JPS5984004A - Method of controlling number of revolution of feed pump - Google Patents

Method of controlling number of revolution of feed pump

Info

Publication number
JPS5984004A
JPS5984004A JP19243482A JP19243482A JPS5984004A JP S5984004 A JPS5984004 A JP S5984004A JP 19243482 A JP19243482 A JP 19243482A JP 19243482 A JP19243482 A JP 19243482A JP S5984004 A JPS5984004 A JP S5984004A
Authority
JP
Japan
Prior art keywords
steam
water supply
pressure
speed
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19243482A
Other languages
Japanese (ja)
Inventor
天日 康博
本田 永信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19243482A priority Critical patent/JPS5984004A/en
Publication of JPS5984004A publication Critical patent/JPS5984004A/en
Pending legal-status Critical Current

Links

Landscapes

  • Control Of Positive-Displacement Pumps (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、制御特性の良い給水ポンプの回転数制御方式
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a water pump rotation speed control system with good control characteristics.

火力発電設備に於けるボイラ給水ポンプあるいハ原子力
発電設備に於ける原子炉給水ポンプは蒸気タービンによ
って駆動されることが多い。
Boiler feed water pumps in thermal power generation facilities and reactor feed water pumps in nuclear power generation facilities are often driven by steam turbines.

これらボングfg:WA動する蒸気タービンij%ボイ
ラあるいは原子炉の制御の一環として、回転数を制御さ
れ、これによシ給水流貝が制御される。即ち、ボイラあ
るいは原子炉の給水制御装置の信号によシ、蒸気タービ
ンの回転数を変化させて所望の給水量を得るものである
As part of the control of the steam turbine ij% boiler or nuclear reactor in which these bongs fg:WA are operated, the rotational speed is controlled, thereby controlling the water supply flow. That is, the desired amount of water supply is obtained by changing the rotational speed of the steam turbine based on a signal from the water supply control device of the boiler or nuclear reactor.

しかし、蒸気タービンの回転数制御範囲が広いこと、お
よび蒸気タービン作動の蒸気源を主タービンの抽気とj
−でいることによシ%蒸気圧の変化、及び給水ポンプの
吐出(ft、 ftが非線形である等の理由によシその
制御は困難である。
However, the speed control range of the steam turbine is wide, and the steam source for steam turbine operation is the main turbine's extraction air and j
This is difficult to control due to changes in vapor pressure and non-linear discharge of the water pump (ft, ft).

特に、後述するように、低流囲域では制御が不安定とな
シ、速肝制御による運転が出来ないという制約がある。
In particular, as will be described later, there are restrictions in that control is unstable in a low flow range and operation using fast liver control is not possible.

このため、低流囲域では、給水調整弁による制御、ある
いはモータ駆動ポンプに切替えていた。
For this reason, in low flow areas, control has been switched to a water supply regulating valve or a motor-driven pump.

このような給水調整弁による制御は、弁の絞りロスによ
る効率低下の問題かあ、す、ポンプ切替運転は切替時間
の制約の問題があった。
Control using such a water supply regulating valve has the problem of reduced efficiency due to throttling loss of the valve, and the pump switching operation has the problem of restrictions on switching time.

また、従来の機械油圧式制御装置では、レバー系の遊び
のため不感帯が大きく、回転数検出器としての調速機の
検出範囲がぜまいこと、また、その特性も非線形である
ととから、ボイラ給水制御を良好に行うことができない
などの欠点があった。
In addition, in conventional mechanical hydraulic control devices, the dead zone is large due to play in the lever system, the detection range of the speed governor as a rotation speed detector is narrow, and its characteristics are nonlinear. There were drawbacks such as inability to perform boiler water supply control well.

本発明は、従来の機械油圧式制御装置を電子油圧式制御
装置に置換えることによシ、駆!1iII蒸気源の圧力
変動の彩管を補正し7て制御特性を改善するとともに、
低流量域では高ゲインとなる給水対速度特性を改善し、
給水ポンプ駆動用タービンの制御に適した装置を具備し
た給水ポンプの回転数制御方式を提供することを目的と
する。
The present invention achieves improved performance by replacing the conventional mechanical-hydraulic control device with an electro-hydraulic control device. In addition to correcting the pressure fluctuation of the 1iIII steam source and improving the control characteristics,
Improves the water supply vs. speed characteristic, which has a high gain in the low flow area,
It is an object of the present invention to provide a system for controlling the rotation speed of a water supply pump, which is equipped with a device suitable for controlling a turbine for driving the water supply pump.

本発明の要旨は、給水要求値およびポンプ吐出圧力に対
応して給水ポンプの遠回指令値を正確に求めるとともに
、必賛な場合にはさらに、タービン駆!1υ蒸気条件ケ
フィードバックし、タービン加減弁開度を補正するよう
にした点にある。
The gist of the present invention is to accurately obtain the remote command value of the water supply pump in accordance with the water supply demand value and the pump discharge pressure, and, if necessary, to obtain a turbine drive command value. The main feature is that the 1υ steam condition is fed back and the turbine control valve opening degree is corrected.

このような構成とすることによシ、本発明は、従来速度
制御が出来なかった低11rt、量域を含めた広い速度
範囲にわたって、給水ポンプを適正に制御し、安定な給
水制御全応答性良く行わせるようにしたものである。
By adopting such a configuration, the present invention can appropriately control the water supply pump over a wide speed range including the low 11rt and volume range, where speed control could not be performed conventionally, and achieve stable water supply control overall response. This was done so that it would be done well.

以下本発明の一実施例を、図面を参照して説明する。An embodiment of the present invention will be described below with reference to the drawings.

勧1図は本発明の一実施例のブロック図である。Figure 1 is a block diagram of an embodiment of the present invention.

図に於いて、蒸気タービンlは、給水ポンプ2に直結さ
れ、これを駆動1−るものであ、す、その軸端には歯止
5が設けられている。蒸気は、高圧加減弁3または/及
び低圧加減弁4を通って、蒸気タービン1に流入し、タ
ービンを回転させ、直結の給水ポンプ2を駆動させる。
In the figure, a steam turbine 1 is directly connected to and drives a water supply pump 2, and a pawl 5 is provided at the shaft end of the steam turbine 1. Steam flows into the steam turbine 1 through the high pressure regulating valve 3 and/or the low pressure regulating valve 4, rotates the turbine, and drives the directly connected feed water pump 2.

タービンlの回転数は、歯車5に対向配性された速度検
出器6,7によシパルス列として検出され、速度信号変
換器8,9で演W、信号に入換される。真値選択器10
は、2つの遠回信号のうち真値とされる値を選択する。
The rotational speed of the turbine I is detected as a pulse train by speed detectors 6 and 7 disposed opposite to the gear 5, and converted into signals by speed signal converters 8 and 9. True value selector 10
selects the true value from the two long-circuit signals.

前述の真値選択器10では、2イイ号の差が許容値以内
であれば、真値を真値とし、差がFF容値以上であれは
変化率の小さい方′ffニア(、94とする処理が行な
われる。
In the aforementioned true value selector 10, if the difference between No. 2 and No. 2 is within the allowable value, the true value is set as the true value, and if the difference is greater than or equal to the FF capacity value, the one with the smaller rate of change is 'ff nearer (, 94). Processing is performed.

給水制御装置11からの給水要求信号は、信号変換bt
2に供給される。一方、信号変換器12にt」1、給水
ポンプ2の吐出圧力検出器22からの吐出圧カイら号も
供給される。信号変換器12は、前記給水要求信号およ
び吐出圧力信号を2変数(スカ)とし、要求タービン回
転数信号を出力する2変数関数発生機能を具備している
The water supply request signal from the water supply control device 11 is converted into a signal by bt
2. On the other hand, the signal converter 12 is also supplied with the discharge pressure t'1 and the discharge pressure k from the discharge pressure detector 22 of the water supply pump 2. The signal converter 12 has a function of generating a two-variable function that uses the water supply request signal and the discharge pressure signal as two variables (scan) and outputs a required turbine rotation speed signal.

第6図1、給水流ffWQ(横軸)と吐出圧力11p(
JfilJ軸)及びタービン速度(定格に対するlの関
係を示すポンプ特性図である。図より明らかなように、
要求給水流量と吐出圧力によυ、タービン速度したがっ
て、給水ポンプの回転数が一意的に求められることがわ
かる。
Fig. 6 1, Feed water flow ffWQ (horizontal axis) and discharge pressure 11p (
It is a pump characteristic diagram showing the relationship of l to JfilJ axis) and turbine speed (rating.As is clear from the figure,
It can be seen that the required water supply flow rate and discharge pressure υ, the turbine speed, and therefore the rotation speed of the water supply pump are uniquely determined.

すなわち、タービン速度をN(%)と[7、吐出圧力を
Hp、給水流量をWQとすると、@6図の特性/I・ら
分るように、タービン速ff[Na、N= g (Hp
 、 WQ ) の関係で表わされる2変数関数発生機能よシ求めること
が出来る。
In other words, if the turbine speed is N (%) and [7, the discharge pressure is Hp, and the water supply flow rate is WQ, then the turbine speed ff[Na, N= g (Hp
, WQ ) can be obtained using the two-variable function generation function.

1−かじ、従来は、ポンプの吐出圧力信号を使用せず、
要求給水流量WQのみからタービン速度を求めていた。
1 - Conventionally, the pump discharge pressure signal is not used,
The turbine speed was determined only from the required water supply flow rate WQ.

すなわち、従来は給水ポンプ2の吐出圧力を一定とした
運転状態を仮定していた。
That is, conventionally, an operating state in which the discharge pressure of the water supply pump 2 is kept constant has been assumed.

従って、特に低流量域では、給水流量対速度のゲインが
高いため、吐出圧力の変化を無視すると、対応するター
ビン速度を正確に求めることが出来ず、制御系が不安定
となシ運転が出来ないという問題があった。
Therefore, especially in the low flow region, the gain in feedwater flow rate vs. speed is high, so if changes in discharge pressure are ignored, the corresponding turbine speed cannot be determined accurately, leading to unstable control system operation. The problem was that there was no.

本発明は、前述の不安定要因をとり除き、低流量域でも
運転可能とするため、吐出圧力信号を追加して正確なタ
ービン速度および給水ポンプの回転数を得ることを可能
としたものである。
The present invention eliminates the above-mentioned instability factors and enables operation even in a low flow rate range by adding a discharge pressure signal to obtain accurate turbine speed and water pump rotation speed. .

偏差演算器13では、速度信号と、真値選択器10から
の遠回真値とを比較して速度聞差を求める。速度偏差信
号は、PI演n器14で演算され、その結果、タービン
駆動蒸気流M、 Qが得られる。
The deviation calculator 13 compares the speed signal with the rounded true value from the true value selector 10 to obtain a speed difference. The speed deviation signal is calculated by a PI calculator 14, and as a result, turbine drive steam flows M and Q are obtained.

駆#h蒸気流量Qは、圧力補正器15によυ油圧サーボ
位置Xに変換された後、増幅器16でパワー増幅される
。前記信号Xは、さらに電気油圧変換器17で油圧に変
換され、油圧サーボ18を駆動する。油圧サーボ18の
位置に対応して、リンり機構19によυ高圧加減弁3お
よび低圧加減弁4が開閉される。
The steam flow rate Q of the drive #h is converted into the υ hydraulic servo position X by the pressure corrector 15, and then power amplified by the amplifier 16. The signal X is further converted into oil pressure by an electro-hydraulic converter 17 and drives a hydraulic servo 18. Corresponding to the position of the hydraulic servo 18, the linkage mechanism 19 opens and closes the υ high pressure regulating valve 3 and the low pressure regulating valve 4.

一方、高圧加減弁3の入口の^圧蒸気圧力を検出器20
で、また低圧加減弁4の入口の低圧蒸気圧力を検出器2
1でそれぞれ検出し、その信号を圧力補正615へ補正
信号として送る。
On the other hand, a detector 20 detects the steam pressure at the inlet of the high pressure regulating valve 3.
Then, the low pressure steam pressure at the inlet of the low pressure regulating valve 4 is detected by the detector 2.
1 and sends the signal to the pressure correction 615 as a correction signal.

タービン1は、通常運転時は主タービンの抽気かもの低
圧蒸気を駆動蒸気とし、低圧蒸気圧力が低下し、その結
果駆#b力が不足した場合にのみ、主タービン入口の主
蒸気からの高圧蒸気がυ11えられる。
During normal operation, turbine 1 uses low-pressure steam extracted from the main turbine as driving steam, and only when the low-pressure steam pressure decreases and as a result, the driving force is insufficient, high-pressure steam from the main steam at the main turbine inlet is used as driving steam. υ11 steam is generated.

高圧加減弁3および低圧加減弁4は、油圧サーボ18の
位置Xに対応(7て、リンク機構19ケ介して開閉され
る。リンク機構19は、低圧加減弁4が全開となった後
にLしめて高圧加減弁3が開となる構造とされている。
The high pressure regulating valve 3 and the low pressure regulating valve 4 correspond to the position X of the hydraulic servo 18 (7) and are opened and closed via link mechanisms 19. The structure is such that the high pressure regulating valve 3 is open.

油圧サーボ18の位置Xに対する、タービンlへの流入
蒸気流MQの関係を第2図に示す。
The relationship of the steam flow MQ flowing into the turbine I with respect to the position X of the hydraulic servo 18 is shown in FIG.

油圧号−ボ18の位置Xが0から大きくなるにつれて低
圧加減弁4が開き、蒸気流量Qは増加する。X、の位置
で、低圧加減弁は全開となp、定格の低圧蒸気圧力での
最大流垣Q、。が得られる。
As the position X of the oil pressure valve 18 increases from 0, the low pressure regulating valve 4 opens and the steam flow rate Q increases. At position X, the low pressure regulating valve is fully open and the maximum flow rate Q at the rated low steam pressure. is obtained.

X、を超えて、油圧サーボの位置Xが増加すると高圧加
減弁3が開き、蒸気流Sttよさらに増加する。Xbの
(〜l置で高圧加減弁も全開となシ、定格の高圧、低圧
蒸気圧力での最大blfi ffi Q boが得られ
る。
When the position X of the hydraulic servo increases beyond X, the high pressure regulating valve 3 opens and the steam flow Stt further increases. When the high pressure regulating valve is also fully opened at the (~1) position of

なお、第2図は、高圧低圧それぞれの入口蒸気圧力が定
格の場合の関係であシ、圧力が変動した場合には、明ら
かなように、圧力に比(PuL−r蒸気流量は変化する
Note that FIG. 2 shows the relationship when the inlet steam pressures of the high and low pressures are rated, and as is clear, when the pressures fluctuate, the ratio (PuL-r steam flow rate) to the pressure changes.

また、訃」御用ディジタル・コントローラで求める手1
バを@5図に示す。コントローラ内部には、あらかじめ
、xa  ’I 及びf、を折点座標の定数として記憶
しておき、測定圧力py、、P)Iによって、各折点毎
に、 f 、 * Pt、 / PLo十f* I)Pu/ 
Puo”Q’をl[算することによシ、第3図に示す函
数形′f:ii算することが出来る。この手1唖は、第
4図の31から35の部分で行なっていたg目γと同じ
である。
In addition, the method 1 to find with the digital controller used by the deceased
The bar is shown in Figure @5. Inside the controller, xa 'I and f are stored in advance as constants of the corner coordinates, and depending on the measured pressure py,,P)I, for each corner point, f, * Pt, / PLo + f * I) Pu/
By calculating Puo'Q', we can calculate the function form 'f:ii shown in Figure 3.This step was performed in parts 31 to 35 in Figure 4. It is the same as g-th γ.

次e?、タービン駆仙蒸気艮Qが間にはいるQl。Next e? , Ql with the turbine-driven steamship Q in between.

Q、? ++ ) + XI+ Hの削°鉤式によシ、
油圧サーボ位置層jiH′Iさせる。この言in式は一
次補開式とII″1′ばれる方式である。
Q.? ++ ) + XI+H according to the hook type,
The hydraulic servo position layer jiH'I is set. This in-formula is a system called a linear complementary system II''1'.

この様子を第3図に示す。一方このように圧力に比例し
て蒸気流量が変化するのを補正するために本実施例にお
いては、圧力補正器LSi刊設(7ている。この補正器
15は、pr@算器14の出力タービン駆動蒸気流量Q
から、油圧サーボ位置Xをg1算させるものである。
This situation is shown in FIG. On the other hand, in order to correct the change in the steam flow rate in proportion to the pressure, a pressure corrector LSi (7) is installed in this embodiment. Turbine drive steam flow rate Q
From this, the hydraulic servo position X is calculated by g1.

との*V3v、?:行なうには、第3図の縦軸から横軸
を求めることであるが、この曲線が低圧蒸気圧力PL、
尚圧蒸圧蒸気圧で変化するため、−律の函数発生器で求
めることは出来ない。そ仁で、演算増幅器回路で求める
回路例を第4図に示す。
*V3v,? :To do this, find the horizontal axis from the vertical axis in Figure 3, and this curve is the low pressure steam pressure PL,
Since the pressure vapor pressure changes with the vapor pressure, it cannot be determined using a -law function generator. FIG. 4 shows an example of a circuit obtained using an operational amplifier circuit.

第3図に示した定格値(P LO+’ Poo )を第
4図(b)に示す二つの関数に分離し、関数発生器31
゜32で計算させる。この値に実圧力と定格との比Pt
、 /pr、。、 P+I/ PHeを乗n、器33.
34で乗じ、演算増幅器35で加えることにより、第3
図に示す関数が求まる。つまり% X、Pt、、Pnか
らQが求まる。この回路にさらに逆関数を求めるだめの
演算増幅436を追加することによシ’ Q + PL
 tP)IからXを求める回路とする。
The rated value (PLO+'Poo) shown in FIG. 3 is separated into two functions shown in FIG. 4(b), and the function generator 31
Have them calculate at ゜32. This value is the ratio of the actual pressure to the rated value Pt
, /pr,. , P+I/PHe to the power n, vessel 33.
By multiplying by 34 and adding by operational amplifier 35, the third
The function shown in the figure is found. In other words, Q can be found from %X, Pt, , Pn. By adding an operational amplifier 436 for calculating the inverse function to this circuit, 'Q + PL
tP) Assume that the circuit calculates X from I.

以上のように本実施例による各種圧力補正全追加するこ
とによシ、吐出圧力の変動時の正確な所要回転数を求め
ると同時に、蒸気圧力変動の結果が回転数に表われる前
に、す〜−ボ位置を補正することによシ、圧力変動の影
響を受けない安定した運転が実現される。
As described above, by adding all the various pressure corrections according to this embodiment, it is possible to obtain the accurate required rotation speed when the discharge pressure fluctuates, and at the same time, to calculate the required rotation speed completely before the result of steam pressure fluctuation appears in the rotation speed. By correcting the positions of ~ -, stable operation that is not affected by pressure fluctuations is realized.

特に、送電線事故などによシ、発電所の主タービンの負
荷を急激に絞って所内が独運転金行う場合、低流量域で
の所便回転数を求めると共に低圧蒸気圧力σ)低下を検
出し、速かに高圧加減1(−を・開くことが出来る。こ
れによって、所内単独運転に見合う給水量を確保するこ
とが可能となる。
In particular, when the load on the main turbine of a power plant is suddenly reduced due to a power transmission line accident, etc., and the plant is forced to run on its own, the power supply rotation speed in the low flow area is determined and the low pressure steam pressure σ) drop is detected. However, the high pressure control 1 (-) can be opened quickly. This makes it possible to secure the amount of water supply suitable for independent operation within the plant.

なお、前述の油圧サーボ18の代りに通常のサーボ機構
や弁駆動装置が用い1qることVi、鳴然可能である。
Note that it is naturally possible to use a normal servo mechanism or valve drive device in place of the above-mentioned hydraulic servo 18.

また、前述のタービン流入蒸気圧力による弁開度[1標
値の補正は、必ずしも必敦でtよなく、これを省略する
ことも可能である。
Further, the above-mentioned correction of the valve opening [1 target value] based on the turbine inflow steam pressure is not necessarily necessary, and may be omitted.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す系統図、第2図は油l
[サーボ位置とタービン流入蒸気層の関係を示した説明
図、第3図は本発明の前記実施列における圧力補正特性
を示した説明図、第4図(イ)。 ←)は本発明の前記実施B−1における圧力補正の演算
ハードウェア及びその説明図、第5図(() 、(ロ)
は圧力補正器の説明図、第6図は給水ポンプの給水流販
−吐出圧力特性金示した説明図である。 ■・・・タービン、2・・・給水ポンプ、3・・・、!
′jJFE加減弁、Q    弔30 弔6図 →継シ1tiiovqノ
Fig. 1 is a system diagram showing an embodiment of the present invention, Fig. 2 is a system diagram showing an embodiment of the present invention;
[An explanatory diagram showing the relationship between the servo position and the turbine inflow steam layer, FIG. 3 is an explanatory diagram showing the pressure correction characteristics in the embodiment of the present invention, and FIG. 4 (A). ←) is the pressure correction calculation hardware and its explanatory diagram in the implementation B-1 of the present invention, FIG. 5 ((), (b)
6 is an explanatory diagram of the pressure compensator, and FIG. 6 is an explanatory diagram showing the water supply distribution-discharge pressure characteristics of the water supply pump. ■...Turbine, 2...Water pump, 3...!
'jJFE control valve, Q 30 6th diagram→Continuation 1tiiovqノ

Claims (1)

【特許請求の範囲】[Claims] 1、給水要求値および給水ボ゛/プの吐出圧力に基づい
て給水ポンプの指令速度を求め、給水ポンプを駆動する
タービンへの供給蒸気量を、前記指令速度に基づいて調
整制御するようにしたポンプの回転数制御方式において
、前記指令速度から実速丸の偏差に基づいてタービン駆
動蒸気医C良を求め、さらに前記タービン駆111II
蒸気流量をタービン流入蒸気圧力で補正して蒸気加減弁
(e置’Th求め、この蒸気加減弁位置に基づいて蒸気
加減弁の開ff(f制御することを特徴とする給水ポン
プの回転数制御方法。
1. The commanded speed of the water supply pump is determined based on the water supply demand value and the discharge pressure of the water supply pump, and the amount of steam supplied to the turbine that drives the water supply pump is adjusted and controlled based on the commanded speed. In the pump rotation speed control method, the turbine drive steam speed C is determined based on the deviation of the actual speed circle from the command speed, and
The rotational speed control of the water supply pump is characterized in that the steam flow rate is corrected by the turbine inflow steam pressure to determine the position of the steam control valve (e'Th), and the opening of the steam control valve (ff) is controlled based on the position of the steam control valve. Method.
JP19243482A 1982-11-04 1982-11-04 Method of controlling number of revolution of feed pump Pending JPS5984004A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19243482A JPS5984004A (en) 1982-11-04 1982-11-04 Method of controlling number of revolution of feed pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19243482A JPS5984004A (en) 1982-11-04 1982-11-04 Method of controlling number of revolution of feed pump

Publications (1)

Publication Number Publication Date
JPS5984004A true JPS5984004A (en) 1984-05-15

Family

ID=16291239

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19243482A Pending JPS5984004A (en) 1982-11-04 1982-11-04 Method of controlling number of revolution of feed pump

Country Status (1)

Country Link
JP (1) JPS5984004A (en)

Similar Documents

Publication Publication Date Title
US6198786B1 (en) Methods of reactor system pressure control by reactor core power modulation
US4007595A (en) Dual turbine power plant and a reheat steam bypass flow control system for use therein
US4658590A (en) Steam turbine governor system and method of controlling the same
JPS5984004A (en) Method of controlling number of revolution of feed pump
JPS58133504A (en) Control system of number of revolution of feed pump
JPS581246B2 (en) Steam turbine starting device with turbine bypass system
JPH076604B2 (en) Turbine control device for water supply pump drive
JP3166972B2 (en) Power plant control method and apparatus, and power plant
JPH0843589A (en) Test device and test method for main steam control valve
JPS6032084B2 (en) Turbine speed control device for driving water pump
JPH0223684B2 (en)
JPS58104404A (en) Controller for minimum flow of feed pump
US3939660A (en) Acceleration control arrangement for turbine system, especially for HTGR power plant
JPS5915608A (en) Controller of steam turbine
JP2999884B2 (en) Method and apparatus for controlling turbine for feeding water pump
JPS5929704A (en) Controller of turbine driving feed water pump
JPH0229922B2 (en)
JPS61246502A (en) Feedwater controller
JPS6294702A (en) Feed pump control system of power plant
JPS61215404A (en) Control device for steam turbine
JPH02201613A (en) Turbine guide vane controller
JPS58178105A (en) Control system of feedwater
JPH0270906A (en) Control of bleeding turbine and device thereof
JPS61231308A (en) Method of controlling feed pump for nuclear reactor
JPH02166302A (en) Boiler feed water control device