JPS5983393A - High frequency heater - Google Patents

High frequency heater

Info

Publication number
JPS5983393A
JPS5983393A JP19301382A JP19301382A JPS5983393A JP S5983393 A JPS5983393 A JP S5983393A JP 19301382 A JP19301382 A JP 19301382A JP 19301382 A JP19301382 A JP 19301382A JP S5983393 A JPS5983393 A JP S5983393A
Authority
JP
Japan
Prior art keywords
waveguide
antenna
heating chamber
dimension
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19301382A
Other languages
Japanese (ja)
Inventor
誠一 山下
寛 寺崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP19301382A priority Critical patent/JPS5983393A/en
Publication of JPS5983393A publication Critical patent/JPS5983393A/en
Pending legal-status Critical Current

Links

Landscapes

  • Constitution Of High-Frequency Heating (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、高周波加熱装置における高周波発振器より発
する高周波エネルギーを加熱室内に効率良く放射させる
構成に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a configuration for efficiently radiating high frequency energy generated from a high frequency oscillator in a high frequency heating device into a heating chamber.

従来例の構成とその問題点 従来、導波管と加熱室とを高周波的に結合する給電方式
において、その使用されている導波管として、一般にイ
ンピーダンス整合や加工の容易さにより、形状として矩
形が多く使用されている。
Conventional configurations and their problems Conventionally, in power feeding systems that couple a waveguide and a heating chamber at high frequencies, the waveguides used are generally rectangular in shape due to impedance matching and ease of processing. is often used.

又、その導波管の励振モードはスペース的に又経済的に
、TE1oモードがその殆んどを占めている。
Moreover, the TE1o mode occupies most of the excitation modes of the waveguide in terms of space and economy.

上記導波管に高周波発振器のアンテナを挿入し高周波エ
ネルギーを発しその励振モードを測定してみると、TE
1oモードで励振しているものの、必ずしも、導波管内
の定在波は一定していない。導ノ められるが必ずしも計算値と実測とは一致せず異なった
値を示し、高周波発振器のアンテナ部と、結合棒間での
励振状態は、少しずれが生じ、完全な励振はできないの
である。そこで、そのずれを補正する為、導波管のフラ
ンジ寸法でその補正を行ったり、又導波管内に、アイリ
スと言われるインピーダンス整合素手を設けたりして、
加熱室と導波管のインピーダンス整合を行っていた。
When inserting a high-frequency oscillator antenna into the above waveguide and emitting high-frequency energy, we measured the excitation mode and found that TE
Although the waveguide is excited in the 1o mode, the standing waves within the waveguide are not necessarily constant. However, the calculated values and actual measurements do not necessarily match and show different values, and there is a slight deviation in the excitation state between the antenna section of the high frequency oscillator and the coupling rod, and complete excitation is not possible. Therefore, in order to correct this deviation, we corrected it by adjusting the flange dimensions of the waveguide, and also installed an impedance matching bare hand called an iris inside the waveguide.
Impedance matching was performed between the heating chamber and the waveguide.

しかし、」二記の方法により行うと基本的に、加熱室の
もつインピーダンスに、導波管のインピーダンスを整合
するものであり、どうしても高周波的にムリが生じ、導
波管が熱くなり、1出力低下の要因となるのである。寸
た結合棒5と導波管4との寸法a′を約り/2程度でイ
ンピーダンスの整合をとると少しの寸法の誤差で、高周
波発振器の動作点が大きく変化する事もわかった。
However, when using the method described in section 2 above, the impedance of the waveguide is basically matched to the impedance of the heating chamber, which inevitably results in a high frequency imbalance, the waveguide becomes hot, and a single output is lost. This is the cause of the decline. It has also been found that if impedance matching is achieved by reducing the dimension a' between the connecting rod 5 and the waveguide 4 by approximately /2, the operating point of the high frequency oscillator will change greatly with a small dimensional error.

第1図は、高周波加熱装置の基本構成を示すものである
。1は被加熱物を収納する加熱室、2は高周波エネルギ
ーを発する高周波発振器、3は高周波エネルギーを放射
するアンテナ、4は上記アンテナより放射された高周波
エネルギーを加熱室側へと伝播さぜる導波管、6は上記
導波管4と加熱室1とを高周波的に結合する結合棒より
成る。
FIG. 1 shows the basic configuration of a high-frequency heating device. 1 is a heating chamber that stores the object to be heated; 2 is a high-frequency oscillator that emits high-frequency energy; 3 is an antenna that radiates high-frequency energy; and 4 is a guide that propagates the high-frequency energy radiated from the antenna to the heating chamber side. The wave tube 6 consists of a coupling rod that couples the waveguide 4 and the heating chamber 1 in a high frequency manner.

第2図は従来例における導波管構成と、第3図イは断面
図、同図口はその導波管における計算上の定在波比、同
図ハはその導波管における定在波比の実測値を示すもの
である。口の定在波比はそで示される。
Figure 2 shows the waveguide configuration in a conventional example, Figure 3 A is a cross-sectional view, the opening in the figure shows the calculated standing wave ratio in the waveguide, and the figure C shows the standing wave in the waveguide. This shows the actual measured value of the ratio. The mouth standing wave ratio is indicated by the sleeve.

句:管内波長、λ:自由空間波長、λ。:導波管のしゃ
断波長又しゃ断波長は、TE1oモードでは導波管4の
幅aの2倍である為、次式で表わされる。
Phrases: tube wavelength, λ: free space wavelength, λ. :The cutoff wavelength or cutoff wavelength of the waveguide is twice the width a of the waveguide 4 in the TE1o mode, so it is expressed by the following equation.

λ 理論値から値を求めれば、高周波発振器2のアンテナ3
は、高周波エネルギーを発している為、一番高い高周波
電圧を示している。その為、そこからくる導波管4のバ
ックフランジ寸法すは、アンテナ3で高周波電圧はピー
クとなり、電流ば0となっている為に、簡単に推測すれ
ばアンテナ3とバックフランジ間寸法bA、/4とすれ
ば高周波的にショートする事ができ良く、又、高周波発
振器より得られた高周波エネルギーを導波管4内に放射
するアンテナ3と、導波管4と加熱室1との間を誘電結
合する。結合棒6間の距離は、アンテナ3と結合棒5の
高周波的、電界強度はどちらとも高周波的に励振してい
ると考えられる為、どちらも、電界強度は最大であシ、
その為前項で述べた通りその使用されている導波管4に
おいて、その横幅C寸法により管内波長λ。を求める事
ができる。その管内波長λ。の%、っまり%λ。の整数
倍の位置に上記アンテナ3と結合棒5を結合すれば良い
事が理論上容易に求める事ができる。
If the value is calculated from the theoretical value of λ, then the antenna 3 of the high frequency oscillator 2
shows the highest high-frequency voltage because it emits high-frequency energy. Therefore, the back flange dimension of the waveguide 4 coming from there is such that the high frequency voltage peaks at the antenna 3 and the current is 0, so if you easily guess, the dimension between the antenna 3 and the back flange bA, /4, it is possible to short-circuit in terms of high frequency, and the distance between the antenna 3, which radiates the high frequency energy obtained from the high frequency oscillator into the waveguide 4, the waveguide 4 and the heating chamber 1 is Dielectrically coupled. The distance between the coupling rods 6 is determined by the fact that both the antenna 3 and the coupling rod 5 are excited at high frequency and electric field strength, so the electric field strength is the maximum for both.
Therefore, as mentioned in the previous section, in the waveguide 4 used, the internal wavelength λ is determined by the width C dimension. You can ask for. Its internal wavelength λ. %, exactly %λ. Theoretically, it can be easily determined that the antenna 3 and the coupling rod 5 should be coupled at positions that are an integral multiple of .

しかし、現実には、理論値通りにはいがなく、事実上導
波管幅C寸法は、前項にも述べた通りスペース的、又経
済的にも導波管4内の励振モードは、TE1oモードを
採用する。同モードを採用した場合、導波管幅C寸法は
、必然的に2450庫の高周波であれば122.2mm
〜61.1mmの範囲と限定される。仮にく導波管幅を
90論と限定して考えるならばそこからくる管内波長り
は前項式より166.4mmとなる。つまり、理論値か
らすれば、バラフッラフ9b寸法は&/4で41.6m
m、アンテナ3と結合棒5間寸法も41.6n(n=整
数)とすればよい事がわかる。しかしバックフランジ寸
法すを41.6mmとればアンテナ3がら見た加熱室を
内とのインピーダンスの整合はうまくとれなくその為、
加熱室1内に電波がう捷く入いらなく、出力不良となる
However, in reality, it does not follow the theoretical value, and in fact, the waveguide width C dimension is such that the excitation mode in the waveguide 4 is the TE1o mode, both in terms of space and economically as described in the previous section. Adopt. If the same mode is adopted, the waveguide width C dimension will inevitably be 122.2 mm for a high frequency of 2450 mm.
The range is limited to 61.1 mm. If we consider that the waveguide width is limited to 90 mm, the resulting wavelength within the guide will be 166.4 mm from the previous equation. In other words, from the theoretical value, the barafuruff 9b dimension is &/4 and 41.6m.
It can be seen that the dimension between the antenna 3 and the coupling rod 5 should also be 41.6n (n=integer). However, if the back flange dimension is 41.6 mm, the impedance matching between the heating chamber and the inside as seen from the antenna 3 cannot be achieved well.
Radio waves do not enter the heating chamber 1 easily, resulting in poor output.

第4図は、標準導波管であり導波管の片フランジは5寸
法によりショートシ、片方は無反射終端器6と言われる
。高周波エネルギーをアンテナ3より発すると反射波の
全くないものを結合し、高周波出力を出し、その場合バ
ックフランジ寸法すを任意に変化させた場合の高周波出
力を測定した値を示すものである。つまり一般の高周波
発振器の特性としては、バックフランジ寸法すは20謳
程か、もしく&j:20mm+n  9/2(n−整数
)なる寸法をとるか、有効に高周波エネルギーを出す事
ができる事を実験上容易に確認する事ができた。
FIG. 4 shows a standard waveguide, and one flange of the waveguide is short due to the 5 dimensions, and one side is called a non-reflection terminator 6. When high-frequency energy is emitted from the antenna 3, it combines those with no reflected waves to produce a high-frequency output, and in this case, the measured value of the high-frequency output is shown when the back flange dimensions are arbitrarily changed. In other words, the characteristics of a general high-frequency oscillator are that the back flange size is about 20mm, or the size is &j: 20mm + n 9/2 (n - integer), or that it can effectively emit high-frequency energy. This could be easily confirmed experimentally.

つ捷りバックフランジ寸法は20 mmに設定する事が
良い事が同実験によりわかる。
The same experiment shows that it is best to set the back flange dimension to 20 mm.

第3図は、バックフランジ寸法l)寸法を前項の実験に
より求めた最適と思われる寸法20+mnに設定し、ア
ンテナ3と結合棒6の間の距離は、その使用されている
導波管4によって決まる管内波長り 、つまりλ/2!
iの整数倍に設定(同実験においては、3λg/2)し
、加熱室1とのインピーダンスの整合をとれば、結合棒
5とショートフランジ寸法al は約A y、、、、程
度の寸法となってしまいしまう。この状態において高周
波エネルギーを発振させ、導波管4内の定在波を測定を
行うと、図ハに示すような理論値定在波(同図口)とは
相当異なった乱れた定在波を示すのである。この状態で
高周波エネルギーを加熱室1に供給しても、エネルギー
損失が大きく、出力不足を招き、導波管4も非常に熱く
なるのである。つまり、高周波発振器2としては、出力
は出しているにもかかわらず、導波管4と結合棒6及び
結合棒5と加熱室1との結合が悪く、効率良く高周波エ
ネルギーが放射されていない為、出力不足、又は導波管
4の異常加熱となるのである。又その為に導波曽4内の
電圧定在波比(V、S、W、’R)も高い値を示し又そ
の為に結合棒5により導波管4と加熱室1を誘電結合す
る給電方式の場合、加熱室1内を空焼に近い状態にて高
周波エネルギーを発すると、当然、加熱室1内に高周波
エネルギーは放射されるものの、加熱室1内に負荷体な
るものがなければ同エネルギーの一部は又、導波管4内
へとかえってくる。同状況になると、より一層導波管4
内にできる電圧定在波比が増加し、ついには結合棒5と
導波管4との絶縁を破り、ついには高周波加熱装置の致
命傷ともいえるスパーク(放電現象)も起こしかねない
ものである。
In Fig. 3, the back flange dimension l) is set to the optimum dimension 20+mn determined by the experiment described in the previous section, and the distance between the antenna 3 and the coupling rod 6 is determined depending on the waveguide 4 used. The determined tube wavelength is λ/2!
If it is set to an integral multiple of i (3λg/2 in the experiment) and the impedance is matched with the heating chamber 1, the dimensions of the connecting rod 5 and the short flange al will be approximately A y... It ends up becoming. In this state, when high-frequency energy is oscillated and the standing wave inside the waveguide 4 is measured, a disturbed standing wave that is quite different from the theoretical standing wave (shown in the figure) as shown in Figure C is obtained. It shows. Even if high-frequency energy is supplied to the heating chamber 1 in this state, the energy loss will be large, leading to insufficient output, and the waveguide 4 will also become extremely hot. In other words, although the high-frequency oscillator 2 is outputting output, the coupling between the waveguide 4 and the coupling rod 6 and between the coupling rod 5 and the heating chamber 1 is poor, and the high-frequency energy is not radiated efficiently. , resulting in insufficient output or abnormal heating of the waveguide 4. For this reason, the voltage standing wave ratio (V, S, W, 'R) in the waveguide 4 also shows a high value, and for this reason, the waveguide 4 and the heating chamber 1 are inductively coupled by the coupling rod 5. In the case of the power feeding method, if high frequency energy is emitted in the heating chamber 1 in a state close to dry firing, the high frequency energy will naturally be radiated into the heating chamber 1, but if there is no load inside the heating chamber 1, A portion of the same energy also returns into the waveguide 4. In the same situation, the waveguide 4
As a result, the voltage standing wave ratio generated within the high-frequency heating device increases, eventually breaking the insulation between the coupling rod 5 and the waveguide 4, and eventually causing a spark (discharge phenomenon) that can be fatal to the high-frequency heating device.

発明の目的 本発明は、上記従来の欠点を解消するもので、高周波発
振器より発した高周波エネルギーを効率良く加熱室内に
給電し、被加熱物をより効率良く加熱し父、空焼時等に
おけるスパーク(放電現象)も、起こしにくい給電構成
とする事を目的とするものである、。
OBJECT OF THE INVENTION The present invention solves the above-mentioned conventional drawbacks, and aims to efficiently feed high-frequency energy generated from a high-frequency oscillator into the heating chamber, thereby more efficiently heating the object to be heated, and reducing sparks during dry firing, etc. (Discharge phenomenon) is also aimed at creating a power supply configuration that is less likely to occur.

発明の構成 上記目的を達する為、本発明は、ある一定の矩形導波管
なるTE1oモードの立っている導波管において、アン
テナ3とバックフランジ間寸法すは20mmに設定し、
アンテナ3と結合棒5間距離p寸法を理論値寸法と異な
った寸法とする事にある。
Structure of the Invention In order to achieve the above object, the present invention sets the distance between the antenna 3 and the back flange to 20 mm in a certain rectangular waveguide in which the TE1o mode is established.
The purpose is to set the distance p dimension between the antenna 3 and the coupling rod 5 to a dimension different from the theoretical value dimension.

同寸法の理論値寸法は、前項で述べた様に、nAg/2
(n−整数)とするのが望せしいが、同寸法範囲を2n
λy  >P>2(n−1)λg とする/4/4 ものである。同寸法pt設定し、その状態にて、アンテ
ナから見た加熱室のインピーダンスの整合をとるならば
、結合棒とショートフランジ間寸法スの整合がとれる。
The theoretical value of the same dimensions is nAg/2, as stated in the previous section.
(n - integer), but the same size range is 2n
/4/4 where λy>P>2(n-1)λg. If the same dimension pt is set and in that state the impedance of the heating chamber as seen from the antenna is matched, the dimension between the coupling rod and the short flange can be matched.

同寸法であれば、前項で示す高周波的には理論値に近い
寸法となり、この状態にて高周波エネルギーを発振する
ならば、少しは供給ロスはあるが前項に示す程の高周波
エネルギーの損失はな−く、出力不足を招く事はない。
If the dimensions are the same, the dimensions will be close to the theoretical value in terms of high frequency as shown in the previous section, and if high frequency energy is oscillated in this state, there will be some supply loss, but the loss of high frequency energy will not be as high as shown in the previous section. - It is easy to use and does not cause a lack of output.

又、導波管そのものの異常加熱もなくなるのである。Also, abnormal heating of the waveguide itself is eliminated.

実施例の説明 以下、本発明の一実施例について図面に基づいて説明す
る。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings.

^II述の第3図口は計算」二における理論定在波比で
中る。ハの定在波比は、前項に述べたように実測定在波
比である。その2つの定在波比口と7・の違いを見比べ
ると、単にaは理論値 、/ は前項における場合のイ
ンピーダンスの整合をとった場合の寸法である為、異な
ってくる。またさらに高層λ 波発振器2のアンテナ3より、第1回目の g/4であ
るd 、 d’の差d−d’=eが生ずる。
^ The opening in Figure 3 mentioned in II is the theoretical standing wave ratio in "Calculation" 2. The standing wave ratio (c) is the actually measured standing wave ratio as described in the previous section. Comparing the difference between the two standing wave ratios and 7., they differ simply because a is the theoretical value and / is the dimension when the impedance is matched in the case in the previous section. Furthermore, the antenna 3 of the high-rise λ wave oscillator 2 generates a difference d-d'=e between d and d', which is g/4 for the first time.

第3図ハの定在波の乱れは、見てもわかる通り結合棒5
付近で激しく乱れている。つまり、理論値口と実際ハの
違いの根本はe寸法分の違いにあると言う事がわかる。
As you can see, the disturbance of the standing wave in Figure 3 C is caused by the coupling rod 5.
There is a lot of disturbance nearby. In other words, it can be seen that the root of the difference between the theoretical value and the actual value is the difference in dimension e.

上記によりアンテナ3と結合棒6間寸法pを理論値より
e寸法分小さく設定する事により、前記に述べたいろい
ろな欠点及びインピーダンスの整合もほぼ理論値通りで
はないかと考えられる。
By setting the dimension p between the antenna 3 and the coupling rod 6 to be smaller than the theoretical value by the dimension e, it is thought that the various defects and impedance matching described above will also be approximately the same as the theoretical value.

第5図は本発明の一実施例で前記アンテナ3と結合棒5
との間の寸法をp’(p’−p−e )と設定しアンテ
ナ3から見た加熱室1内のインピーダンスの整合をとり
、高周波エネルギーを発振した場合の導波管4内の定在
波を測定したものである。この場合、インピーダンスの
整合がとれる時の結合棒6とショートフランジ寸法a′
はλg/4≧a〉2g78寸法となりほぼ理論値に近い
値を示した。
FIG. 5 shows an embodiment of the present invention, in which the antenna 3 and the coupling rod 5
By setting the dimension between the This is a measurement of waves. In this case, the connecting rod 6 and short flange dimension a' when impedance matching can be achieved.
had a dimension of λg/4≧a>2g78, showing a value almost close to the theoretical value.

発明の効果 以上のように本発明によれば、高周波エネルギーの加熱
室内への供給損失を最少限におさえ1.有効に加熱室内
に放射する事ができた。又導波管自体の過加熱現象もな
くなった。又各部の寸法のバラツキによる高周波発振器
の動作点も大きな変化を示さ々くなり、出力のバラツキ
も少なくおさえる事ができろ。
Effects of the Invention As described above, according to the present invention, the supply loss of high frequency energy into the heating chamber can be minimized.1. It was possible to effectively radiate it into the heating chamber. Moreover, the phenomenon of overheating of the waveguide itself has also disappeared. Also, the operating point of the high frequency oscillator will not show large changes due to variations in the dimensions of each part, and the variations in output will also be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の高周波加熱装置の要部断面図、第2図は
同要部一部切欠斜視図1.第3図イは同導波管部分の側
゛面断面図、同図口、ハは電圧定在波比を示す特性図、
第4図イは従来の標準導波管の要部断面図、同図口は導
波管のバックフランジ寸法と高周波出力との関係を示す
特性図、第5図イは本発明の一実施例である高周波加熱
装置の導波管部分の側面断面図、同図口は電圧定在波比
の実測値を示す特性図である。 1・・・・・・加熱室、2・・・・・・高周波発振器、
3・・・・・・アンテナ、4・・・・・・導波管、5・
・・・・・結合棒、a・・・・・・導波管の幅、b・・
・・・・バックフランジ寸法、C・・・・・・横幅寸法
、す・・・・・・管内波長、p・・・・・・アンテナ3
と結合棒5との間の距離。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第 
1 図 第 (ハ) 2 図 覚 グー !%− ’y:、1 ト 手続補正書(方ね 昭和68年3 月/6日 特許庁長官殿 1事件の表示 昭和67年特許願第193013号 2発明の名称 高周波加熱装置 3補正をする者 事件との関係      特  許  出  願  人
住 所  大阪府門真市大字門真1006番地名 称 
(582)松下電器産業株式会社代表者    山  
下  俊  彦 4代理人 〒571 住 所  大阪府門真市大字門真1006番地松下電器
産業株式会社内
Fig. 1 is a sectional view of the main part of a conventional high-frequency heating device, and Fig. 2 is a partially cutaway perspective view of the main part. Figure 3A is a side cross-sectional view of the waveguide section, and Figure 3C is a characteristic diagram showing the voltage standing wave ratio.
Figure 4A is a sectional view of the main part of a conventional standard waveguide, the opening of the figure is a characteristic diagram showing the relationship between the back flange dimensions of the waveguide and high frequency output, and Figure 5A is an embodiment of the present invention. 1 is a side cross-sectional view of a waveguide portion of a high-frequency heating device, and the opening of the figure is a characteristic diagram showing actually measured values of voltage standing wave ratio. 1... Heating chamber, 2... High frequency oscillator,
3...Antenna, 4...Waveguide, 5.
...Coupling rod, a... Width of waveguide, b...
...Back flange dimension, C... Width dimension, S... Inner pipe wavelength, P... Antenna 3
and the connecting rod 5. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Illustration number (c) 2 Illustration goo! %-'y:, 1 Written amendment to procedure (March/6, 1988, Director General of the Patent Office 1 Display of the case 1986 Patent Application No. 193013 2 Name of the invention High-frequency heating device 3 Person making the amendment Relationship to the incident Patent application Address 1006 Kadoma, Kadoma City, Osaka Name Name
(582) Matsushita Electric Industrial Co., Ltd. Representative Yama
Toshihiko Shimo 4 Agent 571 Address 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 被加熱物を収納する加熱室と、前記加熱室内に高周波を
供給する高周波発振器と、前記高周波発振器より得た高
周波エネルギーを放射する為のアンテナと、前記高周波
発振器より得られた高周波エネルギーを前記加熱室側へ
伝播する導波管と、前記導波管と前記加熱室を高周波的
に結合し回転自在な金属体からなる結合棒とを備え、前
記結合棒とアンテナの間の距離Pを2 n A y/4
) P)2(n−1)す/4.(但しnは整数)とした
高周波加熱装置。
a heating chamber for storing an object to be heated; a high-frequency oscillator for supplying high-frequency waves into the heating chamber; an antenna for radiating high-frequency energy obtained from the high-frequency oscillator; It is equipped with a waveguide that propagates toward the chamber side, and a coupling rod made of a rotatable metal body that couples the waveguide and the heating chamber at high frequency, and the distance P between the coupling rod and the antenna is 2 n. Ay/4
) P)2(n-1)su/4. (where n is an integer).
JP19301382A 1982-11-02 1982-11-02 High frequency heater Pending JPS5983393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19301382A JPS5983393A (en) 1982-11-02 1982-11-02 High frequency heater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19301382A JPS5983393A (en) 1982-11-02 1982-11-02 High frequency heater

Publications (1)

Publication Number Publication Date
JPS5983393A true JPS5983393A (en) 1984-05-14

Family

ID=16300735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19301382A Pending JPS5983393A (en) 1982-11-02 1982-11-02 High frequency heater

Country Status (1)

Country Link
JP (1) JPS5983393A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996013140A1 (en) * 1994-10-20 1996-05-02 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
US6274859B1 (en) 1994-04-07 2001-08-14 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus for selective heating of a desired portion of an object
JP2015162321A (en) * 2014-02-27 2015-09-07 日立アプライアンス株式会社 Radio frequency heating device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134449A (en) * 1975-05-17 1976-11-20 Matsushita Electric Ind Co Ltd A high-frequency heater
JPS5518949U (en) * 1978-07-24 1980-02-06

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51134449A (en) * 1975-05-17 1976-11-20 Matsushita Electric Ind Co Ltd A high-frequency heater
JPS5518949U (en) * 1978-07-24 1980-02-06

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6172348B1 (en) 1994-04-07 2001-01-09 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus
US6274859B1 (en) 1994-04-07 2001-08-14 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus for selective heating of a desired portion of an object
WO1996013140A1 (en) * 1994-10-20 1996-05-02 Matsushita Electric Industrial Co., Ltd. High-frequency heating device
US5986249A (en) * 1994-10-20 1999-11-16 Matsushita Electric Industrial Co., Ltd. High frequency heating apparatus for providing a uniform heating of an object
JP2015162321A (en) * 2014-02-27 2015-09-07 日立アプライアンス株式会社 Radio frequency heating device

Similar Documents

Publication Publication Date Title
US4042850A (en) Microwave generated radiation apparatus
US4550271A (en) Gyromagnetron amplifier
JP2586180Y2 (en) Microwave driven electrodeless light source device
US4661783A (en) Free electron and cyclotron resonance distributed feedback lasers and masers
US3577207A (en) Microwave plasmatron
US4792725A (en) Instantaneous and efficient surface wave excitation of a low pressure gas or gases
US4513424A (en) Laser pumped by X-band microwaves
US3735188A (en) Traveling wave tube with coax to helix impedance matching sections
JP4619530B2 (en) Equipment for exciting gas with surface wave plasma
JPS5983393A (en) High frequency heater
US5742209A (en) Four cavity efficiency enhanced magnetically insulated line oscillator
EP1139377B1 (en) Magnetrons
US4035687A (en) Traveling wave tube having a helix delay line
JPS637427B2 (en)
JPH09245746A (en) Microwave discharge light source device
US4370596A (en) Slow-wave filter for electron discharge device
JPS6091A (en) High frequency heater
US2658165A (en) Magnetron tube with cavity resonator
WO1982001101A1 (en) Magnetron
US6384537B2 (en) Double loop output system for magnetron
JPS6340035B2 (en)
JPH11135251A (en) Microwave oven
JPS63250095A (en) Microwave discharge light source
JP2725938B2 (en) High frequency heating equipment
JP2004087434A (en) Electrodeless discharge lamp light source equipment