JPS5984830A - Preparation of diisobutylene - Google Patents

Preparation of diisobutylene

Info

Publication number
JPS5984830A
JPS5984830A JP57194450A JP19445082A JPS5984830A JP S5984830 A JPS5984830 A JP S5984830A JP 57194450 A JP57194450 A JP 57194450A JP 19445082 A JP19445082 A JP 19445082A JP S5984830 A JPS5984830 A JP S5984830A
Authority
JP
Japan
Prior art keywords
ethylene glycol
raw material
acid type
diisobutylene
strong acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57194450A
Other languages
Japanese (ja)
Other versions
JPS6247851B2 (en
Inventor
Takao Yamada
隆男 山田
Hiroaki Taniguchi
博昭 谷口
Masami Yamamura
正美 山村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cosmo Oil Co Ltd
Original Assignee
Maruzen Oil Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maruzen Oil Co Ltd filed Critical Maruzen Oil Co Ltd
Priority to JP57194450A priority Critical patent/JPS5984830A/en
Publication of JPS5984830A publication Critical patent/JPS5984830A/en
Publication of JPS6247851B2 publication Critical patent/JPS6247851B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/40Ethylene production

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To obtain the titled substance useful as a raw material for preparing nonyl alcohol, etc. in high yield free from problems of corrosion of device, etc., by bringing ethylene glycol monotertiary butyl ether as a raw material into contact with a cation exchange resin of strong acid type as a catalyst under specific conditions. CONSTITUTION:Ethylene glycol monotertiary butyl ether is used as a raw material, and brought into contact with a cation exchanger catalyst of strong acid type at about 85-150 deg.C under pressure, more preferably conditions at about 3- 20kg/cm<2>.G, especially about 5-15kg/cm<2>.G, at about 100-130 deg.C at about 0.1- 5.0hr<-1> liquid space velocity, especially about 0.2-2.0hr<-1>, to give the desired compound. A cation exchange resin of styrenesulfonic acid type, etc. may be cited as the cation exchanger of strong acid type. Selectivity for the desired compound is more enhanced by using a mixture of the raw material with ethylene glycol than using it alone.

Description

【発明の詳細な説明】 本発明はエチレングリコールモノタージャリプチルエー
テルからジインブチレンを製造する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing diynebutylene from ethylene glycol monotadilyptyl ether.

一般にジインブチレンとは、イ・ソプチレンの二量体で
あり、主として2,4.4− )リメチルペンテン−1
と2.4.4− )リメチルペンテンー2からなり少量
のその他の異性体を含む混合物である。このジインブチ
レンは水和によるオクチルアルコール、オキン法による
ノニルアルコール、オクチルフェノール等の製造原料と
して使用されており、またガス状のインブチレンを用い
るよシも液状のジイソブチレンを用いる方が反応が容易
であるためブチルフェノールの製造用原料としても使用
されている。これらの場合、2,4.4.− トリメチ
ルペンテン−1及び2,4.4− トリメチルペンテン
−2の含有量が多いものが好ましい。
In general, diimbutylene is a dimer of isoptylene, mainly 2,4.4-)limethylpentene-1
It is a mixture consisting of 2.4.4-)limethylpentene-2 and small amounts of other isomers. This diimbutylene is used as a raw material for producing octyl alcohol by hydration, nonyl alcohol by the Oquin method, octylphenol, etc., and it is easier to react with liquid diisobutylene than with gaseous imbutylene. Therefore, it is also used as a raw material for the production of butylphenol. In these cases, 2, 4.4. - Those with a high content of trimethylpentene-1 and 2,4.4-trimethylpentene-2 are preferred.

従来ジインブチレンはC4炭化水素留分な硫酸水溶液と
接触させてC4炭化水素留分中のインブチレンを重合さ
せ、生成物を分離精製して製造されている。しかしこの
硫酸法では目的とするジインブチレン以外にトリインブ
チレン、ブトラインブチレン等のオリゴマーが多量副生
し、その副生量は生成インブチレンオリゴマー巾約20
〜30%にも達する。また生成ジインブチレン中の2.
4.4−トリメチルペンテン−1及び2,4.4− )
リメチルペンテンー2の含有量が92〜96係と低く、
また不純物として、インブテンとノルマルブテンとの重
合物であるジメチルヘキセン類も含壕れているという難
点がある。さらに硫酸を使用するので装置腐食の問題が
あり、装置は高価な耐食材料で構成しなければならない
という難点がある。
Conventionally, diimbutylene has been produced by bringing the C4 hydrocarbon fraction into contact with an aqueous sulfuric acid solution to polymerize the imbutylene in the C4 hydrocarbon fraction, and then separating and purifying the product. However, in this sulfuric acid method, in addition to the target diynbutylene, a large amount of oligomers such as triynebutylene and butrinebutylene are produced as by-products.
It reaches ~30%. Also, 2.
4,4-trimethylpentene-1 and 2,4.4-)
The content of remethylpentene-2 is as low as 92-96,
Another drawback is that it also contains dimethylhexene, which is a polymer of imbutene and normal butene, as impurities. Furthermore, since sulfuric acid is used, there is a problem of equipment corrosion, and the equipment must be constructed of expensive corrosion-resistant materials.

本発明者らは種々研究した結果、原料としてエチレング
リコールモノターシャリブチルエーテルを使用し触媒と
して強酸型陽イオン交換樹脂を使用することにより、目
的のジインブチレンが高選択率で得られることを発見し
て本発明を完成した。
As a result of various studies, the present inventors discovered that the desired diynebutylene could be obtained with high selectivity by using ethylene glycol monotertiary butyl ether as a raw material and a strong acid type cation exchange resin as a catalyst. The invention has been completed.

すなわち本発明の要旨は、エチレングリコールモノター
シャリブチルエーテルを85〜150’Cにおいて強酸
型陽イオン交換体触媒と加圧下に接触させてジイソブチ
レンを得ることを特徴とするジインブチレンの製造方法
に存する。
That is, the gist of the present invention resides in a method for producing diimbutylene, which is characterized in that diisobutylene is obtained by contacting ethylene glycol monotertiary butyl ether with a strongly acidic cation exchanger catalyst at 85 to 150'C under pressure.

出発原料としてのエチレングリコールモノタージャリプ
チルエーテル(以後MBEと略称することがある)は単
独で使用しても溶剤もしくは希釈剤のような他の成分と
の混合物として使用してもよい。MBEは単独で使用す
るよりもエチレングリコールとの混合物として使用する
ほうがジインブチレン生成の選択率が高くなる。MBE
を他の成分との混合物として使用する場合、原料混合物
中のMBE含有量が低すぎると装置容量が大きくなり、
また必要熱量も過大となってしまう。従つて供給原料中
のMBEの好ましい含有量は約5重量係以上、特に約5
〜80重量係である。
Ethylene glycol monoteralyptyl ether (hereinafter sometimes abbreviated as MBE) as a starting material may be used alone or in a mixture with other components such as a solvent or diluent. When MBE is used as a mixture with ethylene glycol, the selectivity for producing diynebutylene is higher than when used alone. M.B.E.
When used as a mixture with other components, if the MBE content in the raw material mixture is too low, the equipment capacity will increase;
Moreover, the amount of heat required will also be excessive. Therefore, the preferred content of MBE in the feedstock is about 5 parts by weight or more, especially about 5 parts by weight or more.
~80 weight section.

またエチレングリコールモノタージャリプチルエーテル
はエチレングリコールとインブチレン含有C4炭化水素
留分とを強酸型陽イオン交換体触媒の存在下に反応させ
て製造できることが、例えばアメリカ特許第24809
40号、同第3170000号、同第3288842号
、特公昭57−35687号等で知られており、生成物
は通常主生成物MBE、副生成物エチレングリコールジ
クーシャリプチルエーテル(以後DBEと略称すること
がある)とエチレングリコールとの混合物となっている
。従ってこの反応生成物そのまま、もしくは生成物から
分離したMBEまだはMBE含有混合物を本発明の原料
とすることもできる。この場合供給原料中にDBEが含
有されていてもその含有量が少なくかつ反応温度が高く
、特に約ioo r以上であればDBEもMBEも分解
して高収率でジイソブチレンが得られる。従って原料混
合物中にDBEを含む場合その含有量はMBE 1重量
部に対して、約0.40重量部以下とする。原料混合物
中のD I3E含有量が多すぎまた反応温度が低すぎる
と系内のMIlE量は減少せず、MBEからジイソブチ
レンを得るという本発明の目的は達成されないしまたジ
イソブチレンの収率も低くなってしまう。
In addition, it is known that ethylene glycol monoturgyl ether can be produced by reacting ethylene glycol and an inbutylene-containing C4 hydrocarbon fraction in the presence of a strong acid type cation exchanger catalyst, for example, as disclosed in US Patent No. 24809.
No. 40, No. 3170000, No. 3288842, and Japanese Patent Publication No. 57-35687, etc., and the products are usually composed of the main product MBE and the by-product ethylene glycol dicoushaributyl ether (hereinafter abbreviated as DBE). ) and ethylene glycol. Therefore, this reaction product as it is, MBE separated from the product, or a mixture containing MBE can be used as the raw material of the present invention. In this case, even if DBE is contained in the feedstock, the content is small and the reaction temperature is high, particularly if it is above about ioor, both DBE and MBE are decomposed and diisobutylene can be obtained in high yield. Therefore, when DBE is included in the raw material mixture, the content should be about 0.40 parts by weight or less per 1 part by weight of MBE. If the DI3E content in the raw material mixture is too high or the reaction temperature is too low, the amount of MIlE in the system will not decrease, and the purpose of the present invention to obtain diisobutylene from MBE will not be achieved, and the yield of diisobutylene will also decrease. It becomes low.

触媒として使用できる強酸型陽イオン交換体の例として
はスチレンスルホン酸型陽イオン交換樹脂(スチレンと
ジビニルベンゼン等の多不飽オ6化合物との架橋共重合
体をスルホン化したもの)、フェノールスルホン酸型陽
イオン交換樹脂(フェノールスルホン酸をホルムアルデ
ヒドと縮合させたもの)、スルホン化石炭、スルホン化
アスファルト、フッ素樹脂にスルホン酸基を結合したス
ルホン酸型陽イオン交換樹脂(例えばデュポン社製ナフ
ィオン等)などのスルホン酸基を有するものがある。
Examples of strong acid type cation exchangers that can be used as catalysts include styrene sulfonic acid type cation exchange resins (sulfonated crosslinked copolymers of styrene and polyunsaturated 6-compounds such as divinylbenzene), and phenol sulfone. Acid-type cation exchange resins (phenol sulfonic acid condensed with formaldehyde), sulfonated coal, sulfonated asphalt, sulfonic acid-type cation exchange resins with sulfonic acid groups bonded to fluororesin (for example, DuPont Nafion, etc.) ) have a sulfonic acid group.

エチレングリコールモノタージャリプチルエーテルを強
酸型陽イオン交換体触媒と接触させてジイソブチレンを
生成させる反応は温度約85〜150Cにおいて加圧下
に行なう。好ましい反応条件は圧力約3〜20に2で2
・G特に約5〜1sKy/釧2・G、温度約100〜1
30G、液時空間速度約0.1〜5,0hr−”特に約
0.2〜2. Ohr−”である。圧力は高ずぎても低
すぎてもジイソブチレンの選択率が低くなり、温度は低
すぎると原料グリコールエーテルの転化率が低くなり、
高温すぎるとジインブチレンの選択率が低くなりまた触
媒が損傷をうける。
The reaction of contacting ethylene glycol monoturgyl ether with a strong acid type cation exchange catalyst to form diisobutylene is carried out at a temperature of about 85-150C and under pressure. Preferred reaction conditions are 2 to 2 at a pressure of about 3 to 20
・G especially about 5~1sKy/Kushi 2・G, temperature about 100~1
30 G, and the liquid hourly space velocity is about 0.1 to 5.0 hr-", especially about 0.2 to 2.0 hr-". If the pressure is too high or too low, the selectivity of diisobutylene will be low, and if the temperature is too low, the conversion rate of the raw material glycol ether will be low.
If the temperature is too high, the selectivity of diynbutylene will be low and the catalyst will be damaged.

液空間速度は遅すぎても速すぎてもジイソブチレンの選
択率が低くなってしまう。また原料は触媒床に上昇流で
供給しても下降流で供給してもよいが、生成したジイソ
ブチレンは比重が小さく上方に集まる傾向があるので上
昇流で供給するのが好ましい。まだ反応は通常固定床方
式で行なうが、必要に応じ移動床方式あるいは懸濁床方
式で行なってもよいし、またこれら連続流通式のほか回
分式で行なってもよい。本発明方法において原料グリコ
ールエーテルはジイソブチレンとエチレングリコールに
転化する。
If the liquid space velocity is too slow or too fast, the selectivity of diisobutylene will be low. Further, the raw material may be supplied to the catalyst bed in an upward flow or a downward flow, but it is preferable to supply the raw material in an upward flow because the produced diisobutylene has a small specific gravity and tends to collect upward. The reaction is usually carried out in a fixed bed system, but if necessary, it may be carried out in a moving bed system or a suspended bed system, and in addition to these continuous flow systems, it may also be carried out in a batch system. In the process of the invention, raw glycol ether is converted into diisobutylene and ethylene glycol.

反応生成混合物からのジイソブチレンの分離は常法によ
り行なうことができる。例えば生成混合物が均一溶液と
なっている場合はそのま寸、ジインブチレン含有層とエ
チレングリコール含有層との二層となっている場合はジ
インブチレン含有層を分取し、これを例えば蒸留、共沸
蒸留、抽出蒸留、溶剤抽出などの操作に付してジインブ
チレンを分離精製する。
Diisobutylene can be separated from the reaction product mixture by conventional methods. For example, if the resulting mixture is a homogeneous solution, it can be taken as it is, or if it has two layers, a diynbutylene-containing layer and an ethylene glycol-containing layer, the diynbutylene-containing layer can be separated, and this can be distilled, for example, or azeotropically distilled. Diynbutylene is separated and purified through operations such as , extractive distillation, and solvent extraction.

本発明方法の効果は目的とするジインブチレンの選択率
が高くトリイソブチレンおよびそれより高次のオリゴマ
ーの生成が少ないことである。ジインブチレンのなかで
も有用な2,4.4−1−リメチルペンテンー1および
2,4.4− )ジメチルペンテン−2異性体の選択率
が特に高い。まだジイソブチレンの選択率が高いうえ原
料グ・リコ・−ルエーテルの転化率も比較的高い。また
本発明方法では硫酸を使用しないので装置腐食の問題は
ほとんどないO 以下実施例により本発明を説明する。
The effect of the method of the present invention is that the selectivity of the target diynebutylene is high and the production of triisobutylene and higher order oligomers is small. The selectivity of 2,4,4-1-dimethylpentene-1 and 2,4,4-)dimethylpentene-2 isomers, which are useful among diynebutylene, is particularly high. The selectivity of diisobutylene is still high, and the conversion rate of raw glycol ether is also relatively high. Furthermore, since the method of the present invention does not use sulfuric acid, there is almost no problem of equipment corrosion.The present invention will be explained below with reference to Examples.

実施例1〜6 反応管に90CCの強酸型陽イオン交換樹脂触媒アンバ
ーリスト15(ロームアンドハース社製。
Examples 1 to 6 In a reaction tube, 90CC of strong acid type cation exchange resin catalyst Amberlyst 15 (manufactured by Rohm and Haas) was used.

スチレンとジビニルベンゼンとの共重合体をスルホン化
したもので交換容量4’、 9 meq 、/ f+粒
径0.3〜1.0mm)を充填し、この触媒床に第1表
に示す組成の原料を第1表に示す反応条件において上昇
流で通じた。
A sulfonated copolymer of styrene and divinylbenzene was packed with an exchange capacity of 4', 9 meq, /f + particle size of 0.3 to 1.0 mm), and this catalyst bed was charged with a catalyst having the composition shown in Table 1. The raw materials were passed in upward flow at the reaction conditions shown in Table 1.

これらの結果を第1表に示す。尚、第1表中実施例1〜
5は反応開始3時間経過後の結果を示し実施例6は反応
開始7日経過後の結果を示す。また実施例1で得られた
ジインブチレン中の2.4.4−トリメチルペンテン−
1と2.4.4−1−リメチルペンテンー2の合計含有
量は99.6wt%であり、その他のものとしてはトリ
メチルペンテン類の異性体が主で、ジメチルヘキセン類
は認められなかった。2,4.4− トリメチルペンテ
ン−1と2.4.4−トリメチルペンテン−2との比率
は77 : 23であった。実施例2〜5で得られたジ
イソブチレン中の2.4.4− )リメチルペンテンー
1及び2,4.4−トリメチルペンテン−2の含有量も
実施例1の場合とほぼ同等であった。実施例6で得られ
たジイソブチレン中の2.4.4− トリメチルペンテ
ン=I及び21414− ) +7メチルペンテンー2
の合計含有量は995重量係であり、2,4.4−トリ
メチルペンテン−1と2.4.4 = トリメチルペン
テン−2との比率は76 : 24であった。また実施
例1〜6においてM B Eからのインブチレンオリゴ
マー以外の生成物はインブチレンとエチレングリコール
が主体をなすものであった。
These results are shown in Table 1. In addition, Examples 1 to 1 in Table 1
Example 5 shows the results 3 hours after the start of the reaction, and Example 6 shows the results 7 days after the start of the reaction. In addition, 2.4.4-trimethylpentene- in diynebutylene obtained in Example 1
The total content of 1 and 2.4.4-1-limethylpentene-2 was 99.6 wt%, and other isomers were mainly trimethylpentenes, and dimethylhexene was not observed. . The ratio of 2,4.4-trimethylpentene-1 and 2,4.4-trimethylpentene-2 was 77:23. The contents of 2,4,4-)limethylpentene-1 and 2,4,4-trimethylpentene-2 in the diisobutylene obtained in Examples 2 to 5 were also almost the same as in Example 1. Ta. 2.4.4-trimethylpentene=I and 21414-)+7methylpentene-2 in diisobutylene obtained in Example 6
The total content was 995% by weight, and the ratio of 2,4.4-trimethylpentene-1 to 2.4.4=trimethylpentene-2 was 76:24. Furthermore, in Examples 1 to 6, the products other than the inbutylene oligomer from MBE were mainly composed of inbutylene and ethylene glycol.

第1表にみられるように実施例1〜6ではジイソブチレ
ン生成の選択率が高く、トリインブチレン以上の高次オ
リゴマーの副生用は非常に少なくまたM B Eの転化
率も比較的高い。まだ前記したように生成ジイソブチレ
ン中の有用な異性体2,4゜4−トリメチルペンテン−
1及び2,4.4− トリメチルペンテン−2の含有量
は非常に高い。さらに実施例5と実施例6の結果かられ
かるように触媒寿命も長い。
As shown in Table 1, in Examples 1 to 6, the selectivity for producing diisobutylene was high, the amount of by-products of higher oligomers of triynebutylene or higher was very small, and the conversion rate of MBE was also relatively high. . Still as mentioned above, the useful isomer 2,4°4-trimethylpentene in the diisobutylene produced
The content of 1 and 2,4.4-trimethylpentene-2 is very high. Furthermore, as can be seen from the results of Examples 5 and 6, the catalyst life is long.

実施例7 実施例1〜6で使用したと同じ反応管にM B ID3
3.4wt%(22,7モル%) +  D B fL
 10.5 wt%(49モル%)およびエチレングリ
コール56.0w1%(72,4モル%)よりなる混合
物を、温度113C。
Example 7 M B ID3 was added to the same reaction tube used in Examples 1 to 6.
3.4 wt% (22.7 mol%) + D B fL
A mixture consisting of 10.5 wt% (49 mol%) and 56.0 wt% (72.4 mol%) of ethylene glycol was heated to a temperature of 113C.

圧力5. □ K17cm2・G +液空間速度0.4
4 hr ’で通じ、反応を行なった。生成物の組成は
l’vI 13 E 20.9 wt%。
Pressure 5. □ K17cm2・G + liquid space velocity 0.4
The reaction was carried out for 4 hr'. The composition of the product is l'vI 13 E 20.9 wt%.

1]3E3.9 wt%tエチレングリコール65.0
w1%。
1] 3E3.9 wt%t ethylene glycol 65.0
w1%.

インブチレン1.1 wt%およびインブチレンオリゴ
マーg、1wt%であった。 原料および生成物中のM
BE、DBEおよびエチレングリコールのモル比から計
算して、M B EとI) B gとの合計量のモル基
準での転化率は42.0%であった。−!たイソブチレ
ンオリゴマーの選択率は89%であり、インブチレンオ
リゴマー中のジインブチレンの生成比率およびジインブ
チレン中の2.4.4− )リメチルペンテン−1およ
び2.4.4−トリメチルペンテン=2の含有量は実施
例1の結果とほぼ同等であった。
Inbutylene was 1.1 wt% and inbutylene oligomer g was 1 wt%. M in raw materials and products
Calculated from the molar ratio of BE, DBE and ethylene glycol, the conversion rate on a molar basis of the total amount of MBE and I)Bg was 42.0%. -! The selectivity of the isobutylene oligomer was 89%. The amount was almost the same as the result of Example 1.

特許出願人 丸善石油化学株式会社Patent applicant: Maruzen Petrochemical Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] エチレングリコールモノターシャIj フチ/L/ x
 −チルを85〜150Cにおいて強酸型陽イオン交換
体触媒と加圧下に接触させてジインブチレンを得ること
を特徴とするジイソブチレンの製造方法。
Ethylene glycol monotarsia Ij border/L/x
- A method for producing diisobutylene, which comprises contacting chill with a strong acid type cation exchanger catalyst under pressure at 85 to 150C to obtain diimbutylene.
JP57194450A 1982-11-04 1982-11-04 Preparation of diisobutylene Granted JPS5984830A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57194450A JPS5984830A (en) 1982-11-04 1982-11-04 Preparation of diisobutylene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57194450A JPS5984830A (en) 1982-11-04 1982-11-04 Preparation of diisobutylene

Publications (2)

Publication Number Publication Date
JPS5984830A true JPS5984830A (en) 1984-05-16
JPS6247851B2 JPS6247851B2 (en) 1987-10-09

Family

ID=16324769

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57194450A Granted JPS5984830A (en) 1982-11-04 1982-11-04 Preparation of diisobutylene

Country Status (1)

Country Link
JP (1) JPS5984830A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138125A (en) * 1980-03-28 1981-10-28 Cosmo Co Ltd Conversion of glycol mono-tert-alkyl ether

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56138125A (en) * 1980-03-28 1981-10-28 Cosmo Co Ltd Conversion of glycol mono-tert-alkyl ether

Also Published As

Publication number Publication date
JPS6247851B2 (en) 1987-10-09

Similar Documents

Publication Publication Date Title
US4540831A (en) Mixed-phase hydrocarbon conversion process employing total overhead condenser
KR100763216B1 (en) Method for producing high-purity diisobutene
US4100220A (en) Dimerization of isobutene
CN1140486C (en) Process for oligomerization of isobutylene
US4375576A (en) Enhanced diisobutene production in the presence of methyl tertiary butyl ether
US4570026A (en) Production of isobutene from methyl tertiary butyl ether
US20050043571A1 (en) Obtaining tert-butanol
CS232749B2 (en) Method of methyl tertiary butylether production
HU198164B (en) Process for producing high purity isobutene
US4267393A (en) Process for producing ethers by reacting olefins with alcohols
TW201500343A (en) Mixtures comprising tertiary isononanoic acids proceeding from 2-ethylhexanol, process for preparation thereof and the preparation of conversion products
CA1185273A (en) Process for the preparation of pure tert.-olefins
KR101075381B1 (en) 3 Process for preparing tert-butanol
US4575567A (en) Adsorbent regeneration in etherification processes
EP0633873B1 (en) Two stage production of ether from tertiary alcohol
US4351970A (en) Method of preparing alcohols having two to four carbon atoms by catalytic hydration of olefins
DE10020943A1 (en) Process for the cleavage of alkyl tert-alkyl ether to obtain iso-olefins and alkanols on acidic catalysts
US20080031785A1 (en) Apparatus for Separating Oxygenate Modifier from Oligomerization Effluent by Water Wash
US4575566A (en) Adsorbent regeneration in etherification processes
GB2024812A (en) Process for producing tert-butanol from a mixture of isobutylene and n-butene
US4270011A (en) Process for the production of tertiary butyl alcohol
JPS6058894B2 (en) Manufacturing method of tertiary alcohol
JPS5984830A (en) Preparation of diisobutylene
US2658083A (en) Selective hydrogenation of oxoprocess aldehydes
CA1321607C (en) Process for the preparation of tert.-olefins