JPS5984090A - Rotary type heat exchanger - Google Patents

Rotary type heat exchanger

Info

Publication number
JPS5984090A
JPS5984090A JP19437982A JP19437982A JPS5984090A JP S5984090 A JPS5984090 A JP S5984090A JP 19437982 A JP19437982 A JP 19437982A JP 19437982 A JP19437982 A JP 19437982A JP S5984090 A JPS5984090 A JP S5984090A
Authority
JP
Japan
Prior art keywords
layer
ceramic
spray coating
heat accumulating
sliding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19437982A
Other languages
Japanese (ja)
Inventor
Mitsuhide Mizutani
水谷 満英
Toru Mizuno
透 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP19437982A priority Critical patent/JPS5984090A/en
Publication of JPS5984090A publication Critical patent/JPS5984090A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D19/00Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium
    • F28D19/04Regenerative heat-exchange apparatus in which the intermediate heat-transfer medium or body is moved successively into contact with each heat-exchange medium using rigid bodies, e.g. mounted on a movable carrier
    • F28D19/047Sealing means

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PURPOSE:To prevent the progress of oxidization and improve seal properties by a method wherein oxidation resistant solid lubricating material fine powder is impregnated into the sprayed layer of ceramic of the sliding layer of a seal device. CONSTITUTION:First path 9, passing high-pressure suction air, and the second path 10, passing low-pressure exhaust gas, are formed in a housing 6 so as to cross a heat accumulating body 5 respectively. A ring gear 7 on the outer periphery of the heat accumulating body 5 and a drive gear 8 are engaged and the heat accumulating body 5 rotates in the housing 6 by receiving the driving force of a motor. The seal device 11 consists of a sliding part 11a, contacted slidingly with the heat accumulating body 5, and a spring member 11b. The sliding part 11a consists of a metallic plate 12 of stainless steel series and a sliding layer 13. At first, the ceramic is sprayed by means of plasma spray coating onto the metallic plate 12 of stainless steel series to make the ceramic spray coating layer 14. This ceramic spray coating layer 14 is porous, therefore, the oxidization is progressed into the spray coating layer and, accordingly, the oxidation resistant solid lubricating material fine powder 15 is impregnated in order to fill up the holes and, then, the layer is dried under a temperature higher than 100 deg.C.

Description

【発明の詳細な説明】 本発明は回転式熱交換器に関し、例えば圧縮空気と排気
ガスの熱交換を行うガスタービン用熱交換器に用いて有
効である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a rotary heat exchanger, and is effective for use, for example, in a gas turbine heat exchanger that exchanges heat between compressed air and exhaust gas.

従来の回転式熱交換器では、低圧排気ガス通路と同圧空
気通路とを仕切るシール装置の摺動部は、ステンレス系
金属板上にセラミックをプラズマ溶射したものを使用し
てきた。しかし、このシール装置を使用している間に摺
動部のセラミック溶射層が多孔質であるため、その内部
まで酸化が進行して体積変化が生じた。そのためセラミ
ック溶射層に歪が発生し、シール性を低下させCいた。
In conventional rotary heat exchangers, the sliding part of the seal device that partitions the low-pressure exhaust gas passage and the same-pressure air passage has been made of a stainless steel metal plate that is plasma-sprayed with ceramic. However, while this sealing device was in use, since the ceramic sprayed layer on the sliding part was porous, oxidation progressed to the inside, causing a volume change. As a result, distortion occurred in the ceramic sprayed layer, reducing sealing performance.

本発明は上記の様な欠点に鑑み発明されたもので、セラ
ミック溶射層内部への酸化を防+l:L歪をなくすこと
によってシール装置のシール性を向上さ−υることを目
的とする。
The present invention was invented in view of the above-mentioned drawbacks, and an object of the present invention is to improve the sealing performance of a sealing device by preventing oxidation inside a ceramic sprayed layer and eliminating +l:L distortion.

この目的を達するため本発明でけ、セラミック溶射層に
耐酸化性の固体潤滑+1微粉末を含浸させ、セラミック
溶射層に発生し°ζいた空孔にこの固体潤滑材微粉末を
詰めることにより酸化の進行を防止するものである。
In order to achieve this objective, the present invention impregnates the ceramic sprayed layer with oxidation-resistant solid lubricant +1 fine powder, and fills the pores generated in the ceramic sprayed layer with this solid lubricant fine powder. This is to prevent the progression of

次に本発明の一実施例を図に暴づいて説明する。Next, one embodiment of the present invention will be explained with reference to the drawings.

ガスターヒ゛ンエンジンて番才第1図に示す様にタービ
ン1にて駆動される二1ンプレッサ2にて吸入空気が圧
縮され、高圧となって燃焼室3に吸入される。そして、
エンジンの11シ効率を高めるため、高温の排気ガスと
低温の吸入空気とを回転式熱交換器4にて熱交換させる
ようにしている。
In a gas star engine, as shown in FIG. 1, intake air is compressed by a compressor 2 driven by a turbine 1 and is drawn into a combustion chamber 3 at a high pressure. and,
In order to increase the efficiency of the engine, a rotary heat exchanger 4 exchanges heat between high temperature exhaust gas and low temperature intake air.

回転式熱交換器4は、ff12図に示1ようにハニカム
状のセラミック材を円盤状に成形してなる蓄熱体5がハ
ウジング6内に回転自在に配設されている。蓄熱体5の
外周にはリングギア7が配設され、このリングギヤ7に
駆動ギア8が噛合し、図示しないモータの駆動力を受け
て蓄熱体5がハウジング6内を回転する。ハウジング6
す1には高圧の吸入空気を通ず第1の通路9と低圧の排
気ガスを通ず第2通路IOとが夫々前記蓄熱体5を横切
って形成されている。
In the rotary heat exchanger 4, as shown in FIG. A ring gear 7 is disposed around the outer periphery of the heat storage body 5. A drive gear 8 meshes with the ring gear 7, and the heat storage body 5 rotates within the housing 6 under the driving force of a motor (not shown). Housing 6
A first passage 9 through which high-pressure intake air does not pass and a second passage IO through which low-pressure exhaust gas does not pass are formed across the heat storage body 5 in the first passage 1, respectively.

従って、高温低圧の排気ガスはこの蓄熱体5を通過する
際に、蓄熱体5によって熱を吸収され、低温低圧となっ
て排気用第2通路10に導出される。一方、蓄熱体5は
この排気ガスの熱を吸収することによって高温となり、
次いで、駆動ギア8の駆動力を受け゛C第1通路9側へ
回転する。そのため、高温となった蓄熱体5が第1通路
9を横切るよう位置し、低温高圧の吸入空気はこの蓄熱
体5より熱を受けて高温高圧となり吸入空気用第1通路
9に導出される。即ち、蓄熱体5の回転に伴ない、高温
の排気ガスと低11V、の吸入空気との熱交換が行なわ
れ、排気ガスは低温に吸入空気は高温になって導出され
る。また、シール装置11によって高圧空気の低圧排気
ガスへの漏れが防止される。このシール装置11はWi
熱休体と摺接する摺動部11aと、この摺動部llaを
蓄熱体5側に押圧するばね部材11bとによっ′ζ形成
される。
Therefore, when the high-temperature, low-pressure exhaust gas passes through the heat storage body 5, heat is absorbed by the heat storage body 5, and the exhaust gas becomes low-temperature and low-pressure and is led out to the second exhaust passage 10. On the other hand, the heat storage body 5 becomes high temperature by absorbing the heat of this exhaust gas,
Then, it receives the driving force of the driving gear 8 and rotates toward the first passage 9 side. Therefore, the high temperature heat storage body 5 is positioned across the first passage 9, and the low temperature and high pressure intake air receives heat from the heat storage body 5 and becomes high temperature and high pressure and is led out to the first passage 9 for intake air. That is, as the heat storage body 5 rotates, heat is exchanged between the high temperature exhaust gas and the low 11V intake air, and the exhaust gas is led out at a low temperature and the intake air at a high temperature. Furthermore, the sealing device 11 prevents high pressure air from leaking into the low pressure exhaust gas. This sealing device 11 is
It is formed by a sliding part 11a that comes into sliding contact with the thermal rest body, and a spring member 11b that presses this sliding part 11a toward the heat storage body 5 side.

次に」二記摺動部ttaを訂しく説明する。Next, the second sliding portion tta will be explained in detail.

第3図に示ず梯に摺動部11aけステンレス系金属板1
2と摺動層13から成る。この摺動層重3を形成するに
は、まず最初にステンレス系金属板12にセラミックを
プラズマ溶射する。つまりプラズマ溶射ガンの内部に設
置された電極とノズルの隙間に、直流の高電力(5(j
OA、80v)を導入しζ、ガン内部に強烈な電気アー
クを発生さセる。この状態のガン内に窒素や水素などの
不活性ガスを流ずことによっ゛C1アークがガスを励起
させ16,000℃の熱プラズマが発生し、ガスの速度
は、3000rn/s以上となる。そして、このガン内
にセラミックの粉末粒子を送ると熱プラズマの炎により
セラミックの粉末粒子は溶かされ、その溶かされた粒子
の飛行速度は、600m/ s 9上になる。そし′C
そのガンをステンレス系金属板12に向はセラミック粉
末粒子を溶射すると表面で粒間粘合が起き、セラミック
溶射層14をつくる。このセラミック溶射層14は多孔
質であるため、溶射層内部まで酸化が進行するので、次
に、この孔を塞ぐために耐酸化性の固定潤滑材微粉末1
5 (例えばBN、N1p)を含浸させる。
Stainless steel metal plate 1 with sliding part 11a on the ladder (not shown in Figure 3)
2 and a sliding layer 13. In order to form the sliding layer 3, ceramic is first plasma-sprayed onto the stainless steel metal plate 12. In other words, high DC power (5 (j
OA, 80v) was introduced and an intense electric arc was generated inside the gun. By flowing an inert gas such as nitrogen or hydrogen into the gun in this state, the C1 arc excites the gas and a thermal plasma of 16,000°C is generated, and the gas velocity becomes over 3000rn/s. . When ceramic powder particles are fed into this gun, the ceramic powder particles are melted by a flame of thermal plasma, and the flight speed of the melted particles is 600 m/s 9 or more. Soshi'C
When the gun is used to spray ceramic powder particles onto the stainless steel metal plate 12, intergranular viscosity occurs on the surface, forming a ceramic sprayed layer 14. Since this ceramic sprayed layer 14 is porous, oxidation progresses to the inside of the sprayed layer.Next, in order to close these pores, oxidation-resistant fixed lubricant fine powder is added.
5 (e.g. BN, N1p).

この含浸は、大きさが108m以下の固体潤滑材微粉末
15を懸濁した水溶液中に、先にヒラミック溶射層14
を形成した摺動部itaを浸す。そして、その状態でへ
空引きを行ないセラミック溶射層14の内部に固体潤滑
材微粉末15を浸み込ませ、セラミック溶射層14の孔
を塞ぐ。その後100℃以上の温度で乾燥して完了する
This impregnation is carried out by first adding the helical sprayed layer 14 into an aqueous solution in which solid lubricant fine powder 15 having a size of 108 m or less is suspended.
Immerse the sliding part ita that has been formed. Then, in this state, drying is performed to infiltrate the solid lubricant fine powder 15 into the ceramic sprayed layer 14 and close the pores of the ceramic sprayed layer 14. After that, drying is completed at a temperature of 100° C. or higher.

以上の様にして摺動部11aは形成される。The sliding portion 11a is formed as described above.

本発明者等の実験によれば、BNN機微粉末含浸により
、セラミック溶射層14の酸化が900°C以」−まで
防止できることを確認している。また、含浸時に使用す
る水溶液中にリン酸塩系の無機接着材を添加することに
より、酸化防止効果が向上することを確認している。
According to experiments conducted by the present inventors, it has been confirmed that oxidation of the ceramic sprayed layer 14 can be prevented up to 900° C. or higher by impregnation with BNN fine powder. Furthermore, it has been confirmed that the antioxidant effect is improved by adding a phosphate-based inorganic adhesive to the aqueous solution used during impregnation.

また、本実施例ではセラミック溶射層14に含浸して固
体潤滑材微粉末15を詰め込んでいるが、高圧ガスによ
り固体潤滑材微粉末15をセラミック溶射層14に圧入
しても詰め込むことができる。
Further, in this embodiment, the solid lubricant fine powder 15 is packed by impregnating the ceramic sprayed layer 14, but the solid lubricant fine powder 15 can also be packed by press-fitting into the ceramic sprayed layer 14 using high-pressure gas.

以上説明した様な本発明の熱交換器の摺動部11aでは
、セラミック溶射M14の内部まで酸化するのを防止す
ることができ、摺動層13の歪を減少させてシール性の
劣化を防止することができる。また、摺動層13が蓄熱
耐5とのI?擦摩耗によって薄くなっても酸化防止の効
果は低下しない。
In the sliding part 11a of the heat exchanger of the present invention as described above, it is possible to prevent oxidation to the inside of the ceramic sprayed M14, reduce distortion of the sliding layer 13, and prevent deterioration of sealing performance. can do. Moreover, the sliding layer 13 has a heat storage resistance 5 of I? Even if it becomes thin due to abrasion, the anti-oxidation effect does not decrease.

さらに、摺動部11aの摺動性は、従来なら高温になる
と劣化したが、本発明では1JIW化性のある固体潤滑
材11粉末15を使用することにより高温まで良好であ
る。
Furthermore, the sliding properties of the sliding portion 11a deteriorated at high temperatures in the past, but in the present invention, by using the solid lubricant 11 powder 15 with 1JIW properties, the sliding properties are good even at high temperatures.

【図面の簡単な説明】[Brief explanation of the drawing]

ff11図は本発明熱交換器の使用例を示“4構成図、
第2図は第1図図示熱交換器を示す断面図、第3図は第
2図の要部拡大t1視図である。 5・・・蓄熱体、7・・・リングギヤ、8・・・駆動ギ
ヤ。 9 ・・・!′61 通路、10  ・・・第 2ii
Tl路、  11 ・・・ シール装置、13・・・摺
動層、14・・・セラミ・ツク溶射層、15・・・固体
潤滑祠微粉末。 代理人弁理士 岡 部   隆 第1図 第2図 第3図
Figure ff11 shows an example of the use of the heat exchanger of the present invention.
FIG. 2 is a sectional view showing the heat exchanger shown in FIG. 1, and FIG. 3 is an enlarged t1 view of the main part of FIG. 5... Heat storage body, 7... Ring gear, 8... Drive gear. 9...! '61 Passage, 10...2nd ii
Tl path, 11... Seal device, 13... Sliding layer, 14... Ceramic sprayed layer, 15... Solid lubricant fine powder. Representative Patent Attorney Takashi Okabe Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims] 第1通路と第2通路とを横切って回転する円板状の蓄熱
体と、この蓄熱体の側壁に摺接され、前記第1通路、第
2通路を仕切るシール装置と、前記蓄熱体外周に配設さ
れたリングギヤと、このリングギヤと噛合する駆動ギヤ
を備え、前記シール装置の摺動層がセラミック溶射層と
このセラミック溶射層内に含まれる固体潤滑微粉末とで
構成されていることを特徴とする回転式熱交換器。
a disc-shaped heat storage body that rotates across a first passage and a second passage; a sealing device that is in sliding contact with a side wall of the heat storage body and partitions the first passage and the second passage; and a sealing device that partitions the first passage and the second passage; The sealing device includes a ring gear arranged therein and a drive gear that meshes with the ring gear, and the sliding layer of the sealing device is composed of a ceramic sprayed layer and solid lubricant fine powder contained in the ceramic sprayed layer. A rotary heat exchanger.
JP19437982A 1982-11-04 1982-11-04 Rotary type heat exchanger Pending JPS5984090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19437982A JPS5984090A (en) 1982-11-04 1982-11-04 Rotary type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19437982A JPS5984090A (en) 1982-11-04 1982-11-04 Rotary type heat exchanger

Publications (1)

Publication Number Publication Date
JPS5984090A true JPS5984090A (en) 1984-05-15

Family

ID=16323613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19437982A Pending JPS5984090A (en) 1982-11-04 1982-11-04 Rotary type heat exchanger

Country Status (1)

Country Link
JP (1) JPS5984090A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234048A (en) * 1991-01-14 1993-08-10 Ngk Insulators, Ltd. Sealing members for gas preheaters, and sealing structures using such sealing members for gas preheaters
US5595238A (en) * 1994-09-16 1997-01-21 Engelhard/Icc Rotatably supported regenerative fluid treatment wheel assemblies
JP2014521046A (en) * 2011-07-09 2014-08-25 程愛平 Rotating gas-gas heat exchanger with separation air curtain structure of non-leak sealing system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5234048A (en) * 1991-01-14 1993-08-10 Ngk Insulators, Ltd. Sealing members for gas preheaters, and sealing structures using such sealing members for gas preheaters
US5595238A (en) * 1994-09-16 1997-01-21 Engelhard/Icc Rotatably supported regenerative fluid treatment wheel assemblies
JP2014521046A (en) * 2011-07-09 2014-08-25 程愛平 Rotating gas-gas heat exchanger with separation air curtain structure of non-leak sealing system

Similar Documents

Publication Publication Date Title
US7367123B2 (en) Coated bucket damper pin and related method
US8936432B2 (en) Low density abradable coating with fine porosity
US6365222B1 (en) Abradable coating applied with cold spray technique
US4122673A (en) Internal combustion engine with afterburning and catalytic reaction in a supercharger turbine casing
US8137820B2 (en) Roughened coatings for gas turbine engine components
IT8322263A1 (en) ABRASIVE AND ABRADIBLE SEALING SYSTEM FOR GAS TRAVEL IN GAS TURBINE ENGINES
CN109312442A (en) Thermal barrier coating, turbine component and gas turbine
JP5122768B2 (en) Titanium treatment to minimize fretting
US20070125459A1 (en) Oxide cleaning and coating of metallic components
JPS6152229B2 (en)
JP2007187152A (en) Corrosion inhibiting ceramic coating and method of application
JP2018508689A (en) Transmission / expansion / regenerative combustion engine
CA2571961A1 (en) Method of coating gas turbine components
US20170096906A1 (en) Sealing fin armoring and method for the production thereof
CN101403103A (en) Method for aluminising the hollow metal parts of a turbomachine in vapour phase
JPS5984090A (en) Rotary type heat exchanger
US3845545A (en) Method for making regenerative heat-exchanger seals
US3833320A (en) Coating for apex seals of rotary engines and method of making
JP7045236B2 (en) Thermal barrier coatings, turbine components and gas turbines
JP2991795B2 (en) Ceramics-coated carbon fiber reinforced carbon composite for ground equipment and gas turbine components using the same
JP3642917B2 (en) Rigid coating material, sliding member coated with the same, and manufacturing method thereof
JPS5817324B2 (en) Heat shielding structure of metal structure in contact with high temperature gas atmosphere in gas turbine
US3423929A (en) Power transmission hot gas engine with ablative lubricant means
JPS59203671A (en) Surface coating method
CN109415978A (en) Heat-insulated coated film, turbine component and heat-insulated coating method