JPH0334270A - Electrolyte for secondary cell, and secondary cell - Google Patents

Electrolyte for secondary cell, and secondary cell

Info

Publication number
JPH0334270A
JPH0334270A JP1166599A JP16659989A JPH0334270A JP H0334270 A JPH0334270 A JP H0334270A JP 1166599 A JP1166599 A JP 1166599A JP 16659989 A JP16659989 A JP 16659989A JP H0334270 A JPH0334270 A JP H0334270A
Authority
JP
Japan
Prior art keywords
electrolyte
negative electrode
molten salt
halide
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1166599A
Other languages
Japanese (ja)
Inventor
Kazuyoshi Iwahara
岩原 一義
Miyoshi Okamura
見好 岡村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nihon Kagaku Sangyo Co Ltd
Original Assignee
Nihon Kagaku Sangyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nihon Kagaku Sangyo Co Ltd filed Critical Nihon Kagaku Sangyo Co Ltd
Priority to JP1166599A priority Critical patent/JPH0334270A/en
Publication of JPH0334270A publication Critical patent/JPH0334270A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To eliminate the problem of dendrite of the negative electrode and to lower the melting point and the viscosity of the electrolyte of a secondary cell by using a mixed fused salt, made by mixing an imidazole halogenide of specified composition with several metal halogenides, as the electrolyte. CONSTITUTION:A mixed fused salt made by mixing 20-80mol% of imidazole halogenide shown in the formula with several metal halogenides MXn is used for the electrolyte of a secondary cell. In the formula, R1-R5 indicate hydrogen atoms or substitutive alkyl, alkenyl, alkynyl, cycloalkyl or aryl radicals in the range of C1-C6 in carbon number respectively; and X denotes Cl, Br or I. M denotes K, Ca, Li, Al, Mg, Zn or Fe, and n=1, 2, 3. Thereby the dendrite problem of the negative electrode can be eliminated, and the melting point and the viscosity of the electrolyte can be decreased to improve the electric conductivity, and adequate electrolytic deposit can be obtained in the cell reaction to enlarge the current density.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は二次電池用電解液及び二次電池にかか1)、詳
しくはイミダゾリウムハロゲン化物を混合した混合溶融
塩からなる二次電池用電解液と、この電解液を使用した
二次電池に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to an electrolytic solution for a secondary battery and a secondary battery. The present invention relates to an electrolytic solution for use in the electrolyte and a secondary battery using this electrolytic solution.

〈従来の技術〉 従来の代表的な二次電池は鉛蓄電池やニッケル/カドニ
ウム電池で、水溶液を特徴とする特許である。また、負
極に亜鉛や鉄を用いた二次電池も知られてお1)、これ
らも電解液は水溶液系である。
<Conventional Technology> Typical conventional secondary batteries are lead-acid batteries and nickel/cadmium batteries, which are patented as featuring aqueous solutions. In addition, secondary batteries using zinc or iron for the negative electrode are also known (1), and the electrolyte in these is also an aqueous solution.

〈発明が解決しようとする課題〉 しかし、水i8液系を電解質とする二次電池では、主と
して負極のデンドライト状析出等の電析の問題があ1)
、広く実用化されていない。
<Problems to be Solved by the Invention> However, secondary batteries that use aqueous I8 liquid system as an electrolyte mainly suffer from electrodeposition problems such as dendrite precipitation on the negative electrode1)
, has not been widely put into practical use.

また、水?8液系を電解質とする二次電池では、電池電
圧が約2v〜1.2V程度であることから、近年の高電
圧化の要求に答えることができない。
Also, water? A secondary battery using an 8-liquid system as an electrolyte has a battery voltage of about 2V to 1.2V, and therefore cannot meet the recent demand for higher voltage.

この光め、高電圧化を目指して負極にリチウム系を用い
、また有機溶媒に電解質を溶解した有機系電解液を用い
た二次電池の開発が盛んに行われているが、ここでも負
極のデンドライトの問題があ1)、広く実用化されてい
ない。また、有機系電解7&を用いた二次電池では、電
解液の比抵抗が水溶液系の比抵抗よりも大きいため、高
出力が得られない欠点があった。
In light of this, development of secondary batteries using lithium-based negative electrodes and organic electrolyte solutions in which electrolytes are dissolved in organic solvents is being actively conducted with the aim of increasing voltage. Due to the problem of dendrites (1), it has not been widely put into practical use. In addition, the secondary battery using the organic electrolyte 7& has the disadvantage that high output cannot be obtained because the specific resistance of the electrolytic solution is higher than the specific resistance of the aqueous solution.

このような負極のデンドライト等の問題を解決するため
、溶融塩を電解液として使用することが考えられている
In order to solve the problem of negative electrode dendrites, etc., it has been considered to use a molten salt as an electrolyte.

しかし、負極のデンドライト等の問題を解決出来るもの
の、融点、粘性、導電性等の点で充分ではなかった。
However, although it could solve problems such as dendrites in the negative electrode, it was not sufficient in terms of melting point, viscosity, conductivity, etc.

本発明は上記従来技術の課題を解決するためになされた
もので、その目的とするところは、負極のデンドライト
等の問題がなく、また融点、粘性を低下させ、導電性を
向上させ、電池反応で良好な電着物が得られ、を流密度
を上げることが出来る二次電池用電解液を提供すること
であ1)、また負極のデンドライト等の問題がなく、高
電圧、高出力、長寿命の二次電池を提供することである
The present invention has been made to solve the problems of the prior art described above, and its objectives are to eliminate problems such as dendrites in the negative electrode, lower the melting point and viscosity, improve conductivity, and improve battery reaction. By providing an electrolytic solution for secondary batteries that can obtain good electrodeposit and increase the flow density (1), it also eliminates problems such as negative electrode dendrites, has high voltage, high output, and long life. The aim is to provide rechargeable batteries.

<i1題を解決するための手段〉 上記課題を解決するため、本発明者等は二次電池用電解
液について鋭意研究した結果、イミダゾリウムハロゲン
化物を混合した混合溶融塩を電解液として使用すると、
負極のデンドライトを解決出来る上に、他の溶融塩に比
して融点を下げ、粘性を下げ、導電性を向上し、電池反
応で電着物の光沢、物性の向上を図1)、電流密度を上
げることが出来る等の効果があることを見出して、本発
明をなすに至った。
<Means for Solving Problem i1> In order to solve the above problem, the present inventors conducted intensive research on electrolytes for secondary batteries, and found that if a mixed molten salt containing imidazolium halide is used as an electrolyte. ,
In addition to being able to solve dendrites in the negative electrode, it lowers the melting point, lowers viscosity, and improves conductivity compared to other molten salts, improves the gloss and physical properties of electrodeposit in battery reactions (Fig. 1), and lowers current density. The present inventors have discovered that there are effects such as being able to increase

また、この混合溶融塩を使用して二次電池を構成すると
、負極のデンドライトの問題がなく、常温以下から15
0°Cの温度域で負極にLi、Al、Ca、 Mg、Z
n、Fe又はこれらの合金を用いることが可能で、高電
圧、高出力、長寿命の二次電池が得られることを見出し
て、本発明をなすに至った。
In addition, if a secondary battery is constructed using this mixed molten salt, there will be no problem with dendrites in the negative electrode, and
Li, Al, Ca, Mg, Z on the negative electrode in the temperature range of 0°C
The present inventors have discovered that it is possible to use n, Fe, or an alloy thereof, and that a secondary battery with high voltage, high output, and long life can be obtained, and the present invention has been completed.

すなわち、本発明の二次電池用電解液は、次式で示され
るイミダゾリウムハロゲン化物(R1−R5は水素原子
又は置換されてもよい炭素数C1〜C6の範囲のアルキ
ル、アルケニル、アルキニル、シクロアルキル若しくは
アリール基:XはCI、 Br、I ) 20〜80s
olXと、各種金属ハロゲン化物MXn (M:に、C
a、Li、Al、Mg、Zn、Fe  ;X:C1,B
rS l  ;n=1゜2.3)とを混合した混合溶融
塩からなることを特徴としている。
That is, the electrolytic solution for secondary batteries of the present invention is an imidazolium halide represented by the following formula (R1-R5 are hydrogen atoms or optionally substituted alkyl, alkenyl, alkynyl, cyclo Alkyl or aryl group: X is CI, Br, I) 20-80s
olX and various metal halides MXn (M: to, C
a, Li, Al, Mg, Zn, Fe; X: C1, B
rS l ; n=1°2.3).

また、前記イミダゾリウムハロゲン化物とアルキルピリ
ジニウムハロゲン化物(アルキル基;C1−cs  i
ハロゲン:CL Br、  I )の混合物20〜80
■olzと、各種金属ハロゲン化物MXn(M:に、C
a、Li、、At5Mg、Zn、Fe ;X:C1,B
r、I Bn=1.2.3)とを混合した混合溶融塩か
らなることをel&としている。
Further, the imidazolium halide and the alkylpyridinium halide (alkyl group; C1-cs i
Halogen: CLBr, I) mixture 20-80
■olz and various metal halides MXn (M: ni, C
a, Li, , At5Mg, Zn, Fe; X: C1, B
el& consists of a mixed molten salt mixed with r, I Bn = 1.2.3).

また、前記混合溶融塩に芳香族系有機溶剤を添加するこ
とを特徴としている。
Further, it is characterized in that an aromatic organic solvent is added to the mixed molten salt.

また、本発明の二次電池は、前記イミダゾリウムハロゲ
ン化物20〜80so)χと各種金属ハロゲン化物MX
nとを混合した混合溶融塩、あるいは前記イミダゾリウ
ムハロゲン化物と前記アルキルピリジニウムハロゲン化
物との混合物20〜80■olzと各種金属ハロゲン化
物MXnとを混合した混合溶融塩を電解液に使用し、負
極にLi、Al、Ca、Mg5ZnSFe又はこれらの
合金を用いたことを特徴としている。
Further, the secondary battery of the present invention includes the imidazolium halide 20-80so)χ and various metal halides MX.
A mixed molten salt mixed with n, or a mixed molten salt mixed with 20 to 80 olz of the imidazolium halide and the alkylpyridinium halide and various metal halides MXn is used as the electrolytic solution, and the negative electrode It is characterized by using Li, Al, Ca, Mg5ZnSFe, or an alloy thereof.

まず、イミダゾリウムハロゲン化物を20〜80a+o
lXと、各種金属ハロゲン化物とを混合した混合溶融塩
からなる二次電池用電解液について説明する。
First, add 20 to 80 a+o of imidazolium halide.
An electrolytic solution for a secondary battery made of a mixed molten salt of lX and various metal halides will be described.

イミダゾリウムハロゲン化物の化学構造式は、次式によ
り表される。
The chemical structural formula of imidazolium halide is represented by the following formula.

ここで、R1−R2は水素原子又は置換されてもよい炭
素数C1〜C,の範囲のアルキル、アルケニル、アルキ
ニル、シクロアルキル若しくはアリール基であ1)、ま
たXはCI、 Or、  T等のハロゲンである。
Here, R1-R2 is a hydrogen atom or an optionally substituted alkyl, alkenyl, alkynyl, cycloalkyl, or aryl group having a carbon number ranging from C1 to C1), and X is CI, Or, T, etc. It is halogen.

イミダゾリウムハロゲン化物としては、例えばl−メチ
ル−3−エチルイミダゾリウムブロマイド(以下ME 
I Bと略記する)、1−メチル−3−ブチルイミダゾ
リウムクロライド(以下MBICと略記する)、l−ア
リル−3−プロピルイミダゾリウムクロライド(以下A
PICと略記する)がある。ここで、メチル、エチル、
ブチル、アリル、プロピルの代わりに他のアルキル基、
アルケニル基でもよく、またアルキニル、シクロアルキ
ル若しくはアリール基でもよい。また、臭素(B r 
) 、塩素(CI)の代わりにヨウ素(1)でもよい。
Examples of imidazolium halides include l-methyl-3-ethylimidazolium bromide (hereinafter ME
IB), 1-methyl-3-butylimidazolium chloride (hereinafter referred to as MBIC), l-allyl-3-propylimidazolium chloride (hereinafter referred to as A
(abbreviated as PIC). Here, methyl, ethyl,
Other alkyl groups instead of butyl, allyl, propyl,
It may be an alkenyl group, or an alkynyl, cycloalkyl or aryl group. In addition, bromine (Br
), iodine (1) may be used instead of chlorine (CI).

また、金属ハロゲン化物としては、塩化物、臭化物、ヨ
ウ化物があ1)、例えばLiC1、AlCl、、ZnC
Iz 5FeCI* 、AlBr* 、ZnBrz、F
eBr5等が使用される。
In addition, examples of metal halides include chlorides, bromides, and iodides1), such as LiCl, AlCl, and ZnC.
Iz 5FeCI*, AlBr*, ZnBrz, F
eBr5 etc. are used.

イミダゾリウムハロゲン化物と各種金属ハロゲン化物と
の混合溶融塩としては、例えばMEIBAIBrs 、
MEIB  AlCl3 、MEIBZnCIt 、M
EIB  FeCl5 、MEIBZnBrz、MEI
B−FeBrs、MBICZnClz 、AP ICA
lC11等がある。
Examples of the mixed molten salt of imidazolium halide and various metal halides include MEIBAIBrs,
MEIBAlCl3, MEIBZnCIt, M
EIB FeCl5, MEIBZnBrz, MEI
B-FeBrs, MBICZnClz, AP ICA
There are lC11 etc.

これら混合溶融塩は常温〜約60°Cで液体となってい
る。特に、金属ハロゲン化物としてA I B r 、
l、FeBr、を用いると融点を下げて常温以下の低温
で電池作動が行なえる。
These mixed molten salts are liquid at room temperature to about 60°C. In particular, as metal halides A I B r ,
When FeBr is used, the melting point is lowered and the battery can be operated at a low temperature below room temperature.

なお、イミダゾリウムハロゲン化物と各種金属ハロゲン
化物を各々2種以上混合してもよい。
Note that two or more of each of the imidazolium halide and various metal halides may be mixed.

溶融塩の金属ハロゲン化?14度としては、40〜8O
@olχ程度が望ましい、4O−oIXよりも少ないと
、溶融塩中のアンモニウムカチオンの濃度が高くな1)
、その還元反応が優先するため、各種金属の析出が困難
にな1)、負極の充電効率が悪くなる。また、逆に80
+olχよりも多くなると、融点が高くなってしま゛う
Metal halogenation of molten salt? 14 degrees is 40-8O
@olχ is desirable; if it is less than 4O-oIX, the concentration of ammonium cations in the molten salt will be high 1)
Since the reduction reaction takes precedence, it becomes difficult to deposit various metals (1), and the charging efficiency of the negative electrode deteriorates. Also, conversely, 80
If the amount exceeds +olχ, the melting point will become high.

上記混合溶融塩にベンゼン、トルエン、キシレン等の芳
香族系有機溶剤を添加すると、溶融塩中のイオン形態や
解離平衡を変化させずに粘度を低下させることが出来る
上に、導電率を高めることが出来る。
When an aromatic organic solvent such as benzene, toluene, or xylene is added to the above mixed molten salt, the viscosity can be lowered without changing the ionic form or dissociation equilibrium in the molten salt, and the conductivity can be increased. I can do it.

芳香族系有m溶剤の添加量は、10〜8Oνo1χ程度
が望ましい、10*olχよりも少ないと、殆ど影響が
なく、また8O*olχよりも多いと、溶融塩中でイオ
ン種の濃度が薄くなり過ぎ、充放電効率が著しく低下す
る。
The amount of the aromatic solvent added is preferably about 10 to 8Oνo1χ.If it is less than 10*olχ, it will have almost no effect, and if it is more than 8O*olχ, the concentration of ionic species in the molten salt will be low. If it becomes too much, the charge/discharge efficiency will drop significantly.

次に、前記イミダゾリウムハロゲン化物とアルキルピリ
ジニウムハロゲン化物の混合物20〜805olXと、
各種金属ハロゲン化物とを混合した混合溶融塩からなる
二次電池用電解液について説明する。
Next, the mixture of the imidazolium halide and the alkylpyridinium halide 20 to 805olX,
An electrolytic solution for secondary batteries consisting of a mixed molten salt mixed with various metal halides will be described.

アルキルピリジニウムハロゲン化物としては、ブチルピ
リジニウムクロリド(以下BPCと略記する)とブチル
ピリジニウムブロマイド(以下BPBと略記する)等が
ある。ここで、ブチルの代わりにメチル、エチル、プロ
ピル、アミル等のアルキル基でもよい、また、塩素(C
I)、臭素(B「)の代わりにヨウ素(1)でもよい。
Examples of alkylpyridinium halides include butylpyridinium chloride (hereinafter abbreviated as BPC) and butylpyridinium bromide (hereinafter abbreviated as BPB). Here, an alkyl group such as methyl, ethyl, propyl, amyl, etc. may be used instead of butyl, or chlorine (C
I), iodine (1) may be used instead of bromine (B'').

また、アルキルピリジニウムハロゲン化物に混合するイ
ミダゾリウムハロゲン化物としては、例えばMEIBが
ある。
Further, as the imidazolium halide to be mixed with the alkylpyridinium halide, there is MEIB, for example.

また、前記金属ハロゲン化物としては、例えばAlCl
3 、ZnCIz 、FeCh、AlBr5ZnBr、
、FeBra等が使用される。
Further, as the metal halide, for example, AlCl
3, ZnCIz, FeCh, AlBr5ZnBr,
, FeBra, etc. are used.

アルキルピリジニウムハロゲン化物とイξダゾリ金属ハ
ロゲン化物と金属ハロゲン化物との混合溶融塩としては
、例えばBPC−MEIB−ZnC1,、BPC−ME
IB−FeC1,、BPBMErB  AlBr5 、
BPB  MEIB−ZnBr、等がある。
Examples of the mixed molten salt of an alkylpyridinium halide, an idazoli metal halide, and a metal halide include BPC-MEIB-ZnC1, BPC-ME
IB-FeC1,, BPBMErB AlBr5,
BPB MEIB-ZnBr, etc.

なお、アルキルピリジニウムハロゲン化物とイミダゾリ
ウムハロゲン化物と金属ハロゲン化物を各々2種以上混
合してもよい。
Note that two or more of each of the alkylpyridinium halide, imidazolium halide, and metal halide may be mixed.

溶融塩の金属ハロゲン化物濃度の点については、前述し
たイミダゾリウムハロゲン化物と金属ハロゲン化物との
混合溶融塩の場合と同じである。また、混合熔融塩にヘ
ンゼン、トルエン、キシレン等の芳香族系有機溶剤を添
加する点についても同じである。
The metal halide concentration of the molten salt is the same as in the case of the mixed molten salt of imidazolium halide and metal halide described above. The same applies to the addition of aromatic organic solvents such as Hensen, toluene, and xylene to the mixed molten salt.

次に、前記電解液を使用した二次電池について説明する
Next, a secondary battery using the electrolyte will be explained.

電解液としてイミダゾリウムハロゲン化物(MEIB)
を20〜80molXと各種金属ハロゲン化物とを混合
した混合溶融塩や、あるいはアルキルピリジニウムハロ
ゲン化物(BPC,BPB)とイミダゾリウムハロゲン
化物(MEIB)の混合物20〜80aiolχと金属
ハロゲン化物とを混合した混合溶融塩を使用する。
Imidazolium halide (MEIB) as electrolyte
A mixed molten salt of 20 to 80 molX and various metal halides, or a mixture of 20 to 80 aiolχ of alkylpyridinium halides (BPC, BPB) and imidazolium halides (MEIB) and a metal halide. Use molten salt.

また、負極としてLi5Al、Ca、Mg、Zn、Fe
又はこれらの合金(Li−A!、Li−3i、Ca−M
g)を使用する。
In addition, as a negative electrode, Li5Al, Ca, Mg, Zn, Fe
Or these alloys (Li-A!, Li-3i, Ca-M
g).

ここで、金属ハロゲン化物、BPC,BPB、MEIB
は水分を嫌い、また溶融塩並びに各種負極材料はO!を
嫌うため、出来るだけ乾燥無酸素雰囲気とし、完全密封
セルで電池作動させることが望ましい。
Here, metal halides, BPC, BPB, MEIB
does not like moisture, and molten salts and various negative electrode materials are O! Therefore, it is desirable to operate the battery in a completely sealed cell in as dry an oxygen-free atmosphere as possible.

く作用〉 イミダゾリウムハロゲン化物(例えばMEIB、MBI
C,APIC)を20〜8(1wo1%と各種金属ハロ
ゲン化物とを混合した混合溶融塩からなる電解液では、
充電時に水溶液系の電解液や有機系電解液のようにデン
ドライトの問題がなく、また有機系の電解液よりも導電
率が高い、また、他の溶融塩に比して融点や粘性を下げ
、導電性を高し、電池反応で電着物の光沢、物性の向上
を図1)、電流密度を上げることが出来る。
Effect> Imidazolium halides (e.g. MEIB, MBI
C, APIC) from 20 to 8 (1wo1%) and various metal halides in an electrolytic solution consisting of a mixed molten salt,
It does not have the problem of dendrites during charging unlike aqueous electrolytes or organic electrolytes, has higher conductivity than organic electrolytes, and has a lower melting point and viscosity than other molten salts. It increases conductivity, improves the gloss and physical properties of electrodeposit through battery reaction (Fig. 1), and increases current density.

このため、極間距離を短くしてエネルギー変換のロスを
少なくすることが出来、また、極間距離が短く出来るこ
とから、ジュール熱による発熱を可及的に少なくするこ
とが出来る。
Therefore, the distance between the poles can be shortened to reduce energy conversion loss, and since the distance between the poles can be shortened, the heat generation due to Joule heat can be reduced as much as possible.

イミダゾリウムハロゲン化物と金属ハロゲン化物とを各
々271以上混合した場合には、融点、粘性を更に下げ
ることが可能である。
When an imidazolium halide and a metal halide are mixed at 271 or more each, it is possible to further lower the melting point and viscosity.

金属ハロゲン化物を2種以上組み合わせると、融点、粘
性を下げると共に、導電性を向上させることが可能であ
るが、この場合金属の共析を考慮して組み合わせる必要
がある。
When two or more metal halides are combined, it is possible to lower the melting point and viscosity and improve the conductivity, but in this case, it is necessary to combine them in consideration of metal eutectoid.

また、アアルキルピリジニ金属ハロゲン化物(例えばB
PC,、BPB)とイミダゾリウムハロゲン化物(例え
ばME ! B) の混合物20〜80molXと、金
属ハロゲン化物とを混合した混合溶融塩からなる電解液
でも、上記電解液の場合と同様であるが、ここではアル
キルピリジニウムハロゲン化物とイミダゾリウムハロゲ
ン化物とを混合しているため、融点および粘性を更に下
げることが可能である。
Also, alkylpyridini metal halides (e.g. B
An electrolytic solution consisting of a mixed molten salt of a mixture of 20 to 80 molX of a mixture of PC, BPB) and an imidazolium halide (for example, ME!B) and a metal halide is similar to the above electrolytic solution, but Since the alkylpyridinium halide and imidazolium halide are mixed here, it is possible to further lower the melting point and viscosity.

また、これら混合溶融塩を電解液として二次電池を構成
すると、デンドライトの間湖がなく、常温以下から15
0°Cの温度域でLi、Al、Ca、Mg、Zn、Fe
又はこれらの合金(Li−AI。
In addition, when a secondary battery is constructed using these mixed molten salts as an electrolyte, there is no lake between the dendrites, and the
Li, Al, Ca, Mg, Zn, Fe in the temperature range of 0°C
Or these alloys (Li-AI.

L t −3i、 Ca−Mg)等を負極に用いること
が可能とな1)、高電圧、高出力、長寿命の二次電池が
得られる。
Lt-3i, Ca-Mg), etc. can be used for the negative electrode 1), and a secondary battery with high voltage, high output, and long life can be obtained.

〈実施例〉 以下、本発明の実施例について説明する。<Example> Examples of the present invention will be described below.

なお、本実施例では、イミダゾリウムハロゲン化物とし
て、MEIB、、MBIC,APICを使用した場合を
示しているが、これ以外のイミダゾリウムハロゲン化物
、例えばMEIBのメチル、エチルやMBICのブチル
やAPICのアリル、プロピルの代わりに他のアルキル
基、アルケニル基が結合したイミダゾリウムハロゲン化
物でもほぼ同じ結果が得られたので、その結果について
は実施例から省略した。また、アルキル基、アルケニル
基の代わりにアルキニル、シクロアルキル若しくはアリ
ール基が結合したイミダゾリウムハロゲン化物について
もほぼ同し結果が得られたので、その結果については同
様に実施例から省略した。
In this example, MEIB, MBIC, and APIC are used as imidazolium halides, but other imidazolium halides such as methyl and ethyl of MEIB, butyl of MBIC, and APIC are also used. Almost the same results were obtained with imidazolium halides to which other alkyl groups or alkenyl groups were bonded instead of allyl or propyl, and therefore the results were omitted from the examples. Furthermore, almost the same results were obtained with imidazolium halides in which an alkynyl, cycloalkyl, or aryl group was bonded instead of an alkyl group or an alkenyl group, and thus the results were similarly omitted from the examples.

負極の充放電作動試験は、いずれもN、、Ar雰囲気中
において定電流によりjテった。そして、負極にはLi
、Al、Ca、Mg、、Zn、Fe又はこれらの合金(
LL−A1.Li−3i、CaMg)を用いた。
The charging/discharging operation test of the negative electrode was carried out using a constant current in a N, Ar atmosphere. And Li on the negative electrode
, Al, Ca, Mg, , Zn, Fe or alloys thereof (
LL-A1. Li-3i, CaMg) was used.

一方、実際の電池作動試験は、正極にFeS。On the other hand, in actual battery operation tests, FeS was used for the positive electrode.

を用い、負極に各種金属板またはフェルトを用いて定電
流で行った。
The tests were carried out using a constant current using various metal plates or felt as the negative electrode.

〔実施例1〕 50molχL i CI −50moiXME I 
B系のl昆合溶融塩を電解液とし、Li−A1合金板を
負極に用いて60”C,,1,2Adm−”で充放電サ
イクル試験を行った。
[Example 1] 50molχL i CI -50moiXME I
A charge/discharge cycle test was carried out at 60"C, 1,2Adm-" using a B-based l-kolite molten salt as an electrolyte and a Li-A1 alloy plate as a negative electrode.

この結果、充電時には、負極上に乳白色の光沢のある緻
密な結晶を有するリチウムの電着が得られ、デンドライ
トは見られなかった。続いてその電極を放電すると、電
着したリチウムは均一に溶解し、電流効率はほぼ100
%であった。
As a result, during charging, lithium was electrodeposited on the negative electrode in the form of dense crystals with a milky white luster, and no dendrites were observed. When the electrode is subsequently discharged, the electrodeposited lithium is uniformly dissolved, and the current efficiency is approximately 100%.
%Met.

〔実施例2〕 上記実施例1と同様の負極および電解液を用い、正極に
FeSxを用いて電池を作製し、その電池動作を常温、
0.3Adm−”の定電流で行ったところ、放電電圧が
2.6〜2.1vの放電曲線が得られ、充放電効率はほ
ぼ!00%であった。
[Example 2] A battery was fabricated using the same negative electrode and electrolyte as in Example 1 and FeSx for the positive electrode, and the battery operation was performed at room temperature.
When a constant current of 0.3 Adm-'' was used, a discharge curve with a discharge voltage of 2.6 to 2.1 V was obtained, and the charging/discharging efficiency was approximately !00%.

〔実施例3〕 上記実施例1と同様の電解液に芳香族系有8!溶剤とし
てベンゼンを50volX添加し、実施例1と同様の負
極を用いて、40°C,0,7Adr+r”で充放電サ
イクル試験を行った。
[Example 3] The same electrolyte as in Example 1 above contains an aromatic system! 50 volX of benzene was added as a solvent, and using the same negative electrode as in Example 1, a charge/discharge cycle test was conducted at 40°C and 0.7 Adr+r''.

この結果、充電時には、負極上に乳白色の光沢のある緻
密な結晶を有するリチウムの電着が得られ、デンドライ
トは見られなかった。続いてその電極を放電すると、電
着したリチウムは均一に溶解し、電流効率はほぼ100
%であった。
As a result, during charging, lithium was electrodeposited on the negative electrode in the form of dense crystals with a milky white luster, and no dendrites were observed. When the electrode is subsequently discharged, the electrodeposited lithium is uniformly dissolved, and the current efficiency is approximately 100%.
%Met.

〔実施例4〕 70molXZnCIz     20wolXBPc
−10a+oHMEIB系の混合溶融塩を電解液とし、
99゜9%亜鉛(Zn)板を負極に用いて60 ’C1
0,7A d m−”で充放電サイクル試験を行った。
[Example 4] 70molXZnCIz 20wolXBPc
-10a+oHMEIB system mixed molten salt as electrolyte,
60'C1 using 99°9% zinc (Zn) plate as the negative electrode
A charge/discharge cycle test was conducted at 0.7 A d m-''.

この結果、充電時には、負極上に緻密な灰白色の光沢の
ある亜鉛の電着が得られ、デンドライトは見られなかっ
た。続いてその電極を放電すると、電着した亜鉛は均一
に溶解し、電流効率はほぼ100%であった。
As a result, during charging, dense gray-white, shiny zinc electrodeposition was obtained on the negative electrode, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited zinc was uniformly dissolved and the current efficiency was approximately 100%.

〔実施例5] 70molXFeCI*     20++olZBP
C−10molχMEIB系の混合溶融塩を電解液とし
、99゜9%鉄(Fe)板を負極に用いて60゛C10
,7Ad m−”で充放電サイクル試験を行った。
[Example 5] 70molXFeCI* 20++olZBP
Using C-10molχMEIB-based mixed molten salt as the electrolyte and using a 99°9% iron (Fe) plate as the negative electrode, 60°C10
, 7Ad m-'' was subjected to a charge/discharge cycle test.

この結果、充電時には、負極上に緻密な灰白色の光沢の
ある鉄の電着が得られ、デンドライトは見られなかった
。続いてその電極を放電すると、電着した鉄は均一に溶
解し、電流効率はほぼ100%であった。
As a result, during charging, dense grayish-white, shiny iron electrodeposition was obtained on the negative electrode, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited iron was uniformly dissolved and the current efficiency was approximately 100%.

〔実施例6〕 67mol$AlBr5    23molXBPB−
10solxMEIB系の混合溶融塩を電解液とし、9
9゜9%アルミニウム(AI)板を負極に用いて27℃
、2.0Adm−”で充放電サイクル試験を行った。
[Example 6] 67mol$AlBr5 23molXBPB-
10solxMEIB-based mixed molten salt as electrolyte, 9
9.9% aluminum (AI) plate was used as the negative electrode at 27°C.
, 2.0 Adm-'', a charge/discharge cycle test was conducted.

この結果、充電時には、負極上に緻密な乳白色の光沢の
あるアルミニウムの電着が得られ、デンドライトは見ら
れなかった。続いてその電極を放電すると、電着したア
ルミニウムは均一に溶解し、電流効率はほぼ100%で
あった。
As a result, during charging, dense, milky, shiny aluminum electrodeposition was obtained on the negative electrode, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited aluminum was uniformly dissolved and the current efficiency was approximately 100%.

〔実施例7〕 70@olχZnBrz  20sol′18PB−1
0solzMEIB系の混合溶融塩を電解液とし、99
゜9%亜鉛(Zn)板を負極に用いて60゛C10,7
A d m−’で充放電サイクル試験を行った。
[Example 7] 70@olχZnBrz 20sol'18PB-1
Using 0solzMEIB-based mixed molten salt as the electrolyte, 99
60゛C10,7 using ゜9% zinc (Zn) plate as the negative electrode
A charge/discharge cycle test was conducted with A d m-'.

この結果、充電時には、負極上に緻密な乳白色の光沢の
ある亜鉛の電着が得られ、デンドライトは見られなかっ
た。続いてその電極を放電すると、電着した亜鉛は均一
に溶解し、電流効率はほぼ100%であった。
As a result, during charging, dense, milky, glossy zinc electrodeposition was obtained on the negative electrode, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited zinc was uniformly dissolved and the current efficiency was approximately 100%.

〔実施例日〕[Example date]

70molXZ n C1! −30molXMB I
 C系の混合溶融塩を電解液とし、99.9%亜鉛(Z
n)板を負極に用いて80°C,,0,5Adm−”で
充放電サイクル試験を行った。
70molXZnC1! -30molXMB I
C-based mixed molten salt is used as the electrolyte, and 99.9% zinc (Z
n) A charge/discharge cycle test was conducted at 80°C and 0.5Adm-'' using the plate as a negative electrode.

この結果、充電時には、負極上に灰白色の光沢のある亜
鉛の電着が得られ、デンドライトは見られなかった。続
いてその電極を放電すると、電着した亜鉛は均一に溶解
し、電流効率はほぼ100%であった。
As a result, during charging, a grayish white, shiny zinc electrodeposition was obtained on the negative electrode, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited zinc was uniformly dissolved and the current efficiency was approximately 100%.

〔実施例9〕 67molXAICIz   33mol!APIC系
の混合溶融塩を電解液とし、99.9%アルミニウム(
AI)板を負極に用いて27°C,]、7Adm−”で
充放電サイクル試験を行った。
[Example 9] 67molXAICIz 33mol! APIC-based mixed molten salt is used as the electrolyte, and 99.9% aluminum (
A charge/discharge cycle test was conducted at 27°C, ], 7Adm-'' using the AI) plate as a negative electrode.

この結果、充電時には、負極上に灰白色のなめらかなア
ルごニウムの電着が得られ、デンドライトは見られなか
った。続いてその電極を放電すると、電着したアルミニ
ウムは均一に溶解し、電流効率はほぼ100%であった
As a result, smooth gray-white argonium electrodeposition was obtained on the negative electrode during charging, and no dendrites were observed. When the electrode was subsequently discharged, the electrodeposited aluminum was uniformly dissolved and the current efficiency was approximately 100%.

〈発明の効果〉 以上説明したように本発明の二次電池用電解液によれば
、イ柔ダゾリウムハロゲン化物20〜80階oIXと、
各種金属ハロゲン化物とを混合した混合溶融塩から構成
したので、負極のデンドライト等の問題がなく、また融
点、粘性を低下させ、導電性を向上させ、電池反応で良
好な電着物が得られ、電流密度を上げることが出来る。
<Effects of the Invention> As explained above, according to the electrolytic solution for a secondary battery of the present invention, infudazolium halide 20 to 80 oIX,
Since it is composed of a mixed molten salt mixed with various metal halides, there are no problems such as dendrites in the negative electrode, and it also lowers the melting point and viscosity, improves conductivity, and provides good electrodeposit in battery reactions. Current density can be increased.

また、イミダゾリウムハロゲン化物とアルキルピリジニ
ウムハロゲン化物の混合物20〜80醜O1χと、各種
金属ハロゲン化物とを混合した混合溶融塩から構成する
と、上記電解液の場合と同様の効果が得られる他に、融
点、粘性を更に下げることが出来る。
In addition, when it is composed of a mixed molten salt obtained by mixing a mixture of imidazolium halide and alkylpyridinium halide 20 to 80 O1χ with various metal halides, in addition to obtaining the same effects as the above electrolytic solution, Melting point and viscosity can be further lowered.

また、前記溶融塩に芳香族系有機溶剤を添加すると、粘
度を低下させることが出来る上に、導電率を高めること
が出来る。
Further, when an aromatic organic solvent is added to the molten salt, the viscosity can be lowered and the electrical conductivity can be increased.

また、本発明の二次電池によれば、負極にLi、Al、
Ca、Mg、Zn、Fe又はこれらの合金を用い、かつ
電解液として上記電解液を使用したので、負極のデンド
ライト等の問題がなく、高電圧、高出力、長寿命の二次
電池が得られる。
Further, according to the secondary battery of the present invention, the negative electrode includes Li, Al,
Since Ca, Mg, Zn, Fe, or an alloy thereof is used, and the above electrolyte is used as the electrolyte, there are no problems such as negative electrode dendrites, and a secondary battery with high voltage, high output, and long life can be obtained. .

Claims (4)

【特許請求の範囲】[Claims] (1)次式で示されるイミダゾリウムハロゲン化物▲数
式、化学式、表等があります▼ (R_1〜R_5は水素原子又は置換されてもよい炭素
数C_1〜C_6の範囲のアルキル、アルケニル、アル
キニル、シクロアルキル若しくはアリール基:XはCl
、Br、I)20〜80mol%と、各種金属ハロゲン
化物MXn(M:K、Ca、Li、Al、Mg、Zn、
Fe;X:Cl、Br、I:n=1、2、3)とを混合
した混合溶融塩からなることを特徴とする二次電池用電
解液。
(1) Imidazolium halide represented by the following formula ▲ Numerical formulas, chemical formulas, tables, etc. are available ▼ (R_1 to R_5 are hydrogen atoms or optionally substituted alkyl, alkenyl, alkynyl, cyclo Alkyl or aryl group: X is Cl
, Br, I) 20 to 80 mol% and various metal halides MXn (M: K, Ca, Li, Al, Mg, Zn,
An electrolytic solution for a secondary battery characterized by comprising a mixed molten salt containing Fe; X: Cl, Br, I: n=1, 2, 3).
(2)前記イミダゾリウムハロゲン化物とアルキルピリ
ジニウムハロゲン化物(アルキル基:C_1〜C_5:
ハロゲン:Cl、Br、I)の混合物20〜80mol
%と、各種金属ハロゲン化物MXn(M:K、Ca、L
i、Al、Mg、Zn、Fe;X:Cl、Br、I;n
=1、2、3)とを混合した混合溶融塩からなることを
特徴とする二次電池用電解液。
(2) The imidazolium halide and the alkylpyridinium halide (alkyl group: C_1 to C_5:
Halogen: Cl, Br, I) mixture 20-80 mol
% and various metal halides MXn (M: K, Ca, L
i, Al, Mg, Zn, Fe; X: Cl, Br, I; n
= 1, 2, 3).
(3)前記混合溶融塩に芳香族系有機溶剤を添加するこ
とを特徴とする請求項(1)又は(2)記載の二次電池
用電解液。
(3) The electrolytic solution for a secondary battery according to claim (1) or (2), wherein an aromatic organic solvent is added to the mixed molten salt.
(4)負極にLi、Al、Ca、Mg、Zn、Fe又は
これらの合金を用い、かつ電解液として請求項(1)、
(2)又は(3)記載の二次電池用電解液を使用したこ
とを特徴とする二次電池。
(4) Li, Al, Ca, Mg, Zn, Fe or an alloy thereof is used for the negative electrode, and claim (1) is used as the electrolyte,
A secondary battery characterized by using the electrolytic solution for secondary batteries described in (2) or (3).
JP1166599A 1989-06-30 1989-06-30 Electrolyte for secondary cell, and secondary cell Pending JPH0334270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1166599A JPH0334270A (en) 1989-06-30 1989-06-30 Electrolyte for secondary cell, and secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1166599A JPH0334270A (en) 1989-06-30 1989-06-30 Electrolyte for secondary cell, and secondary cell

Publications (1)

Publication Number Publication Date
JPH0334270A true JPH0334270A (en) 1991-02-14

Family

ID=15834281

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1166599A Pending JPH0334270A (en) 1989-06-30 1989-06-30 Electrolyte for secondary cell, and secondary cell

Country Status (1)

Country Link
JP (1) JPH0334270A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001526450A (en) * 1997-12-10 2001-12-18 イギリス国 Electrochemical cell containing liquid organic electrolyte with conductive additives
US6413486B2 (en) 1998-06-05 2002-07-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary battery, constituent elements of battery, and materials thereof
JP2002313414A (en) * 2001-04-06 2002-10-25 Tokuyama Corp Electrolyte for non-aqueous electrolyte
KR100478554B1 (en) * 2001-10-17 2005-03-23 엔이씨 도낀 가부시끼가이샤 Electrolytic Solution and Electrochemical Cell Using the Same
WO2005080347A1 (en) * 2004-02-24 2005-09-01 Kanto Kagaku Kabushiki Kaisha Novel imidazolium compound
JP2010235526A (en) * 2009-03-31 2010-10-21 Otsuka Chem Co Ltd Imidazolium salt, electrolyte, and electrochemical device
CN102195091A (en) * 2010-03-10 2011-09-21 中国科学院过程工程研究所 Ionic liquid electrolyte for lithium secondary battery
JP2012048874A (en) * 2010-08-25 2012-03-08 Yamaguchi Univ Electrolyte for magnesium secondary battery, and magnesium secondary battery using the same
JP2012182124A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Magnesium secondary battery, method for using electrolyte in magnesium secondary battery, and electrolyte for magnesium secondary battery
WO2014030761A1 (en) * 2012-08-21 2014-02-27 本田技研工業株式会社 Device provided with positive electrode and salt, and secondary battery
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6596441B1 (en) * 1997-12-10 2003-07-22 Qinetiq Limited Electrochemical cell comprising a liquid organic electrolyte with a conductive additive
JP2001526450A (en) * 1997-12-10 2001-12-18 イギリス国 Electrochemical cell containing liquid organic electrolyte with conductive additives
US6413486B2 (en) 1998-06-05 2002-07-02 Matsushita Electric Industrial Co., Ltd. Nonaqueous secondary battery, constituent elements of battery, and materials thereof
JP2002313414A (en) * 2001-04-06 2002-10-25 Tokuyama Corp Electrolyte for non-aqueous electrolyte
JP4641646B2 (en) * 2001-04-06 2011-03-02 株式会社トクヤマ Electrolyte for non-aqueous electrolyte
KR100478554B1 (en) * 2001-10-17 2005-03-23 엔이씨 도낀 가부시끼가이샤 Electrolytic Solution and Electrochemical Cell Using the Same
TWI392668B (en) * 2004-02-24 2013-04-11 Hiroyuki Ohno A new imidazolium compound
WO2005080347A1 (en) * 2004-02-24 2005-09-01 Kanto Kagaku Kabushiki Kaisha Novel imidazolium compound
JP2005239580A (en) * 2004-02-24 2005-09-08 Hiroyuki Ono New imidazolium compound
US7517999B2 (en) * 2004-02-24 2009-04-14 Kanto Kagaku Kabushiki Kaisha Imidazolium compound
JP2010235526A (en) * 2009-03-31 2010-10-21 Otsuka Chem Co Ltd Imidazolium salt, electrolyte, and electrochemical device
CN102195091A (en) * 2010-03-10 2011-09-21 中国科学院过程工程研究所 Ionic liquid electrolyte for lithium secondary battery
JP2012048874A (en) * 2010-08-25 2012-03-08 Yamaguchi Univ Electrolyte for magnesium secondary battery, and magnesium secondary battery using the same
JP2012182124A (en) * 2011-02-28 2012-09-20 Toyota Motor Corp Magnesium secondary battery, method for using electrolyte in magnesium secondary battery, and electrolyte for magnesium secondary battery
WO2014030761A1 (en) * 2012-08-21 2014-02-27 本田技研工業株式会社 Device provided with positive electrode and salt, and secondary battery
WO2014030500A1 (en) * 2012-08-21 2014-02-27 トヨタ自動車株式会社 Electrode body and cell provided with same
JP2014041709A (en) * 2012-08-21 2014-03-06 Honda Motor Co Ltd Device including positive electrode and salt, and secondary battery
JP2014041722A (en) * 2012-08-21 2014-03-06 Toyota Motor Corp Electrode body, and battery including the electrode body

Similar Documents

Publication Publication Date Title
Muldoon et al. Fervent hype behind magnesium batteries: an open call to synthetic chemists—electrolytes and cathodes needed
US5552241A (en) Low temperature molten salt compositions containing fluoropyrazolium salts
Tsuda et al. Electrochemical surface finishing and energy storage technology with room-temperature haloaluminate ionic liquids and mixtures
JP2862238B2 (en) Ion conductive material
JP3525403B2 (en) Electrode materials and secondary batteries
US4122245A (en) AlCl3 /1-alkyl pyridinium chloride room temperature electrolytes
CN101897074B (en) Electrolyte for an electrochemical battery cell
TW201530892A (en) Redox flow battery
JPH0334270A (en) Electrolyte for secondary cell, and secondary cell
CS207366B2 (en) Electrochemical cell
WO2013185562A1 (en) Electrolyte for magnesium cell and magnesium cell containing the electrolyte
CN106384844A (en) Non-nucleophilic dual-salt-system electrolyte for magnesium cell, and preparation method and application thereof
CA1066764A (en) Two phase electrolytes used as halogen traps in metal halogen secondary cells and batteries
JPS59111277A (en) Electrolyte for zinc-bromine secondary battery
US4491625A (en) Zinc-bromine batteries with improved electrolyte
JPH01501666A (en) secondary battery
CN108886156A (en) Redox flow battery electrolyte and redox flow batteries
Lu et al. Divalent nonaqueous metal-air batteries
CN109778001A (en) A kind of novel grid alloy, positive plate grid and lead-acid accumulator comprising it
JP3380930B2 (en) Aluminum non-aqueous electrolyte secondary battery
JP3324101B2 (en) Aluminum non-aqueous electrolyte, battery using the same, and aluminum electrodeposition method
Mandai et al. Toward improved anodic stability of ether-based electrolytes for rechargeable magnesium batteries
JP2004095243A (en) Lithium secondary battery using sulfur as positive electrode active material
JPH09120816A (en) Aluminum nonaquoeus electrolyte secondary battery
US20170214096A1 (en) Low temperature liquid metal batteries for energy storage applications