JPS5983366A - Electrolyte for zinc-bromine battery - Google Patents

Electrolyte for zinc-bromine battery

Info

Publication number
JPS5983366A
JPS5983366A JP57192520A JP19252082A JPS5983366A JP S5983366 A JPS5983366 A JP S5983366A JP 57192520 A JP57192520 A JP 57192520A JP 19252082 A JP19252082 A JP 19252082A JP S5983366 A JPS5983366 A JP S5983366A
Authority
JP
Japan
Prior art keywords
bromide
dodecyl
decyl
methyl
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57192520A
Other languages
Japanese (ja)
Other versions
JPH0377627B2 (en
Inventor
Yasuo Ando
保雄 安藤
Shinichi Fujie
藤江 真一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Original Assignee
Meidensha Corp
Meidensha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp, Meidensha Electric Manufacturing Co Ltd filed Critical Meidensha Corp
Priority to JP57192520A priority Critical patent/JPS5983366A/en
Priority to EP83306620A priority patent/EP0109223B1/en
Priority to DE8383306620T priority patent/DE3372683D1/en
Publication of JPS5983366A publication Critical patent/JPS5983366A/en
Publication of JPH0377627B2 publication Critical patent/JPH0377627B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Hybrid Cells (AREA)

Abstract

PURPOSE:To prevent any decrease in the efficiency of a liquid-circulation-type zinc-bromine battery as well as any breakage of the battery by adding a specified organic bromide used as a dendrite suppressing agent to prepare electrolyte for the battery. CONSTITUTION:In electrolyte for a liquid-circulation-type zinc-bromine battery prepared by using ZnBr2 as an active material and adding a bromine-complex forming agent and a dendrite suppressing agent, one compound selected from among the following organic bromides is used as the dendrite suppressing agent: methyl dodecyl, methyl decyl morpholinium bromide, trimethyl dodecyl, trimethyl decyl, dimethyl benzyl dodecyl, dimethyl benzyl decyl, tetrabutyl, tributyl benzyl ammonium bromide, dodecyl, decyl pyridium bromide, dodecyl methyl or decyl methyl pyrrolidinium bromide.

Description

【発明の詳細な説明】 本発明tit ’f1.f、 ’ppj ’/+々循環
パリ亜鉛−臭素二次電池用の電解液Aらに詳しくは亜鉛
デンドライトの発生を抑?1illする陰極液の組成に
関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention tit 'f1. f, 'ppj'/+Circulating Paris Zinc-Bromide Electrolyte A for secondary batteries etc. In detail, how to suppress the generation of zinc dendrites? This relates to the composition of the catholyte.

近時エネルギー有効利用の観点から亜鉛−臭素二次電池
が著目され開発されている。例えば夜間電力の有効利用
等の目的の場合第1図に示す如き電解液循環型の亜鉛−
臭素二次電池が利用されている。第1図にその基本的構
成を示す。図中1は電池反応槽、2(社)陽極室、ろけ
陰極室、4け隔膜(イオン交換膜または多(1質薄膜の
セパレータ)。
Recently, zinc-bromine secondary batteries have been attracting attention and being developed from the viewpoint of effective energy utilization. For example, for purposes such as effective use of nighttime electricity, electrolyte circulation type zinc-
Bromine secondary batteries are used. Figure 1 shows its basic configuration. In the figure, 1 is a battery reaction tank, 2 is an anode chamber, a melting cathode chamber, and 4 diaphragms (ion exchange membranes or multi-layer separators with a single thin film).

5け陽極、6は陰極、7d陽極電解液貯槽、8け陰極電
解液貯槽、9および10けポンプ、11をま1’tk極
」二ニ生成さ力5たデンドライトである。
5 anodes, 6 cathodes, 7 anode electrolyte reservoirs, 8 cathode electrolyte reservoirs, 9 and 10 pumps, 11 and 1'tk electrodes, 2 dendrites.

これら電解液循環型の亜鉛−臭素二次電池においてt、
J充電に時図中Ωで示した陰極面上に析出する亜鉛は陰
極面近傍の電界分布の不均一、陰極液の流れの乱り、か
ら平滑となりにくぐて、樹枝状晶所開デンドライトを形
成することが多く、特に充放電ザイクルが増してくると
問題となる。このデンドライト状亜鉛は非常に脆いブζ
め電極から離脱しやすく、電池効率を低下せしめる。寸
だ電極から離脱しなくても、そのま\デンドライトが樹
脂状に成長12、隔膜4を破fit 1.たり−または
陽極との短絡を生じ、電池の破壊にまで至Z)恐れがあ
った。
In these electrolyte circulation type zinc-bromine secondary batteries, t,
During J charging, the zinc deposited on the cathode surface, indicated by Ω in the diagram, cannot become smooth due to the non-uniform electric field distribution near the cathode surface and the disturbance of the flow of the catholyte, and forms open dendrites in dendrites. This becomes a problem especially when the number of charge/discharge cycles increases. This dendrite zinc is a very brittle metal.
It easily separates from the electrode, reducing battery efficiency. Even if it does not detach from the electrode, the dendrite grows like a resin 12 and breaks the diaphragm 4. 1. There was a risk of short circuit between the battery and the anode, leading to damage to the battery.

従って、従来とのデンドライトの発生を防止すべく、非
イオン系界面活性剤、1F鉛メツキ光沢剤等の各種のデ
ンドライト抑制剤の陰極液への添加が行なわれている。
Therefore, in order to prevent the conventional generation of dendrites, various dendrite inhibitors such as nonionic surfactants and 1F lead plating brighteners are added to the catholyte.

しかし、なから、非イオン系界面活性剤、 ili鉛メ
ッキ光沢剤等のデンドライト抑制剤に1、+lii鉛臭
メτ二(′に市、池の隔膜4に軽済性を考トゲして安価
な多孔)1q性の薄膜を使用する場合は%に、充電時陽
極5で発生し、該隔膜4を通して陰極室ろに浸透拡散す
る臭素分子Br2によって長期間のザイクル使用の間に
序々に分解されてし′まうプrめ、安定1.た亜鉛臭素
二次電池の維持を1図ることができない。また、耐臭素
性のあるものでも多斂回の充放電サイクル使用の間に陰
極面に析出した亜鉛表面に不拘−カ亜鉛の酸化皮膜の形
成によって、デンドライトを起すことが多かった。
However, non-ionic surfactants, dendrite inhibitors such as lead plating brighteners, + lead odor, etc. When a porous (1q) thin film is used, bromine molecules Br2 generated at the anode 5 during charging and permeated and diffused into the cathode chamber through the diaphragm 4 gradually decompose during long-term cycle use. Stable 1. Therefore, it is impossible to maintain a zinc-bromine secondary battery. Furthermore, even those with bromine resistance often develop dendrites due to the formation of an oxidized film of unrestricted zinc on the surface of the zinc deposited on the cathode surface during repeated charge/discharge cycles.

本発明の目的は前述の如く電解液循環型亜鉛−臭素二次
電412の充電時に生ずるデンドライト発生および成長
の問題を解決するだめの陰極電解液を開発するにある。
The object of the present invention is to develop a catholyte solution that solves the problems of dendrite generation and growth that occur during charging of the electrolyte circulation type zinc-bromine secondary battery 412 as described above.

本発明者らV月(負極電解液の活物質である臭化亜鉛と
、r;r口での臭素錯体形成剤の特定量にデンドライト
抑制剤を種々(p¥定定配配合これに基いて充放電試験
を盾ねた結果電解液循環型亜鉛−臭素二次電池の介、電
時に発生する問題を解決する陰極電解液貯槽を見知し7
発明に至ったものである。
Based on this, the inventors added various dendrite inhibitors to a specific amount of zinc bromide, which is the active material of the negative electrode electrolyte, and a bromine complex forming agent at the r; As a result of conducting charge/discharge tests, we discovered a cathode electrolyte storage tank that solves the problems that occur when using a circulating electrolyte zinc-bromine secondary battery.7
This led to the invention.

本発明の′堤旨とするところは、電解液循(1■型亜鉛
−臭素二次71を池の陰極電解液の組成として、活物質
とし−での臭化亜鉛をベースとしてこれに臭素錯体形成
剤およびデンドライト抑制剤を添加混合してなるもので
それらの量を夫々特定したものである。
The main purpose of the present invention is to use zinc bromide as the active material in the cathode electrolyte composition of the electrolyte circulation (type 1 zinc-bromine secondary 71), and to add a bromine complex to the zinc bromide as the active material. It is made by adding and mixing a forming agent and a dendrite inhibitor, and the amounts of each are specified.

即ち本発明は陰極電解液の活物質と17て臭化亜鉛(Z
n+1r2 ) 3 mot/l  をベースとして、
これに臭素錯体形成剤として、次に示す杵な構造の↑〃
素環式第4級アンモニウム塩であるメチル・エチル0壬
ルホリウムープロマイド および メチル・エチル・ピロリジウム・ブロマイドを夫々0.
5 mol/z添加したものに更にデンドライト抑制剤
として下記に示す構造の添加剤イ)〜オ)の12鍾のう
ち1種を特定危添加してなる電解液組成にある。
That is, the present invention combines zinc bromide (Z) with the active material of the catholyte.
Based on n+1r2) 3 mot/l,
In addition, as a bromine complex forming agent, the following ↑〃
Methyl ethyl pyrrolidium bromide and methyl ethyl pyrrolidium bromide, which are monocyclic quaternary ammonium salts, were each mixed with 0.0.
The composition of the electrolytic solution is obtained by adding one of the 12 additives a) to e) as a dendrite inhibitor having the structure shown below to the electrolyte containing 5 mol/z.

なお上記2種の臭素錯体形成剤は夫々1種で1mol/
l  を添加しても、陽極室から浸透拡散して陰極液に
混入した臭素分子を捕捉する効果は充分であり、これに
デンドライト抑制剤を添加しても良、いことが実験で確
められているが2種を夫々0.5mat/を加え合計1
mot//jとした方が多少良い結果が1+)られた。
In addition, each of the above two types of bromine complex forming agents is used in an amount of 1 mol/
It has been confirmed through experiments that even if bromine is added, the effect of trapping bromine molecules that have penetrated and diffused from the anode chamber and mixed into the catholyte is sufficient, and that it is also possible to add a dendrite inhibitor to this. However, add 0.5mat/to each of the two types to make a total of 1
mot//j gave slightly better results (1+).

デンドライト抑制剤の種類、構造式および特定添加「1 イ)メチルeドデシル・モルポリウム・プロマイドロ)
メチル・デシル・モルポリウム・プロマイトチ)トリメ
チル・ドデシル・アンモニウム・ブロマイド=))IJ
メチル・デシル・アンモニウム・・ブロマイドホ)ジメ
チルφベンジル・ドデシル・アンモニウム争ブロマイド
へ)ジメチル・ベンジル9デシル・アンモニウム・プロ
マイトチ)  ) ’) メチル・ベンジル・アンモニ
ウム・プロマイトリ) ドデシル争ピリジニウノ、−ブ
ロマイドヌ)デシル・ピリジニウムΦプロマイドル)ド
テシル・メチル・ピロリジニウム・ブロマイドオ)デシ
ル・メチル中ビロリジニウ11・ブロマイド亜鉛−臭素
二次電池の陰極酸IL(”(液組成を臭化亜鉛量及び臭
素錯体形成剤としてメチル・エチル・モルポリウム・ブ
ロマイドおよびメチル・エチル・ピロリジウム・ブロマ
イドのM−を一定にし2とれにデンドライト抑制剤とし
て前述の第4級アンモニウムブロマイドのイ)〜オ)の
添加剤をIff々の割合で配合調製し、充放電試験を行
ない、陰極上のデンドライト発生状況、電着面の平温状
況をf+t7察評価しこれをA、B、Cの6段階に1ス
分(2、この内A評価試料について6時間充電、6時間
放電の性能試験を20サイクル行なった実施例に基づく
もノテする。その結果イ)メチル・ドデシル・モルホリ
ニウム・ブロマイドを添加したものが一番優れた電極の
平滑性を20サイクルの性能試験後も維持し得た8次で
、口)メチル・デシル・モルホリニラム−ブロマイド、
二)l・リメヂルーデシルのアンモニウム・ブロマイド
等も優れ他の種類のデンドライト抑制剤を添加した電解
液についても全性能試験を11有シてB以下に落ちるこ
とはなかった。抑fltll 7’ilは窒素の4個の
給ボンドに結合している炭素の総がシが12〜10のも
のが最も優れており、炭素数8以下堤だは20以上のも
のでは1回の電着でもそれほど優れた結果は得られなか
った。
Types, structural formulas, and specific additions of dendrite inhibitors (1) Methyl e-dodecyl morporium promidro)
Methyl decyl morporium promite) trimethyl dodecyl ammonium bromide =)) IJ
Methyl decyl ammonium bromide) dimethyl φbenzyl dodecyl ammonium bromide) dimethyl benzyl 9 decyl ammonium promite) ) ') methyl benzyl ammonium promitri) dodecyl pyridinium - bromide) decyl・Pyridinium Φpromidol) dodecyl methyl pyrrolidinium bromide 11 ・bromide zinc-bromine cathode acid IL for secondary batteries・M- of ethyl morporium bromide and methyl ethyl pyrrolidium bromide is kept constant, and the above-mentioned quaternary ammonium bromide additives (a) to (e) are added as a dendrite inhibitor in proportions of Iff. After preparing the sample, conduct a charge/discharge test, and evaluate the dendrite generation status on the cathode and the normal temperature status of the electrodeposited surface at f + t7. This is based on an example in which a performance test of 6-hour charging and 6-hour discharging was conducted for 20 cycles.The results were as follows: a) The electrode with methyl dodecyl morpholinium bromide added had the best electrode smoothness at 20 8) Methyl decyl morpholinyl bromide, which could be maintained even after the cycle performance test.
2) Ammonium bromide of l.limedyl decyl was also excellent, and electrolytes containing other types of dendrite inhibitors did not fall below B in all 11 performance tests. The best suppression fltll 7'il is one in which the total number of carbons bonded to the four nitrogen bonds is 12 to 10, and those with less than 8 carbon atoms and those with 20 or more carbon atoms are the best. Even electrodeposition did not give very good results.

本発明による陰極電解液を液循環型亜鉛−臭素二次宙、
 rTl+に用いた場合多数回の充放電サイクル使用に
おいて陰極に秒けるデンドライトが十分抑制できるV]
:かりでなく、それ自イ本がfPj4級アンモニウム塩
であるので充電時多孔質膜を通して陰極室に浸透拡散す
る臭素の強酸化性による分解の恐れもなく、錯化剤と混
合添加することとあいまって1、!″!、!、ネ分子(
ポリハライド)として落すだめ電池効率の向上が望める
ものである。
The catholyte according to the present invention is used in a liquid circulating type zinc-bromine secondary space.
When used in rTl+, V can sufficiently suppress dendrites from forming on the cathode during multiple charge/discharge cycles]
Not only that, but since it is fPj quaternary ammonium salt, there is no fear of decomposition due to the strong oxidizing properties of bromine that permeates and diffuses into the cathode chamber through the porous membrane during charging, and it can be mixed and added with a complexing agent. Combined, 1! ″!,!,ne molecule (
It is hoped that the efficiency of the battery will be improved as a result of the drop (polyhalide).

次に本発明の実施例を以下に述べる。Next, examples of the present invention will be described below.

実施例 第1図に示す如き液循環型亜鉛−臭素二次電池の陰極電
解液を臭化亜鉛濃度を6+y+ot /z 、臭素錯体
形成剤としてメチル・エヂル・モルホ11ニウム・フロ
マイトおよびメチル壷エヂル・ピロリジニウム・ブロマ
イドを夫々0−5 mol /を添加しこれを一定と1
7これに前述のイ)〜オ)の12秤〜1のデンドライト
抑制剤を添加配合し、これを電解液と17、電険にカー
ボンブラックプラスデック電極を用い、40 mA/c
)Jの電流密度で6時間の光重、を行なった。
EXAMPLE The cathode electrolyte of a liquid circulation type zinc-bromine secondary battery as shown in FIG. Add 0-5 mol/pyrrolidinium bromide and keep it constant and 1
7. To this, add and blend the dendrite inhibitor of 12 weights to 1 of the above-mentioned a) to e), mix this with the electrolyte, and use a carbon black plus deck electrode as an electric shock absorber at 40 mA/c.
) at a current density of J for 6 hours.

6時間後のt1’c 4Tfi、上のデンドライトの生
成状況並に′i(℃着面の平滑状況を観祭し評価を次の
基準にて行なった1、 A:デンドライトの生成がなく、電着面は平滑である。
6 hours later, t1'c 4Tfi, the dendrite formation above and the smoothness of the deposited surface were observed and evaluated based on the following criteria. The surface is smooth.

B、デー/ドライドは巾計出現するが電着面は比較的平
滑である。
B, De/drye appears in width, but the electrodeposited surface is relatively smooth.

c:y’ンドライトが多数発生1〜、Tlf着面が不均
一である。
c: A large number of y'ndrites occur (1 to 1), and the Tlf deposition surface is uneven.

なおABおよびCの右肩の」−はより優れている。Note that "-" on the right shoulder of AB and C is better.

−は少し劣る記号である。- is a slightly inferior symbol.

これら評価したもののうちAのWY価を力えたもの61
種について電流密度30 mA /、、4にて6時間充
電、6時間放電のサイクルを20ザイクルに亘゛〕て性
能試験を行ない評価を行なった。
Of these evaluated items, 61 had a strong WY value of A.
Performance tests were performed on the seeds at a current density of 30 mA/.4 for 20 cycles of 6-hour charging and 6-hour discharging, and evaluation was performed.

」ソ上の試験結果について次表にテす。The test results above are shown in the table below.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は電解液循環型の亜鉛−臭素二次電池の基本構成
を示す模式図である。 1:電1池反応槽、2:陽極宇、3:陰極幸、4:隔膜
(セパレータ)5:陽、iI?i、6:陰極、7:陽極
電解液貯槽、8:陰極電解液貯槽、11;デンドライト
。 桟理人 弁理士  木 村 三 朗 第1図
FIG. 1 is a schematic diagram showing the basic configuration of an electrolyte circulation type zinc-bromine secondary battery. 1: battery reaction tank, 2: anode, 3: cathode, 4: diaphragm (separator) 5: positive, iI? i, 6: cathode, 7: anode electrolyte storage tank, 8: cathode electrolyte storage tank, 11: dendrite. Attorney Patent Attorney Sanro Kimura Figure 1

Claims (1)

【特許請求の範囲】 1)臭化亜鉛を活物質とシフ、臭素錯体形成剤及びデン
ドライト抑制剤を添加してなる液循環型亜鉛臭素二次′
1′■τ、池の電解液において、デンドライト抑制剤と
して、メチル・ドデシル中モルホリニウム・ブロマイド
、メチル・デシル・モルホリニウム・ブロマイド、トリ
メチル・ドデシル・アンモニウム・ブロマイド、トリメ
チルeデシル・アンモニウノ、・ブロマイド、ジメチル
・ベンジル瞼ドデシル・アンモニウノ\・ブロマイド、
ジメチル・ベンジル・テ・ンル・rンモニウム拳フ゛ロ
マイト。 テトラ・ブチル・アンモニ・°lム・ブロマイド、トI
jフチル・ベンジル・アンモニウム・ブロマイド。 ドデシル書ピリジウム・ブロマイド、デシル−ピリジウ
ム・ブロマイド、ドデシル・メチルΦピロリジニウノ・
・ブロマイド、デシルΦメチル・ビロリジニウノ・・ブ
ロマイドのうち1種を添加混合することをlP、’F 
gIとする唾鉛−臭素二次出二池の電解W夕、2)前記
臭素錯体形成剤としてメチル・エチルOモルポリウム・
ブロマイドおよびメチル・エチル・ピロリジウム・ブロ
マイドであることを特徴とする特許請求の範囲第1 x
14 N+−:載の亜鉛−臭素電池の′f1丁解液。
[Scope of Claims] 1) A liquid circulation type zinc bromine secondary compound made of zinc bromide as an active material and a bromine complex forming agent and a dendrite inhibitor added thereto.
1'■τ, In the pond electrolyte, as a dendrite inhibitor, morpholinium bromide in methyl dodecyl, methyl decyl morpholinium bromide, trimethyl dodecyl ammonium bromide, trimethyl e decyl ammonium bromide, dimethyl・Benzyl eyelid dodecyl ammonium bromide,
Dimethyl benzyl chloride fluorite. Tetra-butyl ammonia bromide, tI
jphthyl benzyl ammonium bromide. Dodecyl pyridium bromide, decyl-pyridium bromide, dodecyl methyl Φpyrrolidinium
・Bromide, decyl Φ methyl virolidinium... It is recommended to add and mix one type of bromide.
2) As the bromine complex forming agent, methyl ethyl molporium
Bromide and methyl ethyl pyrrolidium bromide, Claim 1 x
14 N+-: 'f1 solution of zinc-bromine battery.
JP57192520A 1982-11-02 1982-11-04 Electrolyte for zinc-bromine battery Granted JPS5983366A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP57192520A JPS5983366A (en) 1982-11-04 1982-11-04 Electrolyte for zinc-bromine battery
EP83306620A EP0109223B1 (en) 1982-11-02 1983-10-31 Electrolyte for zinc-bromine storage batteries
DE8383306620T DE3372683D1 (en) 1982-11-04 1983-10-31 Electrolyte for zinc-bromine storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57192520A JPS5983366A (en) 1982-11-04 1982-11-04 Electrolyte for zinc-bromine battery

Publications (2)

Publication Number Publication Date
JPS5983366A true JPS5983366A (en) 1984-05-14
JPH0377627B2 JPH0377627B2 (en) 1991-12-11

Family

ID=16292647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57192520A Granted JPS5983366A (en) 1982-11-02 1982-11-04 Electrolyte for zinc-bromine battery

Country Status (1)

Country Link
JP (1) JPS5983366A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725538A (en) * 2022-05-18 2022-07-08 安徽工业大学 Electrolyte for zinc-bromine battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476819A (en) * 1970-09-18 1972-04-14
JPS52122836A (en) * 1976-04-07 1977-10-15 Exxon Research Engineering Co Metallhalogen battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS476819A (en) * 1970-09-18 1972-04-14
JPS52122836A (en) * 1976-04-07 1977-10-15 Exxon Research Engineering Co Metallhalogen battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114725538A (en) * 2022-05-18 2022-07-08 安徽工业大学 Electrolyte for zinc-bromine battery

Also Published As

Publication number Publication date
JPH0377627B2 (en) 1991-12-11

Similar Documents

Publication Publication Date Title
US4510218A (en) Electrolyte for zinc-bromine storage batteries
AU2014303614A1 (en) Redox flow battery
US20170214077A1 (en) Electrolyte System For Rechargeable Flow Battery
CN107431223A (en) Flow battery balancing cells and its application method with Bipolar Membrane
DE2711695A1 (en) PROCESS FOR IMPROVING THE PERFORMANCE OF ELECTROCHEMICAL SYSTEMS, ELECTROCHEMICAL CELLS AND BATTERIES USED BY THIS PROCESS AND LIQUID COMPLEX USED FOR THESE
US4181777A (en) Rechargeable zinc halogen battery
US4818642A (en) Electrolyte additive for improved battery performance
US4491625A (en) Zinc-bromine batteries with improved electrolyte
JP2019505967A (en) Redox flow battery electrolyte and redox flow battery
CA1129945A (en) Complexing agents for zinc bromine storage systems
Krishna et al. The separator-divided soluble lead flow battery
KR102379200B1 (en) Zinc-bromide flow battery comprising conductive interlayer
Lanfranconi et al. All-lead-flow-batteries as promising candidates for energy storage solutions
Pan et al. The principle and electrochemical performance of a single flow Cd–PbO2 battery
US4766045A (en) Metal halogen electrochemical cell
JPS5983366A (en) Electrolyte for zinc-bromine battery
JPS61206180A (en) Electrolytic solution for zinc-bromine electric cell
JPH0334270A (en) Electrolyte for secondary cell, and secondary cell
JPH0364871A (en) Electrolyte for zinc bromide cell
KR101732686B1 (en) Electrolyte for redox flow battery and redox flow battery
EP0109223B1 (en) Electrolyte for zinc-bromine storage batteries
CN109477230B (en) Electrolyte, electrolyte for electrolytic cell, and electrolytic cell system
JPH06196200A (en) Function recovering method and function recovering liquid for lead-acid battery
CN111180777A (en) Positive electrode electrolyte for zinc-bromine single flow battery
JPS58117658A (en) Sealed lead-acid battery