JPS5986020A - Microscope device with variable visual field - Google Patents
Microscope device with variable visual fieldInfo
- Publication number
- JPS5986020A JPS5986020A JP57196573A JP19657382A JPS5986020A JP S5986020 A JPS5986020 A JP S5986020A JP 57196573 A JP57196573 A JP 57196573A JP 19657382 A JP19657382 A JP 19657382A JP S5986020 A JPS5986020 A JP S5986020A
- Authority
- JP
- Japan
- Prior art keywords
- objective lens
- objective
- point
- lens
- microscope
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Microscoopes, Condenser (AREA)
- Lenses (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は、被検物を固定したまま、その被検物の異なる
位置な連続的に観察し得る視野司変νJj倣鏡装ビ(に
関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a mirror device with a variable field of view that allows continuous observation of different positions of an object while the object is fixed.
l内体の拡大1象を観察または(Jiy影し得る祢倣鋭
において、被)炙物ノの観察韮たは撮影したい飴−i亡
を栢4微鋭祝1jrの中、シ・または(jば彩画!11
1の中火i市(こA41助1−るいわゆる位置合わせに
は、従来は、先すヌ’j ’Paレンズと接眼レンズを
営む団倣鋭系を6棟物に対して光軸方向で相対的−こ動
かして焦点合わせをした後、次にその被検物を対物レン
ズ元軸に対して垂直な平面内で移動して所望の位置に位
置合わせすることが一般に行わイ1、ている。珠lこ最
近は、珈・微鋭鏡筒側に撮影装置や測光装置、ITV用
受光部等のようなかなり車量の大きい装置が組み込まれ
ることが多く、鏡筒全体を精密に移動することが困難な
はかりで無く、耐震性寺の機械的強度の点からも、鋭筒
部を銑基と一体に固定する構造のものが増加している、
一方、血倣睨にて拡大観察する被検物も多様化し、大き
い被検物の一部を試別として切り取ることができす、し
かも重い被検物な動かすことなく、その被検物の一部を
拡大観察する必要の有る場合も多(f、Cっている、こ
の場合、焦点合わせについては、顕微鏡鏡筒を被検物の
観察1J直近傍に固定した優、対物レンズのみを光軸方
向tこ移動することにより行うことができる。しかし、
位置合わせについては、倣!1tIJ調節する ゛ −
一゛+ + + ′−、、+ 、+ ハ
−ことができず、鏡基全体を移動して位置合せを行
った後に再び焦点合わせを行う方法がとられていた。従
って、従来公知の顕微鏡においてはその位置合わせに多
くの時間を浪費し、しかも望む位置に正確に位置合わせ
することが困難であった。1. Observe the enlargement of the internal body, or (with a camera that can be photographed), observe or photograph the object of the roasted food. jba aya!11
Conventionally, for the so-called positioning of the 1 medium flame i city (hereinafter referred to as A41 aid 1-1), the group-shape sharpening system that operates the nu'j'Pa lens and the eyepiece is first aligned in the optical axis direction with respect to the object. After focusing by relatively moving the object, it is generally done to move the object in a plane perpendicular to the original axis of the objective lens and position it at a desired position. Recently, quite large devices such as photographing equipment, photometering equipment, ITV light receiving units, etc. are often installed on the lens barrel side, and the entire lens barrel must be moved precisely. The number of scales that have a structure in which the sharp tube is fixed integrally with the pig base is increasing in view of the mechanical strength of earthquake-resistant scales. Objects to be inspected are becoming more diverse, and it is now possible to cut out a part of a large object for testing purposes.In addition, there may be cases where it is necessary to magnify and observe a part of a heavy object without moving it. In this case, focusing can be done by fixing the microscope barrel in the immediate vicinity of the observation object and moving only the objective lens in the optical axis direction. Yes, but.
For positioning, copy! Adjust 1tIJ ゛ -
Since it was not possible to do this, the method used was to move the entire mirror base, align it, and then refocus it. Therefore, in conventionally known microscopes, much time is wasted in positioning the microscope, and it is difficult to precisely position the microscope at a desired position.
本発明は、上記の如き従来公知の顕微鏡の欠点を解消し
、被検物と動gt鏡本体との双方を固定したママ、位置
合せを迅速、円滑で正確に行い得られ、しかも被検物側
の一点から他の所望の点捷でピントがほけること無く連
続的に視野を変え得る視野可変顕徽鏡装置を提供するこ
とを目的とする。The present invention solves the drawbacks of the conventionally known microscopes as described above, fixes both the object to be examined and the main body of the moving GT microscope, and allows quick, smooth and accurate positioning of the object to be examined. To provide a variable field of view microscope device capable of continuously changing the field of view from one point on the side to another desired point without losing focus.
上記の目的達成のために本発明においては、対物レンズ
を第1対物レンズと第2対物Vンズとその第1対物レン
ズからの平行光束を受けてその役写体の像を所定の焦点
位置に結像させる第2対物レンズとから成る対物レンズ
光学系を有する顕微鏡において、その第1対物レンズの
有効径を第2対物レンズの有効径より大きく形成すると
共に、その第1対物レンズを第2対物レンズに対【7て
イθ心し得る如く光軸に対して垂直な面内に移動可能と
々し、その第1対物レンズを除き、第2対物レンズを含
む顕微鏡錠、筒部とその被検物とを固定した1壕、その
被検物の異々る位置を連続的に観察し得る如く構成した
ことを特徴とするものである。In order to achieve the above object, in the present invention, an objective lens receives a parallel light flux from a first objective lens, a second objective lens, and the first objective lens, and focuses an image of the main object at a predetermined focal position. In a microscope having an objective lens optical system consisting of a second objective lens for forming an image, the effective diameter of the first objective lens is formed to be larger than the effective diameter of the second objective lens, and the first objective lens is formed as a second objective lens. It is movable in a plane perpendicular to the optical axis so as to be able to center θ relative to the lens. The present invention is characterized by a structure in which a specimen is fixed in one trench, and different positions of the specimen can be continuously observed.
以下、添付の図面に示された実施例に基づいて本発明の
詳細な説明する。Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
・・−°パ゛1.J″ ゛
;、 ゛第1図は本発明の一実施例の断面図で、第
2図は第1図の実施列Oこおける第1対物1/ンスを移
動した状態を示ず)に学系図である。第1りIは単刈物
顕微鏡装叙を示し、対物レンス光字糸Oは第1対物レン
ズ0.と第2対物し/ス02とからr、4つ、第1メ’
:j97)l/ :/ス0+ ’) 前側焦点にネ10
央9勿Sン揶1曳かれ、被検物Sの像は第1対物レンズ
O言こよって第1図中で上方無限遠に結像される。従っ
てa11対物レンズ0□を透過する被検物Sの一点Pa
力1らの光は平行光束吉なる、第2対物レンス02は、
その平行光束を受は入れて所定の焦点面F上の点Qに点
Paの源を形成する。その点Qの像は接眼レンズBを通
して拡大された虚1象として視胎中央(こ観察される。...−°Py1. J″ ゛
;, ゛Figure 1 is a sectional view of one embodiment of the present invention, and Figure 2 is a scientific diagram (not showing the state in which the first objective 1/ance in the implementation row O in Figure 1 has been moved). . The first column I shows the single-crop microscope installation, and the objective lens optical string O is the first objective lens 0. and 2nd objective/s02 and r, 4, 1st objective
:j97)l/ :/s0+') Ne10 to the front focus
The image of the object S to be examined is focused upward to infinity in FIG. 1 by the first objective lens O. Therefore, one point Pa of the object S passing through the a11 objective lens 0□
The light from force 1 is a parallel beam of light, and the second objective lens 02 is
The parallel light beam is received and a source of point Pa is formed at point Q on a predetermined focal plane F. The image of point Q is observed at the center of the uterus as an imaginary image magnified through eyepiece B.
上記の光学系において、第1対物レノスOI を保持
する対物レンズ筒1は、対物レンズ外筒IAを弁して、
顕微鋭鋭筒本体2に支持され、元軸に垂@な平面内にお
いて移動可能である。第2対物レンス02はその錯簡本
体下部に支持されている。In the above optical system, the objective lens barrel 1 holding the first objective lens OI valves the objective lens outer barrel IA,
It is supported by the microscope sharp tube body 2 and is movable within a plane perpendicular to the original axis. A second objective lens 02 is supported at the bottom of the optical system.
接眼1/ノズ元学系Eは、接眼レンズ筒3に保持され、
鋭部本体2の上部ζこ層膜可能に支持されている。また
鏡筒本体2の下端部には互し薯こ向交する2個の微動ね
じ4と2個のはね5とが設りられ、そのばねの付勢力に
抗して微動ねじ4を進退させると、対物レンズ外筒IA
はM:、illζこ垂面な内面を移動し待東y[1<構
成されCいる。また、対物レンスゴh1は、対物レンズ
外筒IA内に図示されi「いねじ手段により螺合され、
光軸方向に移動可能9こ構成されている。従って、被検
物Sが第1対物レンズ01の前側焦点位置にないときは
、物1対物レンズOLを光軸方向ζこ移動し、第2対物
1/ノズ0、との間の間隔を変えて、焦点合わせを行う
ことができる。もちろん、第1対物レンズ0+ 。The eyepiece 1/nozzle system E is held in the eyepiece barrel 3,
The upper part of the sharp part main body 2 is supported by this layer. In addition, two fine adjustment screws 4 and two springs 5 are provided at the lower end of the lens barrel body 2, and the fine adjustment screws 4 are moved back and forth against the biasing force of the springs. When the objective lens outer cylinder IA
M:, illζ moves on the vertical inner surface and is composed of y[1<C. Further, the objective lens h1 is shown in the objective lens outer cylinder IA and is screwed together by a screw means.
It is composed of nine movable parts in the optical axis direction. Therefore, when the object S is not at the front focal position of the first objective lens 01, the object 1 objective lens OL is moved in the optical axis direction ζ to change the distance between it and the second objective 1/nozz 0. You can adjust the focus by Of course, the first objective lens is 0+.
第2対物レンズ0雪から成る対物レンズ光学系0と接眼
レンズ光学系Eとから成る顕微鏡光字系全体を光軸方向
へ移動して焦点合わせを行りても差支えない。Focusing may be performed by moving the entire microscope optical system consisting of the objective lens optical system 0 consisting of the second objective lens 0 and the eyepiece optical system E in the optical axis direction.
Lころで、第1図からも明ら7:l)な如く、第1対物
レンズ01は、第2対物レノズO8に比してその有効径
か光分太きく形成されている。健って、第1対物レノズ
01を光@11に対l、て垂直方向に移動し、第2図の
如く、ゲ2対物し/ズO!と接眼レンズBとを含む九学
系番こ対して偏心させると、焦点面上の一点Qiこ対応
1−る仮倹物S上の共役点は、第1対物レンズ01と共
に同方向に移動し、点P。As shown in FIG. 1 (7:l), the first objective lens 01 is formed to have an effective diameter larger by an amount of light than the second objective lens O8. Then, move the first objective lens 01 in the vertical direction relative to the light @ 11, and as shown in Fig. 2, the second objective lens 01/ZO! When the nine-dimensional lens including the eyepiece B and the eyepiece B are decentered, the conjugate point on the virtual object S corresponding to a point Qi on the focal plane moves in the same direction as the first objective lens 01. , point P.
の位置、(第1対物レンズO+c/)光軸と被検物Sと
の交点)まで移動づ−る。この場合、点PI Ii僅検
物面Sと第1対物レンズO+の光昨(との交点であるか
ら、点1)1から発して第1対171JレノスO+を通
過する光束はすべてil対物レレンズ1の光軸と平行f
λ光束となる。、従って、点P、は、第1対物レンズ0
8と第2幻9勿し/スOs と(こより、n時接眼し
ンズEの視野中心の焦点面上の点Qに結像されることに
なる。つ才り第1対物レンズ01を光^(に対して垂直
方向に移動することにより、ビットがはけること無く、
接眼レンズEを辿してwl、祭さ41.る視野を点P0
から点21才で連ht的に変えることができる。この場
合、光束がけられろこと71 (視野を変え得る範囲を
大きくするためには、第2対物1/ノズO1の有効径に
比して第1対物レンス01の有効径を可能な限り大きく
才ることが望ましい、
第3図は、平行糸実体顕飲Uこ本発明を適用した実施例
の光学系配置図で、第4図は、第3図の実施し11ζこ
おける第1対物レンズを移動した状態を示す光学系の側
面図である。第3図において、対物レンズ光学系0の第
1対物レンス01は、 2個の並列された第2対物レン
ズO!a 、 Ot b の光軸を含む平2<こ対し
て垂直方向(第3図中で紙面に垂直方向)に移動し得る
ように、その巾効径を従来の平行系実体顕微鏡の第1対
物レンズより史tこ大きく形成されている。その他の2
個一対の第2対物1/ノズ(h a、 02 bおよび
2個一対の接眼レンズ光学系Ea、P;b#こついては
従来の平行系実体顕微鏡の光学系と同様である。The object is moved to the position (the intersection of the first objective lens O+c/) optical axis and the test object S). In this case, since it is the intersection of the point PI Ii, the object surface S, and the light beam of the first objective lens O+, all the light beams emitted from point 1 and passing through the first objective lens O+ are Parallel to the optical axis of 1 f
It becomes λ luminous flux. , Therefore, the point P is the first objective lens 0
8 and the second illusion 9/Os (Thus, the image is formed at a point Q on the focal plane at the center of the field of view of the eyepiece E at the time of n. By moving perpendicularly to ^(, the bit will not slip off,
Follow the eyepiece E, wl, festival 41. point P0
At the age of 21, you can change your mind continuously. In this case, the luminous flux will be vignetted. FIG. 3 is a diagram showing the optical system arrangement of an embodiment of the present invention, and FIG. 4 shows the first objective lens in the embodiment of FIG. 3. 3 is a side view of the optical system showing a moved state. In FIG. 3, the first objective lens 01 of the objective lens optical system 0 is aligned with the optical axis of two parallel second objective lenses O!a and Otb. Its width and diameter are made larger than the first objective lens of a conventional parallel stereoscopic microscope so that it can move in a direction perpendicular to the plane 2 (in Fig. 3, perpendicular to the plane of the paper). The other 2
A pair of individual second objectives 1/nozzle (ha, 02 b) and a pair of eyepiece optical systems Ea, P; b# are similar to the optical system of a conventional parallel stereoscopic microscope.
すなわち、被検物Sと第1対物レンズ(J+の元軸との
交点Poを兄した光束は、駆1対物レンズ山を通過[、
た優平行光未となり、便って第1対物レンズ01の光軸
に対称な互い(こ異、なる領域を通過した平行光束は、
一対の第2対物レンズ02a、 OrbによりD「定
の焦点(iト’a、Fb上の点Qa、Qbに結像さイ′
しる、 この点Qa、Qbζこ結像さイまた被検物鍼は
、それぞれの接tiltレンズ光学系Ea、Ebン辿し
て、立体的に観察される。In other words, the light beam that passes through the intersection point Po between the object S and the original axis of the first objective lens (J+) passes through the first objective lens peak [,
Therefore, the parallel light fluxes that have passed through regions that are symmetrical to the optical axis of the first objective lens 01 are
A pair of second objective lenses 02a and Orb form images at points Qa and Qb on D'a and Fb.
As the images are formed at these points Qa and Qbζ, the target acupuncture point is observed three-dimensionally by following the respective tilt lens optical systems Ea and Eb.
この場合、本実施例においζ(才、第1対q勿レノズ0
.は、第3図中で紙面さ垂直方向に移Mm L得る如<
fs成され、その移動の際(こ、第2対物レンズ02
a、 02bIこ入る光束かけられγXいよう(こ、
年1対物1/ンスの有効径は光分大きく形成さイ1.て
いる。従って、第4図(こ示され−Cいるようζこ、第
1対物レノス山を点+1奴の位置から実軸ζこて示さ1
7゜た位置へ移動づ−ると、焦点面上の点Qa、Qbに
共役な被検物S土の点はPoからP8に移動J′る。In this case, in this embodiment, ζ
.. is translated in the direction perpendicular to the plane of the paper in Figure 3.
fs is formed, and during its movement (this, the second objective lens 02
a.
The effective diameter of the objective 1/th is made larger by the amount of light.1. ing. Therefore, in Figure 4 (as shown in Figure 4), the real axis ζ is shown from the position of the first objective Renos mountain from the point +1.
When the object S is moved to a position 7 degrees away, the point of the object S that is conjugate to the points Qa and Qb on the focal plane moves from Po to P8.
そのときの点PIは、第3図における第1対物しンス(
)1の′)’ll;軸を含む祇mζこ垂直な平面内に位
置しているので点I〕1から発して、第2対物レンズ0
7aおよびotb+こ向う光束の主光線と光軸と0)な
ず角すなわち内埒、1角θは左右対称である。従って左
右の焦点面」二の点Qa、Qb に形成され/、)像は
、左右において収差バランスのとれたものとなり、実体
現に悪彬響を与えることは無い。しかし、もl、a1対
物レンズ01を第3図中で左右に大巾に移動する場合1
こは、左右の内がI角θが大きく異なり、また左右の1
3この見えも異ムリ、実体視(;見察に好ましく無いも
のとなる。それ故、この実体顕微鎧の場合には、左右の
視野移動はなるー\く避け、第3図中で紙面に銀面な方
向に大きく視野を移動し得る如く↑4成づることが梁丈
しい。2了お、この実施例においても、焦点合せは、対
物1/ンズ光学系Oき接1IIVルンズ光学系E a
m Eb七を共に元軸方向(こ移動し、て行ってもよ
いか、加、1図の実裾例と同様に、第1対物レンズO8
のみを光軸方向に移動して焦点合わせをも行いつる如く
構成すれは、第1対物レンスO+を除く顕微線光学系(
第2対物レノスCh a、 Os bおよび接眼レンス
元学系Ea。The point PI at that time is the first objective (
)1')'ll; Since it is located in a plane perpendicular to the axis, it is emitted from point I]1 and the second objective lens 0
7a and otb+the principal ray of the opposing light beam, the optical axis, and the angle 0), that is, the inner angle, and the angle θ are bilaterally symmetrical. Therefore, the images formed at the two points Qa, Qb of the left and right focal planes have well-balanced aberrations on the left and right sides, and do not adversely affect the actual image. However, when moving the objective lens 01 to the left and right in Fig. 3,
This shows that the I angle θ between the left and right sides is significantly different, and the left and right angles are very different.
3 This appearance is also strange and unfavorable for stereoscopic observation.Therefore, in the case of this stereoscopic microscope armor, the movement of the field of view from side to side is avoided, and it is It is important that the field of view can be moved greatly in the direction of the silver plane.In this example, the focusing is also performed by the lens optical system E a
m Eb 7 together in the original axis direction (can I do this?
The microscope beam optical system (except for the first objective lens O
Second objective lens Ch a, Os b and eyepiece lens Ea.
gb)と被検物Sを動かすことなく、被検物に対する焦
点合わせと位置合わせとを行うことができろ。gb) and the object S to be examined without moving it.
なお、第3図は本発明の原理を示ず実施クリの光学系配
置図であるが、像を正立、正1家とするためには第2対
物レンズQla、Otbと焦点面の点Qa、Qh と
の間の光路中番こそれぞれ公知の正立プリ7ムが設けら
孔ることはぎうまても無い、以上に述べたv目り本発明
によれは、被検物および顕微鏡筒部を固定したままで、
被検物の観察位置を変えることができるので、顕微端鏡
筒部に重量の大きい受光部装置などを取り付けたとして
も、その鏡筒部は固定したままでよく、また被検物が重
く移動し得ないものであっても、その被検物の一部を標
本として採取すること無く直接検鏡することができる。Note that although FIG. 3 does not show the principle of the present invention, it is a diagram of the optical system layout for the actual implementation, but in order to make the image erect, the second objective lens Qla, Otb and the point Qa on the focal plane. , Qh are each provided with a well-known erect prism 7 in the optical path. While keeping it fixed,
Since the observation position of the specimen can be changed, even if a heavy light receiving unit is attached to the microscope end barrel, the lens barrel can remain fixed, and the specimen can be moved evenly. Even if this is not possible, it is possible to directly examine the specimen without taking part of it as a specimen.
史に、視野変更の途中においてもピントがぼけることが
無いので、連続的に視野を変えて検鏡することが可能と
なる。従って、顕微鏡の設置や視野の変更に時間を浪費
することが無く極めて能率的な検鏡が可能となり、被検
物の観察を迅速かつ止り゛(トにしかも極めて容易に行
うことかでさる、
4、 1g1面の1ljl単A till明第1間第1
図明の一実施例を示す断面概略図、第2図は11図の実
施例(こおける第1対物レンズを移Itυした状態を示
すブし学系配置図、第3図は本発明の別の実施例を示す
)゛C学系配置は1で、第4図はり143図の実施例に
おける彫1対物レンスを移動した状態を示ず)“L学系
配置側面図である。Historically, the focus does not become blurred even while changing the field of view, making it possible to continuously change the field of view for examination. Therefore, it is possible to perform extremely efficient microscopy without wasting time in setting up the microscope or changing the field of view, and it is possible to observe the specimen quickly and easily. 4, 1g1 side 1ljl single A till Ming 1st room 1st
FIG. 2 is a cross-sectional schematic diagram showing one embodiment of the present invention; FIG. 2 is a schematic layout diagram showing the embodiment of FIG. FIG. 4 is a side view of the L-system arrangement (the C-system arrangement is 1, and the state in which the objective lens in the embodiment of FIG. 4 is not shown) is shown.
1・ 第1対物L/ンズ筒、
IA・−第1対物レンス外筒、
4 ・ 敞1iυねし、 5・・はね、01
巣1対物レンス、
Q!、02;+ 、 Osb −−’a−2対物1/
ノズ1=j、Ea、 Eb 接眼レンス元学糸、
S・・ 被検物
す3図 第4目1. 1st objective lens cylinder, IA - 1st objective lens outer cylinder, 4. 1iυ spring, 5. Spring, 01
Nest 1 objective lens, Q! ,02;+ ,Osb--'a-2 objective 1/
Nozzle 1 = j, Ea, Eb eyepiece original school,
S... Test object Figure 3 4th item
Claims (1)
物レンズと該第1苅物レンズからの平行光束を受けて前
記被検物の球をツタ「足の焦点位置ζこ結像さぜる第2
対物レンズとから成る対物レンズ光学系を有Iる顕微鏡
において、前記第1対物レンズの有効径を前記第2対物
レンズの有効径より大きく形成すると共ζこ、前記第1
対物レンスを前記第2対物レンズに対して偏心し得うる
如くブC軸に対して垂直な面内に移動可能となし、前記
第1対物レンズを除き、前記第2対物レンズを営む顕@
鏡釧筒部と前記被検物とを固定したます前記被検物の異
なる位置を連続的に鋼察し得る如く構成したことを特徴
とする視野可変顕微鏡装置 (2) 前記第1対物1//ス(OI)は尤腺1方向
をこ移動可能な第1対物レンズ筒(1)によって支持さ
れていることを特徴とする特許請求の範囲第1項記載の
視野ljJ変顕微説装置 (3) t’>+J記第2対物レンズは、FJ’+J
記第1対物1/ノズ(at) のう゛C軸ζこ対称な
互いに異なる唄域な通過する平行光束を受は入れる一対
の結像レンズ(Ova、02b)から成り−メ1の接眼
ye学糸(E ay。 gb) と共に双眼実体卵倣鋭fe字糸を購成し、位
置合わせの際、前記!!、1対・吻しンス((Jl)
は、前記第2対物レンズ(02a、 02b )の2つ
の光軸を詮む平11Uζこ部直な方向tこのみ移」カi
’liJ龍に↑r< Iノ’iされていることを特徴と
する特許′「賛目求のflil;、田1り11」狗また
は洞ノ、2ユニ1丙己載の視野す丁メニ壮旧吸孤・装[
1ゴー[Scope of Claims] (II. A first objective lens that forms an image of the object at an infinity position, and a parallel light beam from the first objective lens that moves the ball of the object to be examined. Focus position ζ
In the microscope having an objective lens optical system consisting of an objective lens, the effective diameter of the first objective lens is formed to be larger than the effective diameter of the second objective lens.
The objective lens is movable in a plane perpendicular to the C axis so as to be decentered with respect to the second objective lens, and a microscope that operates the second objective lens except for the first objective lens is provided.
Variable field of view microscope device (2) characterized in that it is configured to continuously observe different positions of the object in which the mirror tube part and the object to be examined are fixed.The first objective 1// Field of view ljJ variable microscope device (3) according to claim 1, wherein the optical field (OI) is supported by a first objective lens barrel (1) that is movable in one direction. t'>+J second objective lens is FJ'+J
The first objective 1/nozzle (at) consists of a pair of imaging lenses (Ova, 02b) that are symmetrical about the C-axis ζ and receive parallel light beams passing through different regions. Purchase the binocular solid egg imitation sharp FE thread along with the thread (E ay. gb), and use the above when aligning! ! , 1 pair of proboscis ((Jl)
is a direction perpendicular to the plane 11Uζ that looks at the two optical axes of the second objective lens (02a, 02b).
'Patent characterized by being ↑r<Iノ'i in 'liJ dragon''A flil of praise; Soukoku Suko・Sou [
1 go
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196573A JPS5986020A (en) | 1982-11-09 | 1982-11-09 | Microscope device with variable visual field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57196573A JPS5986020A (en) | 1982-11-09 | 1982-11-09 | Microscope device with variable visual field |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5986020A true JPS5986020A (en) | 1984-05-18 |
JPH0345802B2 JPH0345802B2 (en) | 1991-07-12 |
Family
ID=16359984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57196573A Granted JPS5986020A (en) | 1982-11-09 | 1982-11-09 | Microscope device with variable visual field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5986020A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619614A (en) * | 1984-06-25 | 1986-01-17 | Olympus Optical Co Ltd | Microscope |
JPS6227317U (en) * | 1985-07-31 | 1987-02-19 | ||
US4744642A (en) * | 1984-06-25 | 1988-05-17 | Olympus Optical Co., Ltd. | Microscope |
JPS63146011A (en) * | 1986-12-09 | 1988-06-18 | Nippon Telegr & Teleph Corp <Ntt> | Visual field moving type enlagement image forming device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51123032U (en) * | 1975-04-01 | 1976-10-05 | ||
JPS5423559A (en) * | 1977-07-25 | 1979-02-22 | Nippon Chemical Ind | Perspective stereoscopic microscope |
-
1982
- 1982-11-09 JP JP57196573A patent/JPS5986020A/en active Granted
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS51123032U (en) * | 1975-04-01 | 1976-10-05 | ||
JPS5423559A (en) * | 1977-07-25 | 1979-02-22 | Nippon Chemical Ind | Perspective stereoscopic microscope |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS619614A (en) * | 1984-06-25 | 1986-01-17 | Olympus Optical Co Ltd | Microscope |
US4744642A (en) * | 1984-06-25 | 1988-05-17 | Olympus Optical Co., Ltd. | Microscope |
JPS6227317U (en) * | 1985-07-31 | 1987-02-19 | ||
JPS63146011A (en) * | 1986-12-09 | 1988-06-18 | Nippon Telegr & Teleph Corp <Ntt> | Visual field moving type enlagement image forming device |
Also Published As
Publication number | Publication date |
---|---|
JPH0345802B2 (en) | 1991-07-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3909106A (en) | Inclined prism ocular systems for stereomicroscope | |
US3785714A (en) | Split-field microscope | |
JPH0251165B2 (en) | ||
US20090040606A1 (en) | 3-dimensional moving image photographing device for photographing neighboring object | |
JPS6014327B2 (en) | Stereo microscope that can be observed by multiple observers | |
US3359849A (en) | Optical micrometer | |
US2237943A (en) | Intermediary optical system for microscopes | |
US2701501A (en) | Apparatus for testing of centering, coaxiality, alignment | |
US4318585A (en) | Optical system with an afocal focusing group | |
SE442559B (en) | BINOCULAR NIGHT VIEWS | |
SE451282B (en) | BINOCULES CONSIDERATION TO VIEW THE SAME PICTURE WITH BADA OGONEN AT THE SAME TIME | |
EP0140923A1 (en) | Multifocal objective. | |
US4396260A (en) | Slit lamp having replaceable objective lens unit for observation of cornea | |
JPS5986020A (en) | Microscope device with variable visual field | |
US3107270A (en) | Telescope with circular interference grating reticle | |
US20230221540A1 (en) | Continuous Zoom Stereoscopic Microscope with Adjustable Stereoscopic Angle | |
JPS60641B2 (en) | squint stereo microscope | |
KR101654589B1 (en) | Medical microscope system based on stereoscopic 3D comprising auto focusing and object distance | |
JP2000284184A (en) | Parallel system stereoscopic microscope and objective lens | |
KR101608404B1 (en) | Single lens Microscope for three dimensional image | |
US3879107A (en) | Microstereoscope | |
JP2001075011A (en) | Stereoscopic microscope | |
US3274912A (en) | Single-lens reflex camera | |
US3922097A (en) | Optical apparatus for the microscopic examination of the internal walls of an opening | |
JP3454851B2 (en) | Stereo microscope |