JPS5986633A - Process and apparatus for plasma treatment - Google Patents

Process and apparatus for plasma treatment

Info

Publication number
JPS5986633A
JPS5986633A JP19608982A JP19608982A JPS5986633A JP S5986633 A JPS5986633 A JP S5986633A JP 19608982 A JP19608982 A JP 19608982A JP 19608982 A JP19608982 A JP 19608982A JP S5986633 A JPS5986633 A JP S5986633A
Authority
JP
Japan
Prior art keywords
plasma
reaction chamber
discharge plasma
objects
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19608982A
Other languages
Japanese (ja)
Inventor
Kenji Fukuda
賢治 福田
Yoshinobu Takahashi
芳信 高橋
Takaoki Kaneko
金子 隆興
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP19608982A priority Critical patent/JPS5986633A/en
Publication of JPS5986633A publication Critical patent/JPS5986633A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To make it possible to carry out the simultaneous and uniform treatment of a number of objects to be treated, which is carried out as a prepainting treatment of large resin parts of complicated shapes, by irradiating the objects with both radiowave discharge plasma and microwave discharge plasma in a plasma reaction chamber. CONSTITUTION:A number of objects to be treated (e.g., polypropylene molded parts) are set within a reaction chamber 11. A plasma generating gas (e.g., O2) introduced from gas inlets 13-1-3, 14-1-3, and 15-1-3 is excited by the high-frequency energy generated between an electrode plate 12 connected to a high-frequency electric power source and the wall of the reaction chamber and generates radiowave discharge plasma, with which the surfaces of objects near the electrode plate 12 are treated uniformly. On the other hand, the high- frequency waves generated in a microwave oscillator causes a gas (e.g., O2) to generate plasma in a plasma generating tube. This plasma is led to the inlets of the reaction chamber 16-1-3 and 17-1-3, and distributed through shower tubes 31-1-3 and 32-1-3 and is used to treat parts which are distant from the electrode plate 12 or which the radiowave discharge plasma can hardly reach because of interruption by objects.

Description

【発明の詳細な説明】 本発明は主として樹脂、例えば、ポリプロピレン(PP
)、ポリエチレン(PE )等の表面を改質するために
、これらの樹脂の表面にプラズマ処理を施す方法および
装置に関する。本発明は特に、比較的大物でかつ複雑な
形状の樹脂部品を塗装する場合において、その塗装の前
処理として有効に用いることができる。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to resins, such as polypropylene (PP).
), polyethylene (PE), etc., and relates to a method and apparatus for subjecting the surfaces of these resins to plasma treatment in order to modify the surfaces thereof. The present invention can be effectively used as a pretreatment for painting a relatively large and complicatedly shaped resin part.

近年、例えば、自動車の部品等は、軽量でかつ意匠性に
優れる樹脂に移行する傾向にあるが、比較的安価なPP
、PE等を、例えば車両外板として使用する場合、樹脂
表面と塗膜との密着性が悪く、層間剥離という不具合が
発生することが知られている。この不具合を解消する手
段の一つとして、塗装前に、PP、PE等の被塗装物表
面全グロー、コロナあるいはラジオ波又はフィクロ波放
電に曝し、表面を酸化(極性基の導入)あるいはエツチ
ング(アンカ効果向上)するプラズマ処理技術が知られ
ている。
In recent years, for example, there has been a trend toward using resins for automobile parts, which are lightweight and have excellent designs, but relatively inexpensive PP
When using , PE, etc., for example as a vehicle outer panel, it is known that the adhesion between the resin surface and the coating film is poor, resulting in problems such as delamination. One way to solve this problem is to expose the entire surface of the object to be coated (PP, PE, etc.) to glow, corona, radio waves, or fibrous discharge before painting to oxidize (introduce polar groups) or etch (introduce polar groups) the surface. Plasma treatment technology that improves the anchoring effect is known.

ところで、プラズマ処理を行う場合、処理効果(2) を向上(プラズマの寿命を長くする)させるため、反応
室を減田、もしくは真空状態にすることが必要である。
By the way, when performing plasma processing, in order to improve the processing effect (2) (lengthen the life of the plasma), it is necessary to reduce the volume of the reaction chamber or to place it in a vacuum state.

この状態を維持するために、現在パッチ処理が主流にな
っている。
In order to maintain this state, patch processing is currently the mainstream.

一万、この処理方法を自動車部品の製造という量産工程
に導入するには、短時間で真空状態に到達し、かつ1回
でより多数の被処理物をプラズマ処理する必要がある。
In order to introduce this processing method into the mass production process of manufacturing automobile parts, it is necessary to reach a vacuum state in a short time and to plasma-process a large number of objects at one time.

これらの点を考慮し、自動車部品に使用する比較的大物
でかつ複雑な形状の樹脂部品(ポリプロピレン:PP)
’e、ラジオ波放電プラズマ処理と、マイクロ波数′K
fラズマ処理の名々を別個に用いて処理したところ、以
下のような点が明らかになった。
Taking these points into consideration, we have developed relatively large and complex-shaped resin parts (polypropylene: PP) used in automobile parts.
'e, radio wave discharge plasma treatment and microwave number 'K
When various f-lasma treatments were used separately, the following points became clear.

A、ラジオ波数電グラズマ処理 〔処理装置〕 第5図にラジオ波放電プラズマ処理の装置を示す。高周
波電源25に接続された反応室21内の極板22とアー
スされた反応室21の壁間で発生する高周波エネルギに
より、ガス導入口23−1〜3から導入されたプラズマ
化用ガス、例えば酸素が励起され、ラジオ波放電プラズ
マ30になる。第5図において、24H真空度調整用の
パルプであり、26−1〜7は樹脂の被処理物(pp)
である。
A. Radio frequency electric plasma processing [Processing apparatus] Figure 5 shows an apparatus for radio wave discharge plasma processing. Due to the high frequency energy generated between the electrode plate 22 in the reaction chamber 21 connected to the high frequency power supply 25 and the grounded wall of the reaction chamber 21, the plasma generation gas introduced from the gas inlet ports 23-1 to 23-3, e.g. The oxygen is excited and becomes radio frequency discharge plasma 30. In Fig. 5, 24H vacuum degree adjustment pulp is shown, and 26-1 to 7 are resin treated objects (pp).
It is.

また、a、b、cは各被処理物の面(部位)である。な
お、処理条件は次のとおりである。
Furthermore, a, b, and c are surfaces (parts) of each object to be processed. The processing conditions are as follows.

〔処理条件〕[Processing conditions]

反応室の大きさ   : 1900胴径X1900を廓
長うソオ波周波数   : 13.56MH2出力  
      :500W 真を圧       :0.5Torr処理ガス(量)
    :酸素(500OW分)処理時間      
:30秒間 このようなラジオ波放電プラズマ処理の結果を第6図お
よび第7図に示す。なお、接触角測定方法および被処理
物温度測定法は次のとおりである。
Reaction chamber size: 1900 mm diameter x 1900 mm Soar wave frequency: 13.56 MH2 output
: 500W True pressure : 0.5 Torr processing gas (amount)
: Oxygen (500OW min) treatment time
The results of such radio wave discharge plasma treatment for 30 seconds are shown in FIGS. 6 and 7. In addition, the contact angle measurement method and the treatment object temperature measurement method are as follows.

〔接触角測定方法〕[Contact angle measurement method]

脱イオン水を、プラズマ処理後のPP表面に、5μを滴
下し、接触角測定器(CA−A型、協和科学製)で測定
した(20℃、50〜60チ雰囲気)。
5 μ of deionized water was dropped onto the plasma-treated PP surface, and the contact angle was measured using a contact angle measuring device (Model CA-A, manufactured by Kyowa Kagaku) (20° C., 50-60 μm atmosphere).

第6図の各点は、各被処理物26−1〜70各部位a、
b、cにおける接触角の5回測定の平均値である。
Each point in FIG. 6 represents each part a of each workpiece 26-1 to 70,
It is an average value of five measurements of the contact angle in b and c.

〔被処理物温度測定法〕[Workpiece temperature measurement method]

テンプ・グレート(W、WAHI、社製)を使用してプ
ラズマ処理時にPPfi面が最高に上がる温度を測定し
た。
Using Temp Grate (W, manufactured by WAHI, Inc.), the temperature at which the PPfi surface rose to the maximum during plasma treatment was measured.

〔長所〕〔Strong Points〕

反応室21内の極板22で発生するプラズマ濃度は比較
的均一化するため、その付近に配置される被処理物例え
ば26−1t26−z* 26−3e26−s。
Since the plasma concentration generated at the electrode plate 22 in the reaction chamber 21 is relatively uniform, objects to be processed, such as 26-1t26-z*26-3e26-s, are placed near the electrode plate 22.

26−6126−7は、第6図に破線で囲んだ部位とし
て示しであるように、配置位置によ多処理の差が少ない
26-6126-7, as shown in FIG. 6 as a region surrounded by a broken line, there is little difference in processing depending on the placement position.

〔短所〕[Disadvantages]

a)、グラズマ発生部位と、被処理面との距離は、第6
図の被処理物26−4のように、処理性に大きな影響を
及ぼす◎ b)、 a)の項目の是正を行なうために出力を高くす
る(第7図に示すように100OWにする)と、プラズ
マ発生部付近の被処理物は高温化し、樹脂が熱変形する
懸念がある。
a) The distance between the glazma generation site and the surface to be treated is the 6th
As shown in the workpiece 26-4 in the figure, increasing the output (up to 100 OW as shown in Figure 7) to correct items b) and a) has a large effect on processability. There is a concern that the temperature of the object to be processed near the plasma generating part will increase, and that the resin will be thermally deformed.

B。マイクロ波放電プラズマ処理 〔処理装置〕 第8図にマイクロ波放電プラズマ処理の装置を示す。マ
イクロ波発振器(図示せず)で発生した高周波は、プラ
ズマ発生管(図示せず)に導入され、別経路(図示せず
)から供給されるガス、例えば酸素をプラズマ化する。
B. Microwave Discharge Plasma Treatment [Processing Apparatus] FIG. 8 shows an apparatus for microwave discharge plasma processing. High frequency waves generated by a microwave oscillator (not shown) are introduced into a plasma generation tube (not shown) to turn gas, such as oxygen, supplied from another route (not shown) into plasma.

発生管(図示せず)で発生したプラズマは、石英管(図
示せず)を通り、反応室の導入口26に導入され、ジャ
ワ管27で反応室内に照射される。第8図において、2
8は真空度調整用の・ぐルブであり、29−1〜7は樹
脂の被処理物(pp)である。また、a、b。
Plasma generated in a generation tube (not shown) passes through a quartz tube (not shown), is introduced into an inlet 26 of the reaction chamber, and is irradiated into the reaction chamber through a Java tube 27. In Figure 8, 2
8 is a valve for adjusting the degree of vacuum, and 29-1 to 7 are resin objects to be processed (pp). Also, a, b.

Cは各被処理物の面(部位)である。C is a surface (part) of each object to be processed.

〔処理条件〕[Processing conditions]

反応室の大きさ   : 1900胴径X1900wm
長マイクロ波周波数  : 2450MH2出力   
     :500W 真空圧       : 0.5Torr処理ガス(量
)    :酸素(50oW分)処理時間      
=30秒間 このようなマイクロ波放電プラズマ処理の結果を第9図
に示す。なお、接触角測定方法は前述のラジオ波放電プ
ラズマ処理の場合と同様である。第9図の各点は、各被
処理物29−1〜7の各部位a。
Reaction chamber size: 1900mm diameter x 1900wm
Long microwave frequency: 2450MH2 output
: 500W Vacuum pressure: 0.5 Torr Processing gas (amount): Oxygen (50oW min) Processing time
The results of such microwave discharge plasma treatment for =30 seconds are shown in FIG. Note that the contact angle measuring method is the same as in the case of the radio wave discharge plasma treatment described above. Each point in FIG. 9 represents each part a of each object to be processed 29-1 to 29-7.

b、eにおける接触角の5回測定の平均値である。It is an average value of five measurements of the contact angle in b and e.

〔長所〕〔Strong Points〕

a)、第9図の被処理物29−4で示されるように、プ
ラズマ照射方向に対して、照射部位と被処理面との距離
が、プラズマ処理性に及ぼす影響は小さい。
a) As shown by the object to be treated 29-4 in FIG. 9, the distance between the irradiation site and the surface to be treated in the plasma irradiation direction has a small influence on the plasma processability.

b)、このことから、ラジオ波放電1プラズマで処理し
づらい部位を選択的に狙って処理することができる。
b) From this, it is possible to selectively target and treat areas that are difficult to treat with radio wave discharge 1 plasma.

〔短所〕[Disadvantages]

a)、第9図の破線で囲んだ個所で示されるように、プ
ラズマの拡散性が悪く、反応室内のすべての被処理物を
均一に処理するには、プラズマ導入口と照射部位を多く
することが必要となる。
a) As shown by the broken line in Figure 9, the plasma has poor diffusion, and in order to uniformly treat all the objects in the reaction chamber, the number of plasma introduction ports and irradiation areas must be increased. This is necessary.

b)、第9図の被処理物29−5 +29−5t29−
6t29−7で示されるように、被処理物の蔽遮効果に
より、照射部位の陰になっている個所では処理性が劣る
b), Workpiece 29-5 +29-5t29- in Fig. 9
As shown by 6t29-7, the processability is poor in the shaded areas of the irradiation area due to the shielding effect of the object to be processed.

以上のように、比較的大物でかつ形状の複雑な樹脂部品
を同時に多数処理するには、ラジオ波あるいはマイクロ
波のいずれか一万のプラズマ処理では十分でないことが
わかった。
As described above, it has been found that plasma processing of either radio waves or microwaves at 10,000 times is not sufficient to simultaneously process a large number of relatively large resin parts with complex shapes.

本発明の目的は、主として樹脂、例えばポリプロピレン
(pp)やチリエチレン(PE)等の比較的大物でかつ
複雑な形状の樹脂部品の塗装前の処理として、プラズマ
処理を施す場合、多数の被処理物を同時に処理しても各
被処理物について均一々処理性を確保できる、グラズ寸
処理を施す方法および装置を提供するものである。特に
、ラジオ波放電プラズマ処理とマイクロ波放電プラズマ
処理の両者の長所を生かすことのできる、プラズマ処理
を施す方法および装置を提供するものである。
The purpose of the present invention is to apply plasma treatment to a relatively large resin part made of resin, such as polypropylene (PP) or chiliethylene (PE), and to treat a large number of parts to be treated before painting. To provide a method and apparatus for performing grain size processing, which can ensure uniform processing performance for each object to be processed even if the objects are processed simultaneously. In particular, the present invention provides a plasma processing method and apparatus that can take advantage of the advantages of both radio wave discharge plasma processing and microwave discharge plasma processing.

このような目的を実現する本発明のプラズマ処理を施す
方法は、プラズマ反応室内で被処理物の表面にプラズマ
を照射して処理する方法において、(7) ラジオ波放電プラズマとマイクロ波放電プラズマとを被
処理物に照射することを特徴とする。
The plasma treatment method of the present invention that achieves the above purpose includes (7) radio wave discharge plasma and microwave discharge plasma in a method of treating the surface of a workpiece by irradiating plasma in a plasma reaction chamber. It is characterized by irradiating the object to be treated.

また、本発明のプラズマ処理を施す装置は、プラズマ反
応室で被処理物の表面にプラズマを照射して処理する装
置において、反応室の任意の位置に該反応室内にラジオ
波放電プラズマ用ガス全導入する導入口を設けると共に
、池の任意の位置に該反応室内にマイクロ波放電プラズ
マを導入する導入口を設置して成ることを特徴とする。
In addition, the apparatus for performing plasma processing of the present invention is an apparatus for irradiating plasma onto the surface of an object to be treated in a plasma reaction chamber. It is characterized in that an introduction port for introducing microwave discharge plasma into the reaction chamber is provided, and an introduction port for introducing microwave discharge plasma into the reaction chamber is provided at an arbitrary position of the pond.

この場合において、マイクロ波放電プラズマの導入口は
、ラジオ波放電プラズマが十分届かない部位に向けて設
置されているのが望ましい。
In this case, it is desirable that the introduction port for the microwave discharge plasma be installed toward a region that cannot be sufficiently reached by the radio wave discharge plasma.

以下、添付図面を参照し本発明の実施例について詳細に
説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings.

第1図〜第3図は本発明に係わるグラズマ処理金施す装
置を示すものである。反応室11it略円筒形の密閉容
器であり、その内壁に隣接して略円筒形の極板12があ
り、この極板12は高周波電源20に接続されている。
1 to 3 show an apparatus for applying glazma treatment according to the present invention. The reaction chamber 11 is a substantially cylindrical sealed container, and a substantially cylindrical electrode plate 12 is provided adjacent to the inner wall of the reaction chamber 11 , and this electrode plate 12 is connected to a high frequency power source 20 .

極板12は反応室11の内部にグラズマ化ガスを流通さ
せるために網目(8) 又は多孔板で形成されている。反応室11の壁部には軸
方向に等間隔にラジオ波放電プラズマ化用の3個のガス
導入口13−1〜3が設けられ、それらの90°回転し
た位置にそれぞれ同じ3個づつのラジオ波数電用のガス
導入口14−1〜3t 15−1〜3が設けである。ま
た、これらのラジオ波放電用のガス導入口13−1〜3
.14−1〜30問および14−1〜3.15−1〜3
の間にはそれぞれマイクロ波放電プラズマの導入口16
−1〜g、17−1〜3が設けである。これらの導入口
16−1〜s 、 17−1〜3にはそれぞれジャワ管
31−1〜5*32−1〜3が接続されている。18−
1〜3.19−1〜5+20−1〜3は真空度調整用の
バルブであり、反応処理の間反応室ll内を減圧状態に
維持する。カお、反応室11内における被処理物(ポリ
クロピレン成形部品)については図示していないが、第
5図又は第8図に示した被処理物と同様に配置すること
ができる。高周波電源20に接続された反応室11内の
極板12と、アースされた反応室11の壁間で発生する
高周波エネルギにより、ガス導入口13−1〜5*14
−1〜g、15−1〜3から導入されたプラズマ化用ガ
ス、例えば酸素は、励起されラジオ波放電プラズマにな
る。この放電方式処理の目的は、反応室11の極板12
付近の被処理物表面、すなわち、製品表一般面を均一に
処理することである。
The electrode plate 12 is formed of a mesh (8) or a perforated plate in order to circulate the glazization gas inside the reaction chamber 11. Three gas inlet ports 13-1 to 13-3 for radio wave discharge plasma generation are provided at equal intervals in the axial direction on the wall of the reaction chamber 11, and the same three gas inlet ports 13-1 to 3-3 are provided at positions rotated by 90 degrees. Gas inlets 14-1 to 3t and 15-1 to 15-3 for radio wave frequency electricity are provided. In addition, these gas inlet ports 13-1 to 3 for radio wave discharge
.. 14-1 to 30 questions and 14-1 to 3.15-1 to 3
In between are respective microwave discharge plasma introduction ports 16.
-1 to g and 17-1 to 3 are provided. Java tubes 31-1 to 5*32-1 to 3 are connected to these introduction ports 16-1 to 16-1 to 17-1 to 3, respectively. 18-
1 to 3. 19-1 to 5+20-1 to 3 are valves for adjusting the degree of vacuum, and maintain the inside of the reaction chamber 11 in a reduced pressure state during the reaction process. Although the objects to be treated (polycropylene molded parts) in the reaction chamber 11 are not shown, they can be arranged in the same manner as the objects to be treated shown in FIG. 5 or FIG. 8. Due to the high frequency energy generated between the electrode plate 12 in the reaction chamber 11 connected to the high frequency power supply 20 and the wall of the reaction chamber 11 which is grounded,
The plasma-forming gas, such as oxygen, introduced from -1 to g and 15-1 to 3 is excited and becomes radio wave discharge plasma. The purpose of this discharge method treatment is to
The purpose is to uniformly treat the surface of the nearby object to be treated, that is, the general surface of the product.

一万、マイクロ波発振器(図示せず)で発生した高周波
は、プラズマ発生管(図示せず)に導入され、別経路(
図示せず)から供給されるガス、例えば酸素を、グラズ
ム化する。発生管(図示せず)で発生したグラズマは、
石英管(図示せず)を通り、反応室の導入口16−1〜
3.17−1〜3に導入され、ジャワ管31−1〜3.
32−1〜5で照射される。この放電方式処理の目的は
、前記ラジオ波放電プラズマ処理では処理が不十分な部
位、言い換えるなら反応室11内の極板12から遠い距
離にあった夛、被処理物の蔽遮によシラソオ波放電プラ
ズマが到達しづらい部位を処理することにある。
10,000, high frequency waves generated by a microwave oscillator (not shown) are introduced into a plasma generation tube (not shown), and are passed through a separate route (
A gas, such as oxygen, supplied from a source (not shown) is glazed. Glazma generated in the generation tube (not shown) is
Pass through a quartz tube (not shown) and enter the reaction chamber inlet 16-1~
3.17-1 to 3, and Java tubes 31-1 to 3.
32-1 to 32-5. The purpose of this discharge method treatment is to shield areas that have not been sufficiently treated by the radio wave discharge plasma treatment, in other words, to cover and shield objects that are far away from the electrode plate 12 in the reaction chamber 11. The aim is to treat areas that are difficult for discharge plasma to reach.

〔処理条件〕[Processing conditions]

反応室の大きさ   :1900m径X1900m長(
材質)        (SUS 304製)〔ラジオ
波放電プラズマ処理〕 ラソオ波周波数   : 13.56MH2出力   
    :500W 真空圧       :0.5Torr処理がス(量)
    :酸素(5000叫勿)処理時間      
:30秒間 〔マイクロ波放電プラズマ処理〕 マイクロ波周波数  :2450MH。
Reaction chamber size: 1900m diameter x 1900m length (
Material) (Made of SUS 304) [Radio wave discharge plasma treatment] Laso wave frequency: 13.56MH2 output
: 500W Vacuum pressure : 0.5 Torr processing capacity (amount)
: Oxygen (5000 yen) treatment time
:30 seconds [Microwave discharge plasma treatment] Microwave frequency: 2450MH.

出力       :500W 真空圧       : 0.5 Torr処理ガス(
量)    :酸素(5000ν分)処理時間    
  :30秒間 以上のような処理条件の下で実際に処理した結果を第4
図に示す。なお、被処理物(pp)の配列は第5図の場
合と同様であり、各被処理物を26−1〜7で示す。第
4図の各点は、各被処理物の各部位a・b、cにおける
接触角の5回測定の平均値である。また、接触角の測定
方法は前述の場合と同様である。第4図の結果から明ら
かなように、本発明によりラジオ波放電プラズマ処理と
マイクロ波放電プラズマ処理の両者を施した被処理物2
6−1〜7においては、各被処理物間あるいは同一被処
理物の各部位a、b、e間の処理性のバラツキが小さく
なったことがわかる。
Output: 500W Vacuum pressure: 0.5 Torr processing gas (
Amount): Oxygen (5000ν minutes) treatment time
: The results of actual processing under processing conditions such as 30 seconds or more are shown in the fourth section.
As shown in the figure. The arrangement of the objects to be processed (pp) is the same as that shown in FIG. 5, and each object to be processed is indicated by 26-1 to 26-7. Each point in FIG. 4 is the average value of five measurements of the contact angle at each part a, b, and c of each workpiece. Further, the method for measuring the contact angle is the same as that described above. As is clear from the results in FIG. 4, the workpiece 2 was subjected to both radio wave discharge plasma treatment and microwave discharge plasma treatment according to the present invention
It can be seen that in samples 6-1 to 6-7, the variation in processability among the objects to be processed or between the parts a, b, and e of the same object to be processed was reduced.

尚、上記実施例の処理は、ラノオ波放電プラズマ処理後
、マイクロ波放電プラズマ処理を施し念結果を示すが、
処理の順序を変えおるいは同時に処理した場合であって
も、その効果は変わらないことから、本発明の趣旨を逸
脱しない限シにおいて当業者の知識に基づいて想到され
るそのfll+の実施例も適宜に採用されるものである
In addition, in the treatment of the above example, microwave discharge plasma treatment is performed after Lanau wave discharge plasma treatment, and the results are shown as preliminary results.
Even if the processing order is changed or the processing is performed simultaneously, the effect remains the same. Therefore, as long as it does not depart from the spirit of the present invention, the embodiments of fll+ that can be conceived based on the knowledge of those skilled in the art may also be adopted as appropriate.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるプラズマ処理を施す装置の側面
図、第2図はその断面図、第3図は第1図の位置から9
0°回転した場合の本発明装置の側面図、第4図は本発
明により処理した場合の被処理物の品質(接触角)を示
した図、第5図はラジオ波数電プラズマ処理のみを行な
う装置の断面図、第6図および第7図は第5図の装置を
用いて処理した場合の被処理物の品質(接触角)および
被処理物の温度をそれぞれ示した図、第8図はマイクロ
波放電プラズマ処理のみを行なう装置の断面図、第9図
は第8図の装置で処理した場合の被処理物の品質接触角
を示す図である。 11・・・反応室、12・・・極板、13−1〜5.1
4−1〜3゜15−1〜3・・・ラソオ波放電プラズマ
化用がス導入口116−1〜3,17−1〜3・・・マ
イクロ波放電プラズマ導入口、31−1〜3.32−1
〜3・・・ガラス管。 特許出願人 トヨタ自動車株式会社 特許出願代理人 弁理士  青 木   朗− 弁理士 西舘和之 弁理士  樋 口 外 治 弁理士  山 口 昭 之 の                        
■畦              粉
FIG. 1 is a side view of an apparatus for performing plasma processing according to the present invention, FIG. 2 is a sectional view thereof, and FIG.
A side view of the apparatus of the present invention when rotated by 0°, Figure 4 is a diagram showing the quality (contact angle) of the object to be treated when treated according to the present invention, and Figure 5 is a diagram showing only radio frequency electroplasma treatment. A cross-sectional view of the device, FIGS. 6 and 7 are diagrams showing the quality (contact angle) of the processed material and the temperature of the processed material when processed using the device shown in FIG. 5, respectively, and FIG. FIG. 9 is a cross-sectional view of an apparatus that performs only microwave discharge plasma treatment, and is a diagram showing the quality contact angle of the object to be treated when treated with the apparatus of FIG. 8. 11... Reaction chamber, 12... Electrode plate, 13-1 to 5.1
4-1~3゜15-1~3...Lasso wave discharge plasma inlet 116-1~3, 17-1~3...Microwave discharge plasma inlet, 31-1~3 .32-1
~3...Glass tube. Patent Applicant Toyota Motor Corporation Patent Application Agent Akira Aoki Patent Attorney Kazuyuki Nishidate Patent Attorney Soto Higuchi Patent Attorney Akira Yamaguchi
■Round powder

Claims (1)

【特許請求の範囲】 1、プラズマ反応室内で被処理物の表面にプラズマを照
射して処理する方法において、ラジオ波放電プラズマと
マイクロ波放電プラズマとを被処理物に照射することを
特徴とする、プラズマ処理を施す方法。 2、  fラメ1反応室で被処理物の表面にプラズマを
照射して処理する装置において、反応室の任意の位置に
該反応室内にラジオ波放電プラズマ用ガスを導入する導
入口を設けると共に、他の任意の位置に該反応室内にマ
イクロ波放電プラズマを導入する導入口を設置して成る
、プラズマ処理を施す装置。 3、マイクロ波放電プラズマの導入口は、ラジオ波放電
プラズマが十分届かない部位に向けて設置されている特
許請求の範囲第2項記載の装置。 (1)             、。
[Claims] 1. A method of treating the surface of a workpiece by irradiating plasma in a plasma reaction chamber, characterized in that the workpiece is irradiated with radio wave discharge plasma and microwave discharge plasma. , a method of applying plasma treatment. 2. In an apparatus that processes a surface of a workpiece by irradiating plasma in a reaction chamber, an inlet for introducing a radio wave discharge plasma gas into the reaction chamber is provided at an arbitrary position in the reaction chamber, and An apparatus for performing plasma processing, comprising an inlet for introducing microwave discharge plasma into the reaction chamber at any other position. 3. The apparatus according to claim 2, wherein the introduction port for the microwave discharge plasma is installed toward a region where the radio wave discharge plasma cannot sufficiently reach. (1).
JP19608982A 1982-11-10 1982-11-10 Process and apparatus for plasma treatment Pending JPS5986633A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19608982A JPS5986633A (en) 1982-11-10 1982-11-10 Process and apparatus for plasma treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19608982A JPS5986633A (en) 1982-11-10 1982-11-10 Process and apparatus for plasma treatment

Publications (1)

Publication Number Publication Date
JPS5986633A true JPS5986633A (en) 1984-05-18

Family

ID=16352022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19608982A Pending JPS5986633A (en) 1982-11-10 1982-11-10 Process and apparatus for plasma treatment

Country Status (1)

Country Link
JP (1) JPS5986633A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120307A2 (en) * 1983-02-25 1984-10-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for plasma treatment of resin material
JPS62101634A (en) * 1985-10-30 1987-05-12 Hashimoto Forming Co Ltd Production of molding

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0120307A2 (en) * 1983-02-25 1984-10-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for plasma treatment of resin material
EP0120307A3 (en) * 1983-02-25 1989-05-03 Toyota Jidosha Kabushiki Kaisha Apparatus and method for plasma treatment of resin material
JPS62101634A (en) * 1985-10-30 1987-05-12 Hashimoto Forming Co Ltd Production of molding
JPH0378418B2 (en) * 1985-10-30 1991-12-13 Hashimoto Forming Kogyo Co

Similar Documents

Publication Publication Date Title
JP2666022B2 (en) Method and apparatus for plasma CVD coating or plasma treating a substrate
KR0145302B1 (en) Plasma processing method
JP3437772B2 (en) Surface treatment method and apparatus for pipe inner surface
JP5589839B2 (en) Plasma processing apparatus and method for producing amorphous silicon thin film using the same
US20050227018A1 (en) Application of a coating forming material onto at least one substrate
JPS5986633A (en) Process and apparatus for plasma treatment
CN210469844U (en) Electrode assembly and plasma generator using the same
JPH024976A (en) Thin film formation
JP2902009B2 (en) Microwave plasma processing apparatus and processing method
JP3643549B2 (en) Microwave plasma processing apparatus and microwave plasma processing method
JPS62254419A (en) Plasma deposition device
JPS62278284A (en) Surface treatment device
JPH01279761A (en) Thin film-forming equipment
JPH0221296B2 (en)
JP3648777B2 (en) Microwave plasma CVD equipment
JPH0689462B2 (en) Surface treatment method
JPS59189130A (en) Plasma treatment
JPH033700B2 (en)
JPS59155440A (en) Apparatus for plasma treatment
JPS5920332A (en) Method and apparatus for carrying out plasma treatment
JPS63236327A (en) Plasma treatment apparatus
JP3244624B2 (en) Linear coating equipment
TW202229639A (en) Batch type substrate processing apparatus
JPS62213118A (en) Formation of thin film and device therefor
JPH02159380A (en) Thin film forming device