JPS5986164A - Redox flow type cell - Google Patents

Redox flow type cell

Info

Publication number
JPS5986164A
JPS5986164A JP57196586A JP19658682A JPS5986164A JP S5986164 A JPS5986164 A JP S5986164A JP 57196586 A JP57196586 A JP 57196586A JP 19658682 A JP19658682 A JP 19658682A JP S5986164 A JPS5986164 A JP S5986164A
Authority
JP
Japan
Prior art keywords
tank
liquid
concentration
sub
redox
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57196586A
Other languages
Japanese (ja)
Inventor
Takumi Hayakawa
早川 他「く」美
Shinichi Ikari
碇 真一
Riyuuzou Itou
伊藤 龍象
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP57196586A priority Critical patent/JPS5986164A/en
Publication of JPS5986164A publication Critical patent/JPS5986164A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04186Arrangements for control of reactant parameters, e.g. pressure or concentration of liquid-charged or electrolyte-charged reactants
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

PURPOSE:To maintain concentration of redox aqueous solution at desired level by providing mechanism for mixing redox aqueous solution in main and sub tank and feeding to flow type battery jar. CONSTITUTION:Sub-tanks 2 having capacity of 1/10-1/20 are provided at inside and outside of main tank 1, and at initial charging stage only liquid 3 (iron compound hydrochloric acid solution, for example) from said sub-tank 2 is circulated from a line mixer 4 through pump 5 and flow type battery jar 6. When liquid of concentration of 0.4mol/l is fed through pump 5 to said jar 6, concentration of liquid discharged from said jar 6 through charging reaction will be 0.5mol/l and never vary even when returned to sub-tank 2. The liquid will overflow to main tank 1 by the amount corresponding to flow from main tank 1 to increase concentration of liquid in main tank 1 gradually. Consequently concentration of liquid in said jar 6 will be stable for long term.

Description

【発明の詳細な説明】 本発明はレド、クスーフロー型電池に係り、特にレドッ
クス水溶液の貯蔵、供給に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to redox flow type batteries, and particularly to storage and supply of redox aqueous solutions.

レドックス・フロー型電池の電工は、2種類のレドック
ス系を正・負極活物質液として組合せて定められる。こ
れらの電池の充1+に電時において、特に充電時の過電
圧、放電時のtit極反応速度に関して、レドックス水
a(液の濃度の変化が、そのシステムとしての電力効率
に大きく影響する。すなわち充放電初期に低出力の時間
帯が生じ、このシステムの連続運転の場合の総合効率を
低下させ、さらに放電時、商用電力との接続に支障をき
たす欠点がある。
Electrical engineering for redox flow batteries is defined by combining two types of redox systems as positive and negative active material liquids. During charging and charging of these batteries, changes in the concentration of redox water (A) greatly affect the power efficiency of the system, especially regarding overvoltage during charging and tit electrode reaction rate during discharging. There is a period of low output in the early stage of discharge, which reduces the overall efficiency of this system in continuous operation, and also has the drawback of interfering with connection to commercial power during discharge.

本発明は、かかる欠点を除去するために、流通型電池槽
に供給するレドックス水溶液濃度を望ましい値に一定に
保つように主タンク、副タンクを用いることにより可能
ならしめたものである。
In order to eliminate such drawbacks, the present invention has made it possible to maintain the concentration of the redox aqueous solution supplied to the flow-through type battery tank at a constant desired value by using a main tank and a sub-tank.

以下本発明を図示した実施例により説明する。The present invention will be explained below with reference to illustrated embodiments.

第1図は、通常の1スタツク・1タンク方式の充放電時
の電池槽のレドックス水溶液の濃度変化を示す。例えば
充放電時間を、各々6時間とすると、充電初期と放電末
期に低出力の時間帯が約1時間も存在する。
FIG. 1 shows changes in the concentration of the redox aqueous solution in the battery tank during charging and discharging in a normal one-stack/one-tank system. For example, if the charging and discharging time is 6 hours each, there are approximately 1 hour low output time periods at the beginning of charging and at the end of discharging.

第2図は、本発明の流通型電池槽のレドックス水溶液の
濃度変化を示す。
FIG. 2 shows changes in the concentration of the redox aqueous solution in the flow-through type battery tank of the present invention.

第3図は、本発明の一実施例を示すレドックス・フロー
型電池の概略図である。
FIG. 3 is a schematic diagram of a redox flow battery showing one embodiment of the present invention.

第3図において、例えば、主タンク監の内外ニ容jLI
/lo〜l/20の副タンク2を設け、充電初期は、こ
の副タンク2の液3 (例えば鉄化合物塩酸水溶液)だ
けを、ミキシングタンクまたは、ラインミキサー4から
、ポンプ5、さら1こ流通型電池槽6を経て循環させる
。約15分(3循環)で副タンク2の液3の濃度は、0
.5mol / lに増加する。この時以降は副タンク
2Gと と主タンク1からg、 smol/ lの液o、 2 
moA! / lのへ 液7を、流量調整バルブ8の操作にJ:って(2:1)
の比でミキシングタンク4に供給混合し、濃度0.4m
ol/eの液をポンプ5を経て流通型電池槽6に流す。
In Figure 3, for example, the main tank supervisor's internal and external contents jLI
A sub-tank 2 of /lo to l/20 is provided, and at the initial stage of charging, only the liquid 3 (for example, an iron compound hydrochloric acid aqueous solution) in this sub-tank 2 is distributed from the mixing tank or line mixer 4 to the pump 5 and the pump 1. It is circulated through the type battery tank 6. After about 15 minutes (3 cycles), the concentration of liquid 3 in sub tank 2 will be 0.
.. Increase to 5 mol / l. From this time onwards, from the secondary tank 2G and the main tank 1, g, smol/l liquid O, 2
moA! / l of liquid 7 to the flow rate adjustment valve 8 (2:1)
The mixture is supplied to mixing tank 4 at the ratio of 0.4 m
The OL/E liquid is passed through the pump 5 and flows into the flow-through type battery tank 6.

しかる後充電反応により流通型7b池槽6からでた液濃
度は0.510o17gになるの徐々に増加する。従っ
て、流通型電池槽6丙の液濃度は第2図に示すように長
期間安定している。このようにして電池出力が低下する
初期充電期間を短縮し電力効率の向上を計ることができ
る。
Thereafter, due to the charging reaction, the concentration of the liquid discharged from the flow-through type 7b tank 6 gradually increases to 0.510.times.17 g. Therefore, the concentration of the liquid in the flow-through battery tank 6C remains stable for a long period of time as shown in FIG. In this way, the initial charging period during which the battery output decreases can be shortened and power efficiency can be improved.

放電初期の電池′の出力低下期間を短縮し、電力効率を
向上させ、長時間安定な出力を保つ場合も主、副タンク
を用いて同効果が得られることは云うまでもない。
It goes without saying that the same effect can be obtained by using the main and auxiliary tanks to shorten the period during which the battery's output decreases in the early stage of discharge, improve power efficiency, and maintain stable output for a long period of time.

なお、第3図において、主タンク9、およびその液10
、副タンク11およびその液12、その他調整バルブ8
′、ミキシングタンク4′、ポンプ5′は、すでに説明
した主タンク1およびその液7、副タンク2およびその
液3、その他調整バルブ8、ミキシングタンク4、ポン
プ5に対応し、この系は、電池を形成する対となるレド
ックス水溶液(例えば、クロム化合物の塩酸水溶液)の
ものであり、その作動させる原理は同一であり、同効果
を生むもので、電池トータルシステムの電力効率向上を
計るものである。
In addition, in FIG. 3, the main tank 9 and its liquid 10
, sub-tank 11 and its liquid 12, and other adjustment valves 8
', mixing tank 4', and pump 5' correspond to the already explained main tank 1 and its liquid 7, sub tank 2 and its liquid 3, other adjustment valves 8, mixing tank 4, and pump 5, and this system is It is a redox aqueous solution (for example, a hydrochloric acid aqueous solution of a chromium compound) that forms the battery, and the principle of operation is the same, it produces the same effect, and it aims to improve the power efficiency of the total battery system. be.

上述せるように、レドックス・フロー型電池の電力効率
向上策として、循環レドックス水溶16度を主タンクの
外1こ副タンクを設けて一定に保つことの効果が大なる
ことはもとより、副タンクが、わずか、主タンクの1/
10〜l/20の容量でよく、その設置は容易で、プラ
ントとしての経費が少なく、長時間安定な電池の放電出
力が保証され、放電時外部の商用電力系統への接続も安
定する等工業的価値大なるものである。
As mentioned above, as a measure to improve the power efficiency of redox flow batteries, it is not only effective to keep the circulating redox aqueous solution at a constant level of 16 degrees by providing one sub tank outside the main tank, but also to improve the power efficiency of redox flow batteries. , just 1/1 of the main tank
A capacity of 10 to 20 l/20 is sufficient, installation is easy, plant costs are low, long-term stable battery discharge output is guaranteed, connection to external commercial power system is stable during discharge, etc. It has great value.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のレドックス・フロー型電池の充放電によ
る電池槽のレドックス水溶液の濃度変化特性図、第2図
は本発明の充放電による流通型電池槽のレドックス水溶
液の濃度変化特性図、第3図は、本発明の一実施例を示
すレド、ツクス・フロー型電池の概略図である。 1は主タンク、2は副タンク、3はレドックス水溶液、
4.4′はミキシングタンクまたはラインミキサー、6
は流通型電池槽、7はレド・ソクス水溶液、8.8Iは
流量調整バルブ、9は主タンク、lOはレドックス水溶
液、11は副タンク、12はレドックス水溶液 第1図 第2図 時間(hi)
Figure 1 is a characteristic diagram of the concentration change of the redox aqueous solution in the battery tank due to charging and discharging of a normal redox flow type battery. FIG. 3 is a schematic diagram of a lead/tux flow type battery showing one embodiment of the present invention. 1 is the main tank, 2 is the sub tank, 3 is the redox aqueous solution,
4. 4' is a mixing tank or line mixer, 6
7 is a flow-through battery tank, 7 is a Redox aqueous solution, 8.8I is a flow rate adjustment valve, 9 is a main tank, IO is a redox aqueous solution, 11 is a sub tank, 12 is a redox aqueous solution Figure 1 Figure 2 Time (hi)

Claims (1)

【特許請求の範囲】[Claims] タンクに貯蔵したレドックス水溶液をポンプにより流通
型電池槽に供給して酸化還元を行ない充放電する方式の
レドックス・フロー型電池において、タンクは主タンク
と副タンクからなり且つ各タンクのレドックス水溶液を
適正に混合し流通型電池槽に供給する機構を具備するこ
とを特徴とするレドックス・フロー型電池。
In a redox flow type battery, a redox aqueous solution stored in a tank is supplied to a flow-type battery tank using a pump to perform oxidation-reduction and charge/discharge.The tank consists of a main tank and a sub tank, and the redox aqueous solution in each tank is adjusted to the appropriate level. A redox flow type battery characterized by comprising a mechanism for mixing the mixture with the liquid and supplying the mixture to a flow type battery tank.
JP57196586A 1982-11-09 1982-11-09 Redox flow type cell Pending JPS5986164A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57196586A JPS5986164A (en) 1982-11-09 1982-11-09 Redox flow type cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57196586A JPS5986164A (en) 1982-11-09 1982-11-09 Redox flow type cell

Publications (1)

Publication Number Publication Date
JPS5986164A true JPS5986164A (en) 1984-05-18

Family

ID=16360196

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57196586A Pending JPS5986164A (en) 1982-11-09 1982-11-09 Redox flow type cell

Country Status (1)

Country Link
JP (1) JPS5986164A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286667A (en) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol Electrolyte flowing type cell system and operating method thereof
JPS62245639A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Vapor drying device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6286667A (en) * 1985-10-11 1987-04-21 Agency Of Ind Science & Technol Electrolyte flowing type cell system and operating method thereof
JPS62245639A (en) * 1986-04-18 1987-10-26 Hitachi Ltd Vapor drying device

Similar Documents

Publication Publication Date Title
EP1143546A4 (en) Redox flow battery
CN113476929A (en) Backflushing device and backflushing method for filter element
JP2011233372A (en) Redox flow battery
CN114405105A (en) Reaction concentration system with recoil device
US3843410A (en) Fuel cell power station
JPS5986164A (en) Redox flow type cell
JPS6122574A (en) Cell construction
JPS5828175A (en) Fuel cell
CN112993358A (en) Preparation method and system of iron-chromium redox battery electrolyte
US5340667A (en) Battery recirculation and recharge system
JPS5986163A (en) Redox flow type cell
CN211521648U (en) Aerobic chemical feeding pipeline additionally provided with clear water cleaning pipeline system
JPH0227666A (en) Redox flow type secondary battery
SU833177A3 (en) Device for chlorine feeding to accumulator
JP2557947Y2 (en) Electrolyte circulation battery
GB1105138A (en) Improvements relating to fuel battery plants
GB1499914A (en) Device for regulating the level of the electrolyte in electric storage batteries
CN111773940B (en) Slurry circulation system
US20240283283A1 (en) Redox flow battery system
US3817792A (en) Arrangement of a fuel cell battery
CN217947701U (en) Industrial circulating water automatic reagent feeding device
CN211811313U (en) Liquid cement grinding aid holding vessel
CN209298308U (en) Air cell monomer and air cell heap
CN210546117U (en) Brightening agent supplementing device for assisting film passing
US3427199A (en) Method for starting operation of a sodium amalgam-oxidant fuel cell