JPS598457B2 - Laminated core manufacturing equipment - Google Patents

Laminated core manufacturing equipment

Info

Publication number
JPS598457B2
JPS598457B2 JP12461479A JP12461479A JPS598457B2 JP S598457 B2 JPS598457 B2 JP S598457B2 JP 12461479 A JP12461479 A JP 12461479A JP 12461479 A JP12461479 A JP 12461479A JP S598457 B2 JPS598457 B2 JP S598457B2
Authority
JP
Japan
Prior art keywords
laminated
thickness
core plate
core
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP12461479A
Other languages
Japanese (ja)
Other versions
JPS5647225A (en
Inventor
義文 原
博次 高野
祥之 椛島
幹夫 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12461479A priority Critical patent/JPS598457B2/en
Publication of JPS5647225A publication Critical patent/JPS5647225A/en
Publication of JPS598457B2 publication Critical patent/JPS598457B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Punching Or Piercing (AREA)
  • Manufacture Of Motors, Generators (AREA)

Description

【発明の詳細な説明】 本発明は、電気機器用成層鉄心の製造装置に関し、特に
公開特許公報昭52−156305などで公知の金型内
かしめ方式による積層鉄心製造装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an apparatus for manufacturing a laminated iron core for electrical equipment, and more particularly to an improvement in an apparatus for manufacturing a laminated iron core using an in-mold caulking method known in Japanese Patent Publication No. 52-156305 and the like.

第1図は、従来方式の積層鉄心製造装置の縦断面を示す
概略図で、第2図は、鉄心板が成形される状態を示す平
面図である。
FIG. 1 is a schematic diagram showing a longitudinal section of a conventional laminated core manufacturing apparatus, and FIG. 2 is a plan view showing a state in which a core plate is formed.

製品積層鉄心の材料である鉄心板1は案内ローラ2を介
して上金型3、下金型4内に導かれる。上金型3が下降
すると、鉄心板1は第2図のように第1、第■ステーシ
ョンで穴あけ加工され、第1ステーションでは、かしめ
用突子11、または通し孔が形成され、第■ステーショ
ンで外形抜きおよびカルめが行なわれる。上金型3の1
回の上昇下降のたびに、所定ピッチ分の鉄心板1が案内
ローラ2で送られ、順次この動作が繰返されると、下金
型4の第■ステーションの中には鉄心板が積層される。
一方、上金型3の上下動を検知するマイクロスイッチ6
より得られるタイミングで鉄心板1の板厚が板厚センサ
Tにより金型に入るまでに計測され、そのデータは制御
装置8において金型の第1ステーションのところに実際
の鉄心板の板厚測定済の部分が来るまで順次シフトされ
て記憶される。そして制御装置8は金型の第1ステーシ
ョンにおける板厚を゜順次加算、合計する。さて第1ス
テーションのポンチ10は、ソレノイド9により位置を
第3図、第4図のように可変できるようになつている。
制御装置8はソレノイド9を制御して前記の板厚加算合
計値が、あらかじめ設定された成層鉄心の目標値以下の
時は第3図のように鉄心板1にかしめ用突子11を形成
させ、加算値が目標値に達すると第4図のように通し孔
を形成させるようポンチ10を突出させ、同時に加算合
計値を零にセツトする。すると第ステーシヨンの金型内
の積層された鉄心板5は設定された目標厚みごとに非結
合伏態が形成され所定厚みの製品積層鉄心となる。とこ
ろで、通常の製品積層鉄心は40〜100枚の鉄心構成
片を積重ねて形成され、積厚設定値はたとえば板厚0.
5mmの鉄心板では20〜501mとなる。製品の寸法
精度は、積厚によつて異なるが、たとえば仕様積厚が5
0詣のものでは、50mm±0.511程度であり、今
板厚の標準値が0.51mIであれば100枚積層する
ことになる。この場合、制御装置8が前記ソレノイド9
(通し孔用ソレノイドとよぶ)を制御して通し孔を形成
する時点は、前記加算合計値が目標値T以上の時であり
、Tは次式により定めている。積厚設定値501tQ1
板厚0.511を代入するとT=49.7501!とな
り、この時得られる製品積層鉄心の加算合計積厚Hの値
は49.7511≦Hく50.25m1Lとなる。
A core plate 1, which is a material for the product laminated core, is guided into an upper mold 3 and a lower mold 4 via guide rollers 2. When the upper mold 3 descends, the iron core plate 1 is drilled at the first and second stations as shown in FIG. Outline cutting and culling are performed. Upper mold 3-1
Each time the core plate 1 is raised and lowered, a predetermined pitch of the iron core plate 1 is sent by the guide roller 2, and when this operation is sequentially repeated, the iron core plates are stacked in the station ① of the lower mold 4.
On the other hand, a micro switch 6 that detects the vertical movement of the upper mold 3
The thickness of the core plate 1 is measured by the plate thickness sensor T before it enters the mold at the timing obtained from The data is sequentially shifted and stored until the completed part is reached. Then, the control device 8 sequentially adds and totals the plate thicknesses of the mold at the first station. Now, the position of the punch 10 at the first station can be varied by a solenoid 9 as shown in FIGS. 3 and 4.
The control device 8 controls the solenoid 9 to form caulking protrusions 11 on the core plate 1 as shown in FIG. 3 when the total plate thickness addition value is less than a preset target value for the stratified core. When the added value reaches the target value, the punch 10 is projected to form a through hole as shown in FIG. 4, and at the same time, the added total value is set to zero. Then, the laminated iron core plates 5 in the mold of the first station are formed into an unbonded state for each set target thickness, and become a product laminated iron core of a predetermined thickness. By the way, a normal product laminated core is formed by stacking 40 to 100 core components, and the stacking thickness setting value is, for example, a plate thickness of 0.
For a 5 mm iron core plate, the length is 20 to 501 m. The dimensional accuracy of the product varies depending on the stacking thickness, but for example, if the specified stacking thickness is 5.
For the one with zero pass, it is about 50mm±0.511, and if the current standard value of the plate thickness is 0.51mI, 100 sheets will be laminated. In this case, the control device 8 controls the solenoid 9.
(referred to as a through-hole solenoid) is controlled to form a through-hole when the sum total value is equal to or greater than a target value T, and T is determined by the following equation. Lamination thickness setting value 501tQ1
Substituting the plate thickness of 0.511, T=49.7501! Therefore, the value of the added total laminate thickness H of the product laminated core obtained at this time is 49.7511≦H and 50.25 m1L.

一方、許容される製品鉄心の積厚は前述のごとく50m
1±0.511であるため、許される積厚の測定誤差は
、±0.2511となる。したがつて鉄心板1枚の枚厚
測定誤差はこの値を100枚で割算して±0.0025
11となる。すなわち、板厚0.51!の鉄心板を土2
.5μmの絶対精度で測定できる板厚センサ7が必要で
ある。さらに、この板厚センサは鉄心板1が順次高速で
間欠送りされる間に測定できる応答速度の速いものでな
ければならない。ところが市販されているセンサにおい
ては、鉄心板に直接センサを接触させて測定する接触式
の板厚センサの他には前記精度を満足するものは現存し
ない。そして、接触式の板厚センサを使用した場合には
センサと鉄心板が接触しているため、長時間使用してい
るとセンサが次第に摩耗し、精度が保証されなくなる。
そのため短かい期間に定期的に保守してゆく必要がある
。また前記応答速度の点で仕様が満足できない場合も多
い。したがつて、従来方式によると現伏ではセンサの精
度が不十分なため高精度の積厚制御を行なうことができ
ない。
On the other hand, the allowable stacking thickness of the product core is 50 m as mentioned above.
1±0.511, the allowable measurement error for the stacking thickness is ±0.2511. Therefore, the thickness measurement error for one iron core plate is ±0.0025 by dividing this value by 100 pieces.
It becomes 11. In other words, the plate thickness is 0.51! The iron core plate of soil 2
.. A plate thickness sensor 7 that can measure with an absolute accuracy of 5 μm is required. Furthermore, this plate thickness sensor must have a fast response speed capable of measuring while the core plate 1 is sequentially and intermittently fed at high speed. However, among commercially available sensors, there is currently no sensor that satisfies the above-mentioned accuracy other than a contact-type plate thickness sensor that measures the thickness by directly contacting the iron core plate. When a contact-type plate thickness sensor is used, since the sensor and the core plate are in contact with each other, the sensor gradually wears out when used for a long time, and accuracy is no longer guaranteed.
Therefore, it is necessary to perform regular maintenance over a short period of time. Furthermore, there are many cases where the specifications cannot be satisfied in terms of the response speed. Therefore, according to the conventional method, it is not possible to control the stacking thickness with high precision due to insufficient sensor accuracy.

本発明は、一般の低精度の非接触センサを用いて従来方
式では得られなかつた高精度の積厚制御を行なうことが
できる方式を提供するもので、原理的にも従来方式と異
なつている。
The present invention provides a method that uses a general low-precision non-contact sensor to perform high-precision stack thickness control that could not be achieved with conventional methods, and is different from conventional methods in principle. .

本発明を1実施例の第5図および第6図に基づいて説明
する。
The present invention will be explained based on FIGS. 5 and 6 of one embodiment.

図において1〜6、および9〜11の番号のついたもの
は従来例の第1図で説明したものと同じである。13は
マーク穴打抜きポンチで、マーク用ソレノイド12と連
結され、ソレノイドを動作させると、その時の鉄心板に
は第6図のようなマーク穴14を形成できるようになつ
ている。
In the figure, the parts numbered 1 to 6 and 9 to 11 are the same as those described in FIG. 1 of the conventional example. Reference numeral 13 denotes a mark hole punch, which is connected to a mark solenoid 12, and when the solenoid is operated, a mark hole 14 as shown in FIG. 6 can be formed in the iron core plate at that time.

15はマーク穴14との距離に比例した出力信号が得ら
れる公知のマーク穴近接センサ(詳細後述)で、下金型
4のステーシヨンの内部に取付けられ、製品積層鉄心の
マーク穴14のある鉄心板16の位置を検出する。
Reference numeral 15 denotes a known mark hole proximity sensor (details will be described later) that can obtain an output signal proportional to the distance to the mark hole 14, and is installed inside the station of the lower mold 4, and is attached to the core with the mark hole 14 of the product laminated iron core. The position of the plate 16 is detected.

センサ15のアナログ出力はA−D変換器18によりデ
イジタル信号に変換され、制御装置17に入力される。
制御装置17はマイクロコンピユータを組込んだ加減乗
除計算と、ソレノイド9,12の制御を行なうことがで
きるものである。19は、上下の鉄心板のかしめが行わ
れないよう通し孔が形成された鉄心板を示し、この部分
を境に製品積層鉄心が分離される。
The analog output of sensor 15 is converted into a digital signal by AD converter 18 and input to control device 17 .
The control device 17 incorporates a microcomputer and is capable of performing addition, subtraction, multiplication, and division calculations and control of the solenoids 9 and 12. Reference numeral 19 indicates a core plate in which a through hole is formed so that the upper and lower core plates are not caulked, and the product laminated core is separated along this portion.

そして鉄心板19より下の部分が完成品の積層鉄心であ
り、上の部分が半製品である。マーク穴近接センサ15
と、マーク穴14のある鉄心板16と中心線間距離tと
センサの出力E8との関係は鉄心板の公称板厚を0.5
11とした時第7図のようになつており、鉄心板16が
近づいてくると、センサの出力Esは徐々に増加し、近
接センサと鉄心板16の中心線が一致した時最大EWI
Lになり、離れるにつれて再び小さくなる。金型内にお
いて第8図の移動方向にしたがつて、マーク穴のある鉄
心板16が近接センサ15に近づき、ぞの出力Esの値
が第7図のA−B間に入ると、センサの出力Esと近接
距離t(負の値)との間にはt=C,ES+C2(C,
・C2は定数)なる近似関係式が成立するので、この式
をあらかじめ制御装置17に登録しておく。すると、セ
ンサ出力Esより近接距離tの値を制御装置17が計算
することができる〇今、マーク穴14のついた鉄心板1
6が金型内にあるものとして、センサの出力Esから求
めた鉄心板16の近接距離tより、正確な製品鉄心の積
厚を求める方法について説明する。
The portion below the core plate 19 is a finished laminated core, and the portion above is a semi-finished product. Mark hole proximity sensor 15
The relationship between the distance t between the core plate 16 with the mark hole 14 and the center line and the sensor output E8 is given by assuming that the nominal thickness of the core plate is 0.5.
11, it becomes as shown in Fig. 7, and as the iron core plate 16 approaches, the output Es of the sensor gradually increases, and when the center line of the proximity sensor and the iron core plate 16 coincide, the maximum EWI is reached.
It becomes L and becomes smaller again as you move away from it. In the mold, as the iron core plate 16 with the mark hole approaches the proximity sensor 15 in the moving direction shown in FIG. 8, and the value of the output Es falls between A and B in FIG. Between the output Es and the proximity distance t (negative value), t=C, ES+C2(C,
Since an approximate relational expression (C2 is a constant) holds true, this expression is registered in the control device 17 in advance. Then, the control device 17 can calculate the value of the proximity distance t from the sensor output Es. Now, the iron core plate 1 with the mark hole 14
Assuming that 6 is in the mold, a method for determining the accurate stacking thickness of the product core from the proximity distance t of the core plate 16 determined from the output Es of the sensor will be described.

第9図は第5図の中の本発明の原理に関する部分を抜き
出したもので、金型の上下動のたびに次々と形成される
鉄心板により下方へ押し出され、近接センサ15により
、マーク穴のある鉄心板16が検出された時点を示す。
図において、第ステーシヨンの下金型の積層鉄心板の入
口から近接センサ15の中心線までの長さをL(Mm)
、近接センサ15と鉄心板16相互の中心線間の距離を
t(77!m)(負の値)とし、鉄心板16より上に積
層されている積層鉄心板Bの枚数を鉄心板16を含めて
N枚とする。今、これらN枚の鉄心板の平均板厚Taを
考えると、鉄心板16は、中心線が検出されているので
0.5枚として計算できるから、Taは次式により求め
ることができる。ところで、電気機器用鉄心に使用され
る電磁剛板JIS規格において±10%の公差を許容さ
れている。
FIG. 9 is an extracted part of FIG. 5 related to the principle of the present invention, in which the core plate is pushed downward by the iron core plate formed one after another each time the mold moves up and down, and the mark hole is detected by the proximity sensor 15. It shows the point in time when a certain iron core plate 16 was detected.
In the figure, the length from the entrance of the laminated iron core plate of the lower mold of the second station to the center line of the proximity sensor 15 is L (Mm).
, the distance between the center lines of the proximity sensor 15 and the core plate 16 is t (77! m) (negative value), and the number of laminated core plates B stacked above the core plate 16 is Including N pieces. Now, considering the average plate thickness Ta of these N iron core plates, since the center line of the iron core plate 16 has been detected, it can be calculated as 0.5, so Ta can be determined by the following equation. By the way, the JIS standard for electromagnetic rigid plates used in iron cores for electrical equipment allows a tolerance of ±10%.

よつて鉄心板の平均板厚は、たとえば、標準板厚が0.
5m7!Lのものであれば0.45mm−0.55m1
Lの範囲で変動する。しかし素材の鉄心板をある一定の
長さに区切つて考えた場合、鉄心板のある部分と次の部
分の平均板厚を比較すると、使用する鉄心板の製造工程
の伏況が急変するわけではないので、相互の平均の板厚
はほぼ等しい。すなわち第5図のマーク穴のある鉄心板
16より上の鉄心板群Bとそれより下の鉄心板群Aとの
平均板厚は、ほぼ等しいと考えてよく、実測して確かめ
られる。また、これから形成され、鉄心板群Bの上に順
次積層されていく鉄心板のある一定枚数以内での平均板
厚は鉄心板群Bの平均板厚とほぼ等しい。したがつて、
今、鉄心群Bの中の鉄心板19を通し孔のある鉄心板と
すれば、鉄ノビ板より上のn枚の鉄心板が、金型の中の
半製品であり、その積厚は、先に計算で求めた平均板厚
Taに枚数nを乗算した結果、つまりTaxnと等しい
と考えてよい。
Therefore, the average thickness of the iron core plate is, for example, if the standard thickness is 0.
5m7! If it is L, 0.45mm-0.55m1
Varies within the range of L. However, when considering the core plate as a raw material divided into certain lengths, comparing the average thickness of one part of the core plate to the next part shows that the situation in the manufacturing process of the core plate used does not change suddenly. Therefore, the average thickness of each plate is almost the same. That is, the average plate thicknesses of the core plate group B above the core plate 16 with the mark hole in FIG. 5 and the core plate group A below it can be considered to be approximately equal, and this can be confirmed by actual measurement. Further, the average plate thickness of a certain number of iron core plates to be formed and sequentially stacked on the iron core plate group B is approximately equal to the average plate thickness of the iron core plate group B. Therefore,
Now, if the core plate 19 in core group B is a core plate with a through hole, the n core plates above the iron gap plate are semi-finished products in the mold, and their stacking thickness is: It may be considered that it is equal to the result of multiplying the average plate thickness Ta calculated previously by the number of plates n, that is, Taxn.

上金型3が1度上昇下降するたびに、この乗算結果に前
記平均板厚を加算してゆくと、順次、その時点の半製品
の積層となるから、この値が、前記目標値となる時、通
し孔用ソレノイド9を制御して、通し孔を鉄心板に形成
すれば、正確な積厚の製品となる。さて、このようにし
て金型内の鉄心板の平均板Taを正確に計算することが
できれば高精度の積厚制御を行なえる。
Each time the upper mold 3 rises and falls once, adding the average plate thickness to this multiplication result will result in the stacking of the semi-finished products at that point in time, so this value becomes the target value. At this time, if the through hole solenoid 9 is controlled to form through holes in the iron core plate, a product with accurate lamination thickness can be obtained. Now, if the average plate Ta of the iron core plates in the mold can be calculated accurately in this way, highly accurate stacking thickness control can be performed.

そのためには、第9図の伏態における式(2)のL,t
,Nの数値を制御装置17が知る必要がある。Lの値は
下金型の上端面から近接センサ15の中心まで距離を実
測して、あらかじめ制御装置17に記憶しておける定数
である。
In order to do this, L, t of equation (2) in the prone state shown in FIG.
, N needs to be known by the control device 17. The value of L is a constant that is stored in advance in the control device 17 by actually measuring the distance from the upper end surface of the lower mold to the center of the proximity sensor 15.

また前記のように第7図の関係から、センサの出力E8
をA−D変換器18を介して匍脚装置17に入力するこ
とにより、tの値を求めることができる。一方Nの値は
、マーク穴用ソレノイド12を動作させてからの鉄心板
の積枚数であるので、マイクロスイツチ6の信号を計数
することにより制御装置17において既知の値となる。
したがつて式(2)にこれらの数値をあてはめて平均板
厚を計算することができる。そしてFbl卿装置17を
マイクロコンビユータを内蔵した構成にすれば前記デー
タの記憶、計算等の処理を簡単な構成で行なうことがで
きる。一方、平均板厚は順次、新しく計算していく必要
があるので、平均板厚を計算するためのマーク穴のある
鉄心板を形成するソレノイド12は、近接センサ15が
マーク穴14を検出した時、すなわち第9図のようにな
つた時点で動作させる。すると金型内には、約N枚ごと
にマーク穴のある鉄心板が送りこまれ、平均板厚を計算
できる。また一定枚数ごとに無条件にソレノイド12を
動作させる様にしても、同様に平均板厚の計算を更新す
ることができる。ところで製造装置を動かす最初の時点
においては、マーク穴用のソレノイド12を動作させる
前述のタイミングがとれないので、マーク穴用ソレノイ
ド12を無条件に動作させ、マーク穴のある鉄心板をつ
くるような制御回路を制御装置17に内蔵しておく。さ
て、従来装置においては、製品積厚501m±0.51
1のものを得るためには前述の計算により板厚の測定誤
差は±0.002511である必要がある。
Also, as mentioned above, from the relationship shown in Figure 7, the sensor output E8
The value of t can be determined by inputting the value of t to the pedestal device 17 via the A-D converter 18. On the other hand, since the value of N is the number of core plates stacked after the mark hole solenoid 12 is operated, it becomes a known value in the control device 17 by counting the signals from the micro switch 6.
Therefore, by applying these values to equation (2), the average plate thickness can be calculated. If the Fbl unit 17 is configured to have a built-in microcomputer, processing such as data storage and calculation can be performed with a simple configuration. On the other hand, since the average plate thickness needs to be newly calculated one after another, the solenoid 12 that forms the iron core plate with the marked hole for calculating the average plate thickness is activated when the proximity sensor 15 detects the marked hole 14. , that is, the operation is started when the state becomes as shown in FIG. Then, core plates with marked holes are fed into the mold every N sheets, and the average plate thickness can be calculated. Furthermore, even if the solenoid 12 is operated unconditionally every time a certain number of sheets are used, the calculation of the average sheet thickness can be updated in the same way. By the way, at the beginning of operating the manufacturing equipment, the aforementioned timing for operating the mark hole solenoid 12 cannot be obtained, so the mark hole solenoid 12 is operated unconditionally to produce a core plate with mark holes. A control circuit is built into the control device 17. Now, in the conventional equipment, the product thickness is 501m±0.51m.
In order to obtain a value of 1, the measurement error of the plate thickness must be ±0.002511 according to the calculation described above.

本実施例では計算により平均板厚を求めているため、式
(2)におけるL+tの測定誤差xを所定の範囲内にす
ればよく、従来の一枚当り0.0025m11t以内の
測定誤差と同等にするためにはx=0.0025n×(
金型上端面からセンサまでの鉄心板の枚数L+TN)と
なればよい。
In this example, since the average plate thickness is determined by calculation, the measurement error x of L+t in equation (2) only needs to be within a predetermined range, which is equivalent to the conventional measurement error of 0.0025 m11t per sheet. In order to do this, x=0.0025n×(
The number of iron core plates from the upper end surface of the mold to the sensor may be L+TN).

式(2)よりN二一+0.5でTa゛あるから、たとえ
ばL+t+40m1,.ta+0.5mmとすればN+
80となるので、x=0.2m!となる。
From equation (2), since Ta is N21+0.5, for example, L+t+40m1, . If ta+0.5mm, then N+
80, so x=0.2m! becomes.

したがつて、マーク穴近接センサ15には、測定誤差が
0.2U1以下のものを使う必要があるが、この程度の
精度であれば第10図のような構造にした金型4と空気
の背圧センサ20〔たとえば、東京精密株式会社製のA
−E変換器(型式E−DT−AG)と専用増幅器〕を用
いて、マーク穴近接センサ15を構成することができる
。第10図は下金型4のセンサ近傍の横断面図であり、
数Kf/(1771の圧力のエアーは背圧センサ20を
通り噴出口21と、マーク穴14を通り、排気口22か
ら出てゆく。噴出口21は高さ方向が0.5mIの角穴
になつている。マーク穴14がある時、第10図のよう
にエアーが流れてエアーの背圧が下降するが、マーク穴
がないとエアーが流れずエアーの背圧が高くなる。した
がつてマーク穴14と噴出口21とが重なる断面積にほ
ぼ比例して背圧が変化するその結果出力特性は第7図の
ようになる。前述のようにマーク穴近接センサ15の出
力Esと近接距離tとの間の近似関係式は誤差が0.2
m!以下なら許されるので、第7図においてAやBの部
分において直線性が悪くても、特に問題とならない。こ
れまでは圧縮エアーを用いたマーク穴近接センサを説明
したが、鉄心板のマーク穴の近接距離は先端が0.5m
7!L程度の大きさに作られた指向性の鋭い渦電流型の
近接センサを金型4内に埋込むことによつて検出するこ
とも可能である。なお、本発明ではマーク穴14を形成
して、これを近接センサ15で検出しているが、鉄心板
の金型の直接接触しない部分に、たとえば鉄心板にマー
クとして塗料を吹きつけ、この塗料マークをセンサで検
出するような方法においても、同様な原理にて構成する
ことができる。ただし、下金型の上端面から近接センサ
の中心までの距離Lもまた0.211以下の誤差で実測
されなければならないが、ノギス、マイクロメータ等に
より、この精度で測定することは容易である。
Therefore, it is necessary to use a mark hole proximity sensor 15 with a measurement error of 0.2U1 or less, but if this level of accuracy is required, the mold 4 with the structure shown in Fig. 10 and the air Back pressure sensor 20 [for example, A made by Tokyo Seimitsu Co., Ltd.
-E converter (model E-DT-AG) and a dedicated amplifier], the mark hole proximity sensor 15 can be configured. FIG. 10 is a cross-sectional view of the lower mold 4 near the sensor,
Air with a pressure of several Kf/(1771) passes through the back pressure sensor 20, passes through the jet nozzle 21, the mark hole 14, and exits from the exhaust port 22.The jet nozzle 21 is a square hole with a height of 0.5 mI. When there is a mark hole 14, air flows and the air back pressure decreases as shown in Fig. 10, but if there is no mark hole, the air does not flow and the air back pressure increases. The back pressure changes approximately in proportion to the cross-sectional area where the mark hole 14 and the jet nozzle 21 overlap.As a result, the output characteristics are as shown in Fig. 7.As mentioned above, the output Es of the mark hole proximity sensor 15 and the proximity distance The approximate relationship between t and t has an error of 0.2
m! Since the following is permissible, even if the linearity is poor in the portions A and B in FIG. 7, there is no particular problem. So far, we have explained the mark hole proximity sensor using compressed air, but the proximity distance of the mark hole on the iron core plate is 0.5 m from the tip.
7! It is also possible to detect by embedding in the mold 4 an eddy current type proximity sensor having a sharp directivity and having a size of approximately L. In the present invention, the mark hole 14 is formed and detected by the proximity sensor 15, but for example, paint is sprayed on the iron core plate as a mark on the part of the iron core plate that does not come in direct contact with the mold, and this paint is used as a mark. A similar principle can be used for a method of detecting marks using a sensor. However, the distance L from the upper end surface of the lower mold to the center of the proximity sensor must also be measured with an error of 0.211 or less, but it is easy to measure with this accuracy using calipers, micrometers, etc. .

これまでの説明では、マーク穴用ソレノイド12と通し
孔用ソレノイド9とは別々に制御するものとして考えて
きたが、第11図のように、1個のソレノイド21で同
じ鉄心板に通し孔とマーク穴14を形成しても良い。こ
の時は第9図においてN二nとなる。これまでは下金型
上端から近接センサ15の中心までの間に半製品が1個
ある場合のみ述べてきたが第11図のように製品が1個
と半製品が1個ある場合はその積枚数Nl,nとすれば
、平均板厚Taは、で求められる。
In the explanation so far, the mark hole solenoid 12 and the through hole solenoid 9 have been considered to be controlled separately, but as shown in FIG. Mark holes 14 may also be formed. At this time, it becomes N2n in FIG. So far, we have only described the case where there is one semi-finished product between the upper end of the lower mold and the center of the proximity sensor 15, but if there is one product and one semi-finished product as shown in Fig. If the number of plates is Nl,n, then the average plate thickness Ta can be obtained as follows.

一方、マーク穴用ソレノイド9が別々に制御された場合
は積枚数Nl,nはマーク穴のある鉄心板からの枚数を
使い式(3)により平均板厚Taが計算される。このよ
うに本発明によれば、センサの精度が0.2m1程度で
、積層鉄心板の板厚を高精度で算出できる。
On the other hand, when the mark hole solenoid 9 is controlled separately, the average plate thickness Ta is calculated using equation (3) using the stacked number Nl,n of the iron core plate with the mark hole. As described above, according to the present invention, the sensor accuracy is about 0.2 m1, and the thickness of the laminated iron core plate can be calculated with high accuracy.

そのため、従来方式に比べ製造装置の精度を維持するた
めのセンサ部の保守が非常に容易となる。また、センサ
のコストも安価になる。
Therefore, compared to the conventional method, maintenance of the sensor section to maintain the precision of the manufacturing device is much easier. Moreover, the cost of the sensor becomes cheaper.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の積層鉄心製造装置の縦断面を示す概略図
、第2図はその鉄心板が成形される伏態を示す平面図、
第3図は鉄心板のかしめ用突子の形成図、第4図は通し
孔の形成図、第5図は本発明の一実施例の積層鉄心製造
装置の縦断面の概略図、第6図は実施例における鉄心板
の成形される状態を示す平面図、第7図は近接センサの
特性図、第8図は金型内における近接センサとマーク穴
のある鉄心板との位置関係図、第9図は実施例の原理を
示す詳細図、第10図は1実施例としての空圧センサの
概略図、第11図は他の実施例の原理を示す詳細図であ
る。 6・・・・・・積層枚数計数用マイクロスイツチ、9・
・・・・・通し孔用ソレノイド、12,21・・・・・
・マーク穴用ソレノイド、14・・・・・・鉄心板のマ
ーク穴、15・・・・・・近接センサ、17・・・・・
・制御装置、18・・・・・・A−D変換器、20・・
・・・・空気背圧式近接センサ。
FIG. 1 is a schematic diagram showing a vertical cross section of a conventional laminated core manufacturing device, and FIG. 2 is a plan view showing the lying state in which the core plate is formed.
FIG. 3 is a diagram of the formation of caulking protrusions of the core plate, FIG. 4 is a diagram of the formation of through holes, FIG. 5 is a schematic longitudinal cross-sectional view of a laminated core manufacturing apparatus according to an embodiment of the present invention, and FIG. 6 7 is a characteristic diagram of the proximity sensor, FIG. 8 is a diagram showing the positional relationship between the proximity sensor and the core plate with mark holes in the mold, and FIG. FIG. 9 is a detailed diagram showing the principle of an embodiment, FIG. 10 is a schematic diagram of a pneumatic sensor as one embodiment, and FIG. 11 is a detailed diagram showing the principle of another embodiment. 6...Micro switch for counting the number of laminated sheets, 9.
...Through hole solenoid, 12, 21...
・Solenoid for mark hole, 14... Mark hole on iron core plate, 15... Proximity sensor, 17...
・Control device, 18...A-D converter, 20...
...Air back pressure type proximity sensor.

Claims (1)

【特許請求の範囲】[Claims] 1 鉄心板の一部にかしめ用の突子を設け、この突子部
相互の嵌合かしめ作用を利用して積層し、この突子部の
間欠打抜き制御により製品積層鉄心の厚みを決定する積
層鉄心製造装置において、鉄心板の打抜かれる部分の側
面に選択的にマークを付するマーク機構と製造途中の前
記マークのついた鉄心板の近接距離に対応した信号を出
す近接センサを金型内に固定して設けた積層厚み寸法の
計測手段と、前記製造装置が1枚積層するごとにタイミ
ング信号を発生する手段と、製品鉄心の積厚寸法の目標
値をあらかじめ設定する手段と、前記突子部の形成を行
なうか否かの動作を電気的に制御できる間欠打抜機構と
、前記マーク機構を任意の時点で動作させ、その後の前
記タイミング信号を計数した値を積層枚数とし、前記マ
ークのある鉄心板を近接センサが検出する時得られる計
測値より計算して求めた積層厚さ寸法を、前記積層枚数
で割算して1枚の鉄心板の平均板厚値を算出し、更にこ
の平均板厚を前記タイミング信号毎に加算累計し、この
累計値が前記目標値を越えた時に前記打抜機構の動作を
制御する制御装置とを有することを特徴とする積層鉄心
製造装置。
1 A lamination method in which caulking protrusions are provided on a part of the core plate, and the thickness of the product laminated core is determined by intermittent punching control of the protrusions, which is laminated using the mutual fitting and caulking action of the protrusions. In core manufacturing equipment, a marking mechanism that selectively marks the side surface of the punched portion of the core plate and a proximity sensor that outputs a signal corresponding to the proximity distance of the marked core plate during manufacture are installed in the mold. a means for measuring a laminated thickness dimension fixedly provided to the core; a means for generating a timing signal each time the manufacturing apparatus laminates one sheet; a means for presetting a target value for the laminated thickness dimension of the product core; An intermittent punching mechanism that can electrically control the operation of whether or not to form a child part and the mark mechanism are operated at any time, and the value obtained by counting the timing signals thereafter is defined as the number of laminated sheets, and the mark is The laminated thickness dimension calculated from the measurement value obtained when a proximity sensor detects a certain iron core plate is divided by the number of laminated sheets to calculate the average plate thickness value of one iron core plate, and A laminated iron core manufacturing apparatus characterized by comprising: a control device that adds and totals the average plate thickness for each of the timing signals, and controls the operation of the punching mechanism when the cumulative value exceeds the target value.
JP12461479A 1979-09-26 1979-09-26 Laminated core manufacturing equipment Expired JPS598457B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12461479A JPS598457B2 (en) 1979-09-26 1979-09-26 Laminated core manufacturing equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12461479A JPS598457B2 (en) 1979-09-26 1979-09-26 Laminated core manufacturing equipment

Publications (2)

Publication Number Publication Date
JPS5647225A JPS5647225A (en) 1981-04-28
JPS598457B2 true JPS598457B2 (en) 1984-02-24

Family

ID=14889774

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12461479A Expired JPS598457B2 (en) 1979-09-26 1979-09-26 Laminated core manufacturing equipment

Country Status (1)

Country Link
JP (1) JPS598457B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101464A (en) * 2009-11-04 2011-05-19 Mitsui High Tec Inc Method of manufacturing stacked core and manufacturing device thereof
JP2018007421A (en) * 2016-07-01 2018-01-11 株式会社三井ハイテック Laminated iron core and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60213324A (en) * 1984-04-09 1985-10-25 Mitsui Haitetsuku:Kk Die device for laminated iron core
US5319020A (en) * 1993-04-21 1994-06-07 National Starch And Chemical Investment Holding Corporation Redispersible waterborne pressure sensitive adhesive polymer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011101464A (en) * 2009-11-04 2011-05-19 Mitsui High Tec Inc Method of manufacturing stacked core and manufacturing device thereof
JP2018007421A (en) * 2016-07-01 2018-01-11 株式会社三井ハイテック Laminated iron core and manufacturing method therefor

Also Published As

Publication number Publication date
JPS5647225A (en) 1981-04-28

Similar Documents

Publication Publication Date Title
EP0084568A1 (en) Iron core laminate manufacturing apparatus
SU1145938A3 (en) Method of checking profile of gear tooth and device for effecting same
CN101890434B (en) Control method for rolling speed of periodic variable-thickness strip
US5099666A (en) Method and device for detecting folding angles of a metal sheet during folding
US5148693A (en) Method and a device for detecting folding angles of a metal sheet during the folding and a method for folding of a metal sheet
US3176263A (en) Measuring and recording method and apparatus
JPS598457B2 (en) Laminated core manufacturing equipment
US20180266804A1 (en) Curved gap gauge
US4053989A (en) Co-ordinates measuring apparatus for an exclusive propeller processing machine
GB1457444A (en) Gauge device for measurint the linear sizes of mechanical work pieces
CN102594047B (en) Method and device for controlling thickness of finished product of motor silicon steel sheet
JP2011101464A (en) Method of manufacturing stacked core and manufacturing device thereof
JPS5937659B2 (en) Laminated core manufacturing equipment
JPS57110913A (en) Measurement of curved surface
JPS6031092B2 (en) Laminated core manufacturing equipment
JPS61180551A (en) Equipment for manufacturing laminated core
CN103673816B (en) A kind of conductive material parts measurement instrument
JPS6031093B2 (en) Laminated core manufacturing equipment
JPS6028373B2 (en) Manufacturing method of laminated iron core
JPH01299711A (en) Press for intelligent bending
CN208790842U (en) A kind of ASP composited steel and plastic decking equipment for coating film
CN102172672B (en) Method and device for measuring strain in draw forming of cold stamping
JPS61111800A (en) Powder compression molding machine
CN109201843B (en) Automatic blanking device and method for cold-rolled variable-thickness plate
JPH033886B2 (en)