JPS5983736A - Method for melting titanium base alloy - Google Patents
Method for melting titanium base alloyInfo
- Publication number
- JPS5983736A JPS5983736A JP19178282A JP19178282A JPS5983736A JP S5983736 A JPS5983736 A JP S5983736A JP 19178282 A JP19178282 A JP 19178282A JP 19178282 A JP19178282 A JP 19178282A JP S5983736 A JPS5983736 A JP S5983736A
- Authority
- JP
- Japan
- Prior art keywords
- alloy
- crucible
- temp
- surface layer
- oxygen
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】
本発明は1例えばチタン・ニッケル(Ti−Ni) 合
金のごときチタン基合金の製造方法に関し、特に。DETAILED DESCRIPTION OF THE INVENTION The present invention relates in particular to a method for manufacturing titanium-based alloys, such as titanium-nickel (Ti-Ni) alloys.
その溶解法に関するものである。It is related to its dissolution method.
チタン基合金の典型的な例として+Ti−Ni合金ある
いはその構成元素の一部を他元素(Cu、Feその他)
で置換してなる合金は、顕著な形状記憶効果を有してお
シ(米国特許第3,174,851および特開昭53−
28518)、有用な合金である。A typical example of a titanium-based alloy is a +Ti-Ni alloy or some of its constituent elements are other elements (Cu, Fe, etc.)
The alloy formed by substituting with
28518), is a useful alloy.
Ti基合金は、一般に、溶解法によって製造されるが、
上記米国特許第3.1.74.851号に記載されてい
る溶解法はアルゴンアーク溶解法で、これを実験的規模
で行なったものが示されている。他方、上記特開昭53
−28518には、黒鉛ルツボを用いた誘導加熱による
溶解法が示されている。Ti-based alloys are generally produced by a melting method, but
The melting method described in the above-mentioned US Pat. No. 3.1.74.851 is an argon arc melting method, which is shown to have been carried out on an experimental scale. On the other hand, the above-mentioned Japanese Patent Application Laid-Open No. 1983
-28518 discloses a melting method by induction heating using a graphite crucible.
誘導加熱法において黒鉛ルツボを用いる理由は次のとお
シである。即ち、Tiの酸素との標準生成自由エネルギ
ーが小さいために+ Tiが酸素と極めて反応し易い。The reason for using a graphite crucible in the induction heating method is as follows. That is, since the standard free energy of formation of Ti with oxygen is small, + Ti is extremely likely to react with oxygen.
それ故2通常のシリカ(S 102 )系ルツボを用い
るとTiとS iO2との交互反応により。Therefore, when a normal silica (S 102 )-based crucible is used, the reaction occurs through alternating reactions between Ti and SiO2.
溶湯中に酸素が混入してしまう結果となっていた。This resulted in oxygen being mixed into the molten metal.
従って、これ迄は通常の酸化物系ルツボを用いることは
できないとされていた。Therefore, until now, it was thought that ordinary oxide crucibles could not be used.
前述のように、黒鉛ルツボを用いることによシ。As mentioned above, by using a graphite crucible.
Ti −Ni合金の誘導加熱による溶解が可能となるが
、黒鉛ルツボから溶湯へのカーボンの混入は避けられず
、混入量の制御も難しいために安定した合金を製造でき
ないという欠点を有していた。即ち、表−1のようにロ
ットによってカーボン量カ大きく変動し、同品種のもの
を得ることができなかった。Although it becomes possible to melt Ti-Ni alloys by induction heating, it has the drawback that carbon contamination from the graphite crucible into the molten metal is unavoidable, and it is difficult to control the amount of contamination, making it impossible to produce a stable alloy. . That is, as shown in Table 1, the carbon content varied greatly depending on the lot, making it impossible to obtain products of the same type.
更に、黒鉛ルツボを用いた誘導加熱溶解法によるTi
−Ni合金においては、マルテンサイト変態開始点(M
s点)とN1濃度との関係は第1図のようになシ1両者
の間にはアルゴンアーク溶解法にょるTi −Ni合金
におけるそれに比して、相関性が極めて薄く、従って所
要の形状記憶効果のものを製造することは容易ではない
。Furthermore, Ti was produced using an induction heating melting method using a graphite crucible.
In the -Ni alloy, the martensitic transformation starting point (M
The relationship between the s point) and the N1 concentration is as shown in Figure 1.The correlation between the two is extremely weak compared to that in the Ti-Ni alloy produced by the argon arc melting method, and therefore it is difficult to form the desired shape. It is not easy to produce memory effects.
本発明者等はこのような相関性の低さはカーボンの混入
によるものと考え2次の補正式による補正ニッケル量を
求めた。The inventors thought that such a low correlation was due to the inclusion of carbon, and calculated the corrected amount of nickel using a second-order correction formula.
補正ニッケル濃度(アトミック%)−Niアトミツクチ
+Cアトミック係
この補正ニッケルアトミック係とMs点との関係を調べ
たところ、第2図に示すように、アルコ8ンアーク溶解
法によるものと同様に、極めて高い相関性を得た。Corrected nickel concentration (atomic %) - Ni atomic coefficient + C atomic coefficient When the relationship between this corrected nickel atomic coefficient and the Ms point was investigated, as shown in Figure 2, it was extremely high, similar to that by the arc melting method. A correlation was obtained.
従って+ Tj −Ni合金では、酸素含有量のみでな
く炭素含有量を低く抑えることが必要である。Therefore, in the +Tj-Ni alloy, it is necessary to keep not only the oxygen content but also the carbon content low.
以上の点に鑑み2本発明は、低酸素・低炭素含有Ti基
合金を製造する方法を提供することを目的とする。In view of the above points, it is an object of the present invention to provide a method for manufacturing a Ti-based alloy containing low oxygen and low carbon.
本発明は、チタン基合金を溶解法によって製造する方法
において、ルツボとして、その内表面層がAt203.
MgOおよびZ r O2の少なくとも一種で構成さ
れたルツボを用い、溶湯温度を該溶湯と上記ルツボの内
表面層とが反応する臨界温度未満に保って、溶解するこ
とを特徴とするものである。The present invention provides a method for producing a titanium-based alloy by a melting method, in which the crucible has an inner surface layer of At203.
The method is characterized in that a crucible made of at least one of MgO and Z r O2 is used, and the temperature of the molten metal is kept below a critical temperature at which the molten metal reacts with the inner surface layer of the crucible.
なお、チタン基合金がTi −Ni合金の場合、溶湯の
温度は1320℃〜1350℃程度とすれば良い。Note that when the titanium-based alloy is a Ti-Ni alloy, the temperature of the molten metal may be approximately 1320°C to 1350°C.
本発明によれば、誘導加熱による溶解法を用いながら、
低炭素かつ低酸素のTi −Ni合金を製造することが
できるので、所望の安定した特性の合金を容易に得るこ
とができる。According to the present invention, while using a melting method by induction heating,
Since a low carbon and low oxygen Ti--Ni alloy can be produced, an alloy with desired stable properties can be easily obtained.
以下1本発明の実施例について説明する。An embodiment of the present invention will be described below.
TIとN1を所要の配合比に調整した原料をアルゴンマ
ーク法で溶解して得だ種合金を誘導加熱炉のルツボ中に
装入し、融点直上の温度で溶解を開始し、溶湯温度をル
ツボと反応しない温度(約1320〜1350℃)に保
って、 NiおよびT1の原料を徐々に装入し2合金を
得た。ルツボとして、マグネシアルツボ、アルミナルン
ボ、ジルコニアルツボをそれぞれ用いた場合の得られた
合金について酸素含有量、カーボン含有量を測定し。The raw material with TI and N1 adjusted to the required blending ratio is melted using the argon mark method, the resulting seed alloy is charged into the crucible of an induction heating furnace, melting is started at a temperature just above the melting point, and the temperature of the molten metal is lowered to the crucible. The Ni and T1 raw materials were gradually charged while maintaining the temperature at which they would not react with each other (approximately 1320 to 1350°C) to obtain alloy 2. The oxygen content and carbon content of the obtained alloys were measured when a magnesia crucible, an alumina crucible, and a zirconia crucible were used as crucibles.
その結果を表−2に示した。なお2表−2には。The results are shown in Table-2. In addition, Table 2-2.
比較のためアルゴンアーク溶解によるものおよびシリカ
系ルツボを用いた誘導加熱法によるものについても示し
た。For comparison, argon arc melting and induction heating using a silica crucible are also shown.
表2において、アルゴンア−り品に酸素が混入している
のは+ Tiが極めて酸素と活性なため、真空中におけ
る残留酸素、アルコ゛ンガス中の含有酸素を全て溶湯中
に取シ込むだめである。In Table 2, the reason why oxygen is mixed into the argon gas product is that Ti is extremely active with oxygen, so all the residual oxygen in the vacuum and the oxygen contained in the argon gas cannot be absorbed into the molten metal. .
表2から明らかなように、マグネシアルツボ。As is clear from Table 2, the magnesia crucible.
アルミナルツボ、ジルコニアルンボを用いた場合。When using aluminum alumina and zirconia alumina.
反応カーボン量はアルコ8ンアーク溶解法と同程度また
はそれ以下で2反応酸素量も、シリカ系ルツボを用いた
場合よシ極端に減少し2アルゴンアーク溶解による場合
に近い値となっている。従って。The amount of reaction carbon is the same as or less than that of the argon arc melting method, and the amount of reaction oxygen is also extremely reduced compared to when a silica crucible is used, and is close to that of the argon arc melting method. Therefore.
本発明による方法で得たTi −Ni合金はアルゴンア
ーク溶解品と同様にマルテンサイト変態開始温度とNi
濃度との間の高い相関性を有し、記憶効果特性のバラツ
キが小さく、高信頼性を示す。The Ti-Ni alloy obtained by the method of the present invention has a martensitic transformation initiation temperature similar to that of the argon arc melted product.
It has a high correlation with concentration, small variations in memory effect characteristics, and high reliability.
また、黒鉛ルツボは熱サイクルが数回で使用不能となる
が、マグネシア、アルミナ、ジルコニア等のルツボでは
2倍以上も使用できるので、生産コストの低減をはかる
ことができる。In addition, a graphite crucible becomes unusable after a few heat cycles, but crucibles made of magnesia, alumina, zirconia, etc. can be used more than twice as long, so production costs can be reduced.
なお、実施例では+ Tl −N+金合金ついて示した
が、一般のTi基合金についても本発明を適用すること
ができ、誘導加熱法による大量の溶解を可能とする工業
上の利点がある。In addition, although the +Tl-N+gold alloy was shown in the example, the present invention can also be applied to general Ti-based alloys, which has the industrial advantage of being able to melt a large amount by induction heating.
第1図は黒鉛ルツボを用いた誘導加熱溶解法による’p
i −Ni合金のマルテンサイト変態開始点とNi!1
度との関係を示すグラフであり、第2図は同合金の補正
ニッケル量とマルテンサイト変態開始点との関係を示す
グラフである。Figure 1 shows 'p' produced by the induction heating melting method using a graphite crucible.
The starting point of martensitic transformation of i-Ni alloy and Ni! 1
FIG. 2 is a graph showing the relationship between the corrected nickel content and the martensitic transformation start point of the same alloy.
Claims (1)
いて、ルツボの少なくとも内表面層がAt203. M
gOおよびZ r O2の少なくとも一種で構成された
ルツボを用い、溶湯温度を該溶湯と上記ルツボの内表面
層とが反応する臨界温度未満に保って、溶解することを
特徴とするチタン基合金の溶解法。], a method for producing a titanium-based alloy by a melting method, in which at least the inner surface layer of the crucible is At203. M
A titanium-based alloy characterized in that it is melted using a crucible made of at least one of gO and ZrO2, and maintaining the temperature of the molten metal below a critical temperature at which the molten metal reacts with the inner surface layer of the crucible. Dissolution method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19178282A JPS5983736A (en) | 1982-11-02 | 1982-11-02 | Method for melting titanium base alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19178282A JPS5983736A (en) | 1982-11-02 | 1982-11-02 | Method for melting titanium base alloy |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5983736A true JPS5983736A (en) | 1984-05-15 |
Family
ID=16280443
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP19178282A Pending JPS5983736A (en) | 1982-11-02 | 1982-11-02 | Method for melting titanium base alloy |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5983736A (en) |
-
1982
- 1982-11-02 JP JP19178282A patent/JPS5983736A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5692950B2 (en) | Method for producing Zr metal powder | |
US1437984A (en) | Preparation of rare metals | |
US3725054A (en) | Aluminum-molybdenum-titanium master alloy | |
IE872472L (en) | Method for producing self-supporting ceramic bodies with¹graded properties | |
JPH01261293A (en) | Quartz crucible for pulling silicon single crystal | |
JPS5983736A (en) | Method for melting titanium base alloy | |
US3340076A (en) | Fused refractory castings | |
JPS59205432A (en) | Method for dissolving alloy containing active metal or noble metal | |
JP2003239051A (en) | HIGH-STRENGTH Zr-BASE METALLIC GLASS | |
JPH03223414A (en) | Production of iron-nickel-cobalt-base alloy minimal in respective contents of sulfur, oxygen, and nitrogen | |
CA1075500A (en) | Tungsten-titanium-aluminum master alloy | |
US4710481A (en) | Method for melting Ti or a high-Ti alloy in CaO refractories | |
BAN et al. | Interfacial oxidations of pure titanium and titanium alloys with investments | |
JPH0364423A (en) | Method for melting intermetallic compound ti-al-base alloy | |
JPS62158835A (en) | Refining method for al-li alloy | |
JPS5843456B2 (en) | Rare earth↓-silicon alloy manufacturing method | |
JPS6256310A (en) | Production of aluminum nitride | |
JP3849004B2 (en) | Method for producing rapidly solidified bulk amorphous alloy material | |
JP2002241113A (en) | Method for manufacturing chromium nitride powder | |
JPS62170450A (en) | Ta amorphous alloy and its production | |
JPS61210141A (en) | Ni-ti alloy having superior shock resistance and its manufacture | |
JPS63227728A (en) | Melting crucible and melting method | |
JP3151677B2 (en) | Nozzle and melting crucible for Ti-Ni alloy | |
JPS62275091A (en) | Production of tungsten single crystal | |
JPS58120597A (en) | Chrysoberyl single crystal showing luster effect and its production |