57197486A
Other languages
Japanese (ja)
Inventor
Koichi Tsuzuki
浩一 都築
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57197486A priority Critical patent/JPS5987203A/en
Publication of JPS5987203A publication Critical patent/JPS5987203A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • F01D17/12Final actuators arranged in stator parts
    • F01D17/14Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits
    • F01D17/16Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes
    • F01D17/162Final actuators arranged in stator parts varying effective cross-sectional area of nozzles or guide conduits by means of nozzle vanes for axial flow, i.e. the vanes turning around axes which are essentially perpendicular to the rotor centre line
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/20Hydro energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Turbines (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Hydraulic Turbines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To allow the inflow angle adjustment considering the distribution of a radial speed triangle for a succeeding stage rotor blade and easily control a stationary blade by aplitting the rear blade section of the stationary blade into a multitude in the radial direction and engaging the opposing faces of individual split blades with each other at a proper slack by means of lugs and grooves. CONSTITUTION:The front blade section 31 of a stationary blade 3 is fixed to a casing and individual split blades 32a-32f of a rear blade section 32 are rotated around a fixed shaft 5. The outermost split blade 32a is provided with a shaft 6 penetrating an outer casing 2 and connected to a drive section on its upper face, and opposing faces of individual split blades are engaged with each other at a proper slack by means of lugs 11 and grooves 12. Accordingly, when the shaft 6 is driven and the rear blade section 32 is rotated around the fixed shaft 5, the angle of rotation for the split blade 32a is the largest and that for the split blade 32f is the smallest, thereby an inflow angle matching the distribution of the radial speed triangle for the succeeding stage rotor blade can be obtained.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は軸流形流体機械の静翼構造に係9、特に次段動
翼への流入角の調整が可能な静翼構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a stator vane structure for an axial flow type fluid machine, and particularly to a stator vane structure capable of adjusting an inflow angle to a next-stage rotor blade.

〔従来技術〕[Prior art]

軸流形流体機械において、静翼を、その取付軸を中心に
回転させ、次段動翼への流れの流入角を広い作動流量範
囲において調整することは従来から行われている。とこ
ろで、軸流形流体機械においては、動翼の半径方向の周
速の違いから、一般には半径方向に速度五角形が異なる
。従って、前記流体機械の運転点によって、静翼を回転
させ次段動翼への流入角のマツチングを図る場合も、半
径方向の速度三角形の分布を考慮するのがよシ好ましい
BACKGROUND ART In axial flow type fluid machines, it has been conventionally practiced to rotate a stator vane around its mounting axis to adjust the inflow angle of a flow to a next-stage rotor blade over a wide operating flow rate range. By the way, in an axial fluid machine, the speed pentagons generally differ in the radial direction due to the difference in the circumferential speed of the rotor blades in the radial direction. Therefore, when rotating the stationary blades and matching the inflow angle to the next-stage rotor blade depending on the operating point of the fluid machine, it is preferable to consider the distribution of velocity triangles in the radial direction.

しかし、前記の従来技術は、単に静莢を回転させるもの
でろるから、次段動翼における半径方向の速度三角形の
分布を考慮した流入角度調整を行うことは困難である。
However, since the above-mentioned conventional technology simply rotates the static pod, it is difficult to adjust the inflow angle in consideration of the distribution of velocity triangles in the radial direction in the next-stage rotor blade.

また、特公昭34−1241号公報において、静翼を半
径方向に三分割し、各分割翼を軸周りに別個に回転させ
うるようにした静翼構造が開示されているが、これは各
分割風がそれぞれ独立して回転するものであるから、各
分割翼の制御が難しい問題がある。
Furthermore, Japanese Patent Publication No. 34-1241 discloses a stator blade structure in which a stator blade is divided into three parts in the radial direction, and each divided blade can be rotated separately around an axis. Since each wind rotates independently, it is difficult to control each divided wing.

〔発明の目的〕[Purpose of the invention]

本発明の目的Vよ、従来技術の問題点を解消し、次段m
J典における生仏方向の速度三角形の分布を考1帳した
流入角度調整が可能で、しかも静翼の制御が容易な軸流
形流体機械の静翼構造を提供することにある。
Objective V of the present invention is to solve the problems of the prior art and to
It is an object of the present invention to provide a stator vane structure for an axial flow type fluid machine, which allows the inflow angle to be adjusted taking into consideration the distribution of velocity triangles in the direction of the flow in the J standard, and which allows easy control of the stator vanes.

〔発明の概要〕[Summary of the invention]

この目的を達成するだめに、本発明の軸流形流体機械の
静翼構造は、静gが前翼部と後翼部とに分割され、その
前翼部はケーシングに固定されると共に、rilJ、%
都と後興部との間には、ケーシングに固定した固定軸が
設けられ、前記後呉部は半径方向に複数に分割され、そ
の各分割翼はそれぞれ前記固定!1111に、固定軸周
りに回転可能に連結され、かつ最外側の分割翼は駆動部
に連結され、各分割翼の互に対向する面は、その一方に
設けた突起と、他方の而に設けた前記突起を嵌合する溝
とによりそれぞれ係合され、前記溝は、前記突起を設け
た側の分割翼が固定軸周りに回転する際、突起の運動方
向にあそびを有して成る、ことを特徴とする。
In order to achieve this objective, the stator blade structure of the axial flow fluid machine of the present invention is such that the static g is divided into a front wing section and a rear wing section, the front wing section is fixed to the casing, and ,%
A fixed shaft fixed to the casing is provided between the capital and the rear part, and the rear part is divided into a plurality of parts in the radial direction, each of which has a fixed shaft fixed to the casing. 1111 is rotatably connected around a fixed axis, and the outermost divided blade is connected to a drive part, and the mutually opposing surfaces of each divided blade have a protrusion provided on one side and a protrusion provided on the other side. and grooves into which the protrusions are fitted, and the grooves have a play in the direction of movement of the protrusions when the split wing on the side where the protrusions are provided rotates around a fixed axis. It is characterized by

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面に従って説明する。第1
図は本発明による静翼構造を軸流圧縮機に適用した縦断
面図で、1は内側ケーシング、2は外側ケーシング、3
は静翼、4は動翼、fは主流の流れ方向を示し7ている
。前記静翼3は、前翼部31と後諷部32とに分割され
ていると共に、両翼部の間には、上下端を内外ケーシン
グに固定した固定軸5が配設されている。前記前翼部3
1はケーシングに固定され、前記後諷部32は半径方向
に6分割されていて、各分割g32a、32b。
An embodiment of the present invention will be described below with reference to the drawings. 1st
The figure is a longitudinal sectional view of the stator vane structure according to the present invention applied to an axial flow compressor, in which 1 is the inner casing, 2 is the outer casing, and 3 is the outer casing.
7 indicates the stationary blade, 4 indicates the rotor blade, and f indicates the flow direction of the main flow. The stationary blade 3 is divided into a front wing part 31 and a rear wing part 32, and a fixed shaft 5 whose upper and lower ends are fixed to the inner and outer casings is disposed between the two wing parts. The front wing section 3
1 is fixed to the casing, and the rear part 32 is divided into six in the radial direction, each divided into six parts g32a and 32b.

32c、32d、32e、32fは、後述する構造によ
って前記固定軸5に、固定軸5周わりに回転できるよう
に連結されている。まだ最外側の分割翼32aは、その
上面に外側ケーシング2を貫通して駆動部(図示せず)
に連結する軸6を具えている。また各分割翼の互に対向
する面は、後述する構造によシ係合されている。
32c, 32d, 32e, and 32f are connected to the fixed shaft 5 by a structure described later so as to be rotatable around the fixed shaft 5. The outermost split wing 32a has a drive section (not shown) that penetrates the outer casing 2 on its upper surface.
The shaft 6 is connected to the shaft 6. Further, the mutually opposing surfaces of each divided wing are engaged with a structure to be described later.

第2図ないし第4図は各分割翼を固定軸5に連結する構
造を示し、各分割翼には固定軸5を挿通させたアーム7
がそれぞれ設けられている。このアーム7は、固定軸5
の挿通部において大径部7aと小径部7bとを有してい
る。そして互に隣り合うアーム7の大径部7aと小径部
7bとの間には、焼バメによシ固定軸5に嵌着したスペ
ーサ8がそれぞれ介在されて、各アーム7の間隔が保た
れている、つ−1,b各分割諷の固定軸方向の位置決め
がなされている。前記スペーサ8の外径は、アーム7の
小径部7bの外径と同径に形成されていると共に、中間
部外周に鍔8aを有している。
Figures 2 to 4 show a structure in which each split wing is connected to a fixed shaft 5, and each split wing has an arm 7 through which the fixed shaft 5 is inserted.
are provided for each. This arm 7 has a fixed shaft 5
The insertion portion has a large diameter portion 7a and a small diameter portion 7b. Spacers 8 fitted onto the fixed shafts 5 by shrink fitting are interposed between the large diameter portions 7a and small diameter portions 7b of the arms 7 adjacent to each other, so that the distance between the arms 7 is maintained. The positioning of each of the divisions 1 and 2b in the direction of the fixed axis is performed. The outer diameter of the spacer 8 is formed to be the same as the outer diameter of the small diameter portion 7b of the arm 7, and has a flange 8a on the outer periphery of the intermediate portion.

そしてスペーサ8の鍔8aとアーム7の大径部7aとの
間には、スペーサ8とアーム7の小径部7bに亘って外
嵌する可変リング9がそれぞれ介在されている。この可
変リング9は、温度によって形状が変化する形状記憶合
金によって作られている。この実施例におけるi’T変
リング9は、通常状態ではスペーサ8とアーム7の小径
部7bとにきつく嵌着するような形状となっているが、
導線iを通じて通電され該可変リング9自体の電気抵抗
により温度が高くなると、形状変化して可変リング9と
スペーサ8及びアーム7の小径部7bとの間に隙間を形
成するようになっている。つまり、各分割翼の固定11
1I5周わりの回転を許容する。
A variable ring 9 is interposed between the collar 8a of the spacer 8 and the large diameter portion 7a of the arm 7, and is fitted over the spacer 8 and the small diameter portion 7b of the arm 7. This variable ring 9 is made of a shape memory alloy whose shape changes depending on temperature. The i'T deformation ring 9 in this embodiment has a shape that fits tightly into the spacer 8 and the small diameter portion 7b of the arm 7 in the normal state.
When electricity is applied through the conductor i and the temperature rises due to the electric resistance of the variable ring 9 itself, the shape changes and a gap is formed between the variable ring 9, the spacer 8, and the small diameter portion 7b of the arm 7. In other words, the fixed 11 of each split wing
Allows rotation of about 1I5 rotations.

尚、前記の構造において、可変リング9に通1厩する際
、スペー′す8、アーム7等に電流が流れるのを防ぐた
め、可変リング9と接する部分に不導体コーティング1
0が施される。
In the above structure, in order to prevent current from flowing through the space 8, arm 7, etc. when passing through the variable ring 9, a non-conductor coating 1 is applied to the portion in contact with the variable ring 9.
0 is applied.

第5図ないし第8図は各分割ν茎の対向面を係合させる
構造を示し、第5図は第1図のX−X矢視図、第6図は
その正面図、第7図は第1図のY −X矢視図、第8図
はその正面図を示している。分割翼32bのF面には突
起11が突設され、分割翼32cの上面には前記突起1
1を嵌合する溝12が設けられている。この溝12は、
分割翼32bが固定軸5周わりに回転する際、突起11
の運転方向に適宜のあそびを有している。また、分割翼
32aと分割翼32b1分割IK32Cと分割翼32d
1分割翼32dと分割翼32e1分割R3z eと分割
翼32fの各対向する而も前記と同様にそれぞれ突起と
溝とにより係合されている。
5 to 8 show the structure for engaging the opposing surfaces of each divided ν stalk, FIG. 5 is a view taken along the line X-X in FIG. 1, FIG. 6 is a front view thereof, and FIG. 7 is a FIG. 1 shows a Y-X arrow view, and FIG. 8 shows a front view thereof. A protrusion 11 is provided on the F side of the split wing 32b, and the protrusion 11 is provided on the upper surface of the split wing 32c.
1 is provided with a groove 12 into which it fits. This groove 12 is
When the split wing 32b rotates around the fixed shaft 5, the protrusion 11
It has an appropriate play in the driving direction. In addition, the divided blade 32a, the divided blade 32b1, the divided IK32C, and the divided blade 32d.
The opposing portions of the one-segment wing 32d, the one-segment wing 32e, the one-segment R3z e, and the split wing 32f are also engaged by projections and grooves, respectively, in the same manner as described above.

また分割翼32fにおいては、第3図に示した如く分割
翼32fF而に設けた突起11が固定軸5の取1;1台
13に設けた溝12に嵌合することにより、該取付台1
3に係合している。
In addition, in the split wing 32f, as shown in FIG.
3 is engaged.

従って、分割J’(32aが軸6を介して駆動部により
回転させられると、その分割g32aの回転運動が前記
突起11及び溝12を介して分割す832b、32c・
・・の順に他の分割具に順次伝達される。また分割翼3
2aの回転運動が他の分割翼に伝達される際、突起11
を嵌合する溝12は、突起11の運動方向にあそびを有
しているため、回転運動の回転角度がずれて伝達される
。即ち、後翼部32が固定軸5周わりに回転する際、分
割翼32aの回転角度が1番犬きく分割具32fの回転
角度が1番小さくなる。
Therefore, when the division J' (32a) is rotated by the drive unit via the shaft 6, the rotational movement of the division G32a is caused by the divisions 832b, 32c, and
... is sequentially transmitted to other dividing tools. Also split wing 3
When the rotational movement of 2a is transmitted to other divided wings, the projection 11
Since the groove 12 into which the projection 11 is fitted has a play in the movement direction of the protrusion 11, the rotation angle of the rotation movement is transmitted with a deviation. That is, when the rear wing portion 32 rotates around the fixed shaft 5, the rotation angle of the split wing 32a is the smallest, and the rotation angle of the split tool 32f is the smallest.

ここで、分割g32b及び分割に32Cを例にとって第
9図によシ説明すると、分割翼32bが回転運動全始め
る前の状態では第9図(a)のように分割具32bと分
割翼32Cとは重なっており、分割512bが回転運動
を始めた直後では第9図(b)のように突起11が溝1
2のあそびの中を動くだめ分割具32Cは回転し2ない
。そしてム19図(C)のように分割%32bの突起1
1が分割翼32Cの溝12の端部に当接すると分割R3
2Cが回転運動を始める。その結果、分割1”t 32
 bの回転角度は分割具32cの回転角度よりも犬きく
なる。
Here, an explanation will be given with reference to FIG. 9, taking the division g32b and the division 32C as an example. In the state before the division blade 32b starts its full rotational movement, the division tool 32b and the division blade 32C are separated as shown in FIG. 9(a). are overlapping, and immediately after the division 512b starts rotating, the protrusion 11 overlaps the groove 1 as shown in FIG. 9(b).
The divider 32C, which moves in the play of 2, does not rotate. Then, as shown in Figure 19 (C), protrusion 1 of division % 32b
1 comes into contact with the end of the groove 12 of the split blade 32C, the split R3
2C starts rotating. As a result, the division 1”t 32
The rotation angle b is greater than the rotation angle of the dividing tool 32c.

しかるに本発明による静Sへ構造においては、軸流圧縮
機の運転点によって、静翼3における後翼部31が回転
[1I1115周わりに回転する除、その各分割翼の回
転角度は分割翼32aで最も太きく、分割g32fで最
も小さくなる。即ち、次段動翼4の半径方向の速度巳角
形の分布を考慮した適切な流入角度が実現することにな
る。その結果、軸流圧縮機の適正作動流量範囲の拡大、
サージマージンの拡大を図れる。また、前記の流入角度
は、後翼部31の分割翼32aを回転させるだけで得ら
れるから、その制御もきわめて容易である。
However, in the static S structure according to the present invention, depending on the operating point of the axial flow compressor, the rear blade portion 31 of the stator blade 3 rotates [1I1115], but the rotation angle of each divided blade is equal to the rotation angle of the divided blade 32a. It is the thickest and the smallest at division g32f. In other words, an appropriate inflow angle is realized that takes into account the distribution of the velocity angle in the radial direction of the next-stage rotor blade 4. As a result, the proper operating flow range of axial flow compressors has been expanded,
Surge margin can be expanded. Further, since the above-mentioned inflow angle can be obtained by simply rotating the divided blades 32a of the rear wing section 31, its control is also extremely easy.

尚、本実施例においては、後翼部32を6分割した例全
示したが、次段動翼4における半径方向のAB Ii三
角形の分布にマツチングした流入角IIが得られれば列
分割してもよい。
In this embodiment, all examples are shown in which the rear blade section 32 is divided into six, but if an inflow angle II that matches the distribution of AB Ii triangle in the radial direction in the next stage rotor blade 4 is obtained, it can be divided into rows. Good too.

〔発明の効果〕〔Effect of the invention〕

以」二説明し7たように、本発明(よれば、次段動翼に
おける半径方向の速度二角形の分布を考慮した流入角度
調整が可能とな9、しかも静翼の制御を容易に行える。
As explained above, according to the present invention, it is possible to adjust the inflow angle in consideration of the radial velocity diagonal distribution in the next stage moving blade, and the stator blade can be easily controlled. .

【図面の簡単な説明】[Brief explanation of drawings]

図面は本発明の一実施例を示し、第1図は本発明による
静置構造を軸流圧縮機に適用した縦断面図、第2図は分
割翼を固定軸に連結する構造を7j<す外観斜視図、第
3図は第2図の縦断面図、第4図は第3図のA部拡大図
、第5図は第1図のX −X矢視図、第6図はその正面
図、第7図は第1図のY−X矢視図、第8図はその正面
図、第9図は分割翼における回転運動の伝達の様子を模
式的に示す図である。 1・・・内側ケーシング、2・・・外側ケーシング、3
・・・静翼、4・・・動翼、5・・・固定軸、6・・・
軸、31・・・静翼の前興部、32・・・静翼の後翼部
、32a〜32f・・・後翼部の分割具。 箭 1 n l 冨 ? 図 fJJ  図 冨 4 図
The drawings show an embodiment of the present invention, and FIG. 1 is a longitudinal cross-sectional view of a stationary structure according to the present invention applied to an axial flow compressor, and FIG. Exterior perspective view, Figure 3 is a vertical cross-sectional view of Figure 2, Figure 4 is an enlarged view of section A in Figure 3, Figure 5 is a view taken along arrow X-X in Figure 1, and Figure 6 is its front view. 7 is a view along the Y-X arrow in FIG. 1, FIG. 8 is a front view thereof, and FIG. 9 is a diagram schematically showing how rotational motion is transmitted in the split blade. 1...Inner casing, 2...Outer casing, 3
... Stationary blade, 4... Moving blade, 5... Fixed shaft, 6...
Shaft, 31... Forward part of stator blade, 32... Rear wing part of stator blade, 32a to 32f... Divider of rear wing part. Bamboo 1 nl Tomi ? Figure fJJ Figure 4

Claims (1)

【特許請求の範囲】[Claims] 軸流形流体機械の静翼において、前記静翼が前翼部と後
翼部とに分割され、その前翼部はケーシングに固定され
ると共に、前翼部と後翼部との間には、ケーシングに固
定した固定軸が設けられ、前記後翼部は半径方向に複数
に分割され、その各分割翼はそれぞれ前記固定軸に、固
定軸周シに回転可能に連結−,5g、かつ最外側の分割
翼は駆動部に連結され、各分割翼の互に対向する面は、
その一方に設けた突起と、他方の面に設けた前記突起を
嵌合する溝とによりそれぞれ係合され、前記溝は、前記
突起を設けた側の分割翼が固定軸周りに回転する際、突
起の運動方向にあそびを有して成る、ことを特徴とする
軸流形流体機械の静翼構造。
In a stator vane for an axial flow fluid machine, the stator vane is divided into a front wing section and a rear wing section, the front wing section is fixed to a casing, and there is a space between the front wing section and the rear wing section. , a fixed shaft fixed to the casing is provided, the rear wing section is divided into a plurality of parts in the radial direction, and each of the divided wings is rotatably connected to the fixed shaft and the fixed shaft periphery. The outer divided blades are connected to the drive part, and the mutually opposing surfaces of each divided blade are
The protrusions provided on one side are engaged with the grooves provided on the other surface into which the protrusions fit, and when the split wing on the side provided with the protrusions rotates around a fixed axis, the grooves are engaged with each other. A stationary vane structure for an axial flow fluid machine, characterized in that the protrusion has a play in the direction of movement.
JP57197486A 1982-11-12 1982-11-12 Stationary blade structure of axial flow-type fluid machine Pending JPS5987203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57197486A JPS5987203A (en) 1982-11-12 1982-11-12 Stationary blade structure of axial flow-type fluid machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57197486A JPS5987203A (en) 1982-11-12 1982-11-12 Stationary blade structure of axial flow-type fluid machine

Publications (1)

Publication Number Publication Date
JPS5987203A true JPS5987203A (en) 1984-05-19

Family

ID=16375268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57197486A Pending JPS5987203A (en) 1982-11-12 1982-11-12 Stationary blade structure of axial flow-type fluid machine

Country Status (1)

Country Link
JP (1) JPS5987203A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172006A (en) * 1997-08-28 1999-03-16 General Electric Co <Ge> Variable area turbine nozzle segment
US20120039706A1 (en) * 2009-02-19 2012-02-16 Mtu Aero Engines Gmbh Compressor having a guide vane assembly with a radially variable outflow
JP2016191382A (en) * 2016-05-31 2016-11-10 ボルボ ラストバグナー アーベー Device for controlling gas flow, exhaust post-processing system and system for forwarding vehicle
US11970948B2 (en) 2022-08-09 2024-04-30 Pratt & Whitney Canada Corp. Variable vane airfoil with airfoil twist to accommodate protuberance

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1172006A (en) * 1997-08-28 1999-03-16 General Electric Co <Ge> Variable area turbine nozzle segment
US20120039706A1 (en) * 2009-02-19 2012-02-16 Mtu Aero Engines Gmbh Compressor having a guide vane assembly with a radially variable outflow
JP2016191382A (en) * 2016-05-31 2016-11-10 ボルボ ラストバグナー アーベー Device for controlling gas flow, exhaust post-processing system and system for forwarding vehicle
US11970948B2 (en) 2022-08-09 2024-04-30 Pratt & Whitney Canada Corp. Variable vane airfoil with airfoil twist to accommodate protuberance
EP4332347A3 (en) * 2022-08-09 2024-05-01 Pratt & Whitney Canada Corp. Variable vane airfoil with airfoil twist to accommodate protuberance

Similar Documents

Publication Publication Date Title
US5636968A (en) Device for assembling a circular stage of pivoting vanes
US5982071A (en) Cooling of electrical machinery
CN107795525A (en) The interior integral shroud of axis turbines compressor and blade can be orientated
JPS5987203A (en) Stationary blade structure of axial flow-type fluid machine
US11136895B2 (en) Spiraling grooves as a hub treatment for cantilevered stators in compressors
JPS6142247A (en) Motor
JP2002005078A (en) Turbo-molecular pump
JPH10153194A (en) Centrifugal fan
JP6951087B2 (en) Rotating machine
JP3406733B2 (en) Blade forming method and axial fan
JPS6027265B2 (en) stepping motor
JPS5838303A (en) Steam turbine
JPH04207935A (en) Dynamo-electric machine
CN218330066U (en) Buffering gear assembly and multi-rotor flowmeter
JP6811141B2 (en) Turbine vane row
JPH0133763Y2 (en)
JPS6332958Y2 (en)
JP2891579B2 (en) Axial blower air separator
JPH01237328A (en) Variable nozzle of axial turbine
JPH063121Y2 (en) Axial flow turbo machine
JPH0425401B2 (en)
JPH08219096A (en) Axial-flow fan with air separator
JPH0637880B2 (en) Axial fan
JPS62221836A (en) Structure of iron core for rotary motor
JPH07293495A (en) Fan