JPS5982507A - Power transmission control method of marine shaft dynamotor - Google Patents

Power transmission control method of marine shaft dynamotor

Info

Publication number
JPS5982507A
JPS5982507A JP57191320A JP19132082A JPS5982507A JP S5982507 A JPS5982507 A JP S5982507A JP 57191320 A JP57191320 A JP 57191320A JP 19132082 A JP19132082 A JP 19132082A JP S5982507 A JPS5982507 A JP S5982507A
Authority
JP
Japan
Prior art keywords
shaft
power
exhaust gas
turbine
power transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57191320A
Other languages
Japanese (ja)
Other versions
JPS6213486B2 (en
Inventor
Ryotaro Ogiwara
荻原 亮太郎
Minoru Osuga
大須賀 実
Seiichi Otake
大竹 誠一
Kazuo Iizuka
飯塚 一雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Kawasaki Motors Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Kawasaki Jukogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd, Kawasaki Jukogyo KK filed Critical Kawasaki Heavy Industries Ltd
Priority to JP57191320A priority Critical patent/JPS5982507A/en
Publication of JPS5982507A publication Critical patent/JPS5982507A/en
Publication of JPS6213486B2 publication Critical patent/JPS6213486B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

PURPOSE:To avoid the generation of gear hammering in transmission gears and effectively utilize exhaust gas energy, by switching the function of a shaft dynamotor in accordance with a pressure change of steam fed from an auxiliary boiler to a turbine. CONSTITUTION:One shaft end 2 of a shaft dynamotor 1 is connected to a main engine 4 through gears 3, and the other shaft end 5 is coupled to an auxiliary turbine 7 by gears 6. Steam is generated in an auxiliary boiler 9 by thermal energy collected by an exhaust gas boiler 8. In accordance with a pressure change of steam fed from the auxiliary boiler 9 to the turbine 7, an operational mode of the shaft dynamotor is switched to either its power generating function or electric motor function. In such a way, generation of gear hammering in the transmission gears can be avoided, and exhaust gas energy of the main engine can ge effectively utilized without any waste.

Description

【発明の詳細な説明】 この発明は、舶用軸発電動機の動力伝達制御方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a power transmission control method for a marine shaft generator.

この明4+11書において、軸発電動機とは、船舶の推
進軸系に連結され、該軸系から回転勢力を供給されて発
’tn 4A+としての機能を発揮するとともに、電動
憤として該軸系に対して回転動力を供給する機能をも合
わせ持つ機器を特に称するものとする。
In this Meiji 4+11 book, a shaft generator is connected to a ship's propulsion shaft system, and is supplied with rotational force from the shaft system to perform the function of a generator. This term specifically refers to equipment that also has the function of supplying rotational power to the motor.

qS1図は、軸発電動機を使用する舶用推進発電プラン
トの配置の一例を示すもので、軸発電動機lの一万〇軸
端2を歯車3そ介して主機りに連結し、他方の軸端jを
歯車乙によって補助タービン7に連結する。rは主観り
の排ガスエネルギーを利用する排ガスボイラでちシ、り
は補助ボイラである。排ガスボイラ♂で回収した熱エネ
ルギーによシ補助ボイラタで発生した蒸気は、加減3′
f′/θを経て補助タービン7に供給さノする。/lは
推進軸系でめシ、12は推進器である。
Figure qS1 shows an example of the arrangement of a marine propulsion power generation plant using a shaft generator, in which one shaft end 2 of the shaft generator l is connected to the main engine via a gear 3, and the other shaft end is connected to the main engine through a gear 3. j is connected to the auxiliary turbine 7 by gear B. r is an exhaust gas boiler that utilizes exhaust gas energy, and ri is an auxiliary boiler. The steam generated in the auxiliary boiler is heated by the heat energy recovered by the exhaust gas boiler ♂,
It is supplied to the auxiliary turbine 7 via f'/θ. /l is the propulsion shaft system, and 12 is the propulsion device.

このよr)な配置よシなる舶用推進発電プラントでは、
通常排ガスボイラで回収した熱エネルギーにより補助ボ
イラで発生した蒸気ばから船内雑用蒸気量ヲ除いた残余
の全蒸気を補助タービンで消費するように加減弁/θを
制御する0たとえば、イ■助ボイラ9のドラム圧力(あ
るいは加減りP/θ前の圧力)が−足となるように制御
する。か\る制御を一般に前圧制御と称するが、とのよ
りな前圧制御を行なうと、補助タービン2の出力Qよ、
排ガスボイラとで回収した熱エネルギーにより補助ボイ
ラで発生する蒸気量とよび雑用蒸気量の変化にしたがっ
て変化する〇一方、軸元′屯動俵/の所W N tia
力も船内所要電力の変化にしたがって変化する0そうし
て軸元所要動力Laよシも補助タービン発生出力り丁の
方が小さい場合には、−〇力不足分Lmが主戦グから補
われる。すなわち第2図において、 Lw = Lo −LT となシ、動力不足分Liは主機の側から軸発電動機/に
対して矢印の1同に補充される。
In a marine propulsion power plant with this unusual arrangement,
Normally, the control valve/θ is controlled so that the auxiliary turbine consumes all the steam generated in the auxiliary boiler by using the thermal energy recovered by the exhaust gas boiler, after removing the amount of steam for miscellaneous work on the ship. Control is performed so that the drum pressure of 9 (or the pressure before the increase/decrease P/θ) becomes -. Such control is generally called prepressure control, but if a more advanced prepressure control is performed, the output Q of the auxiliary turbine 2 will be
The amount of steam generated in the auxiliary boiler due to the thermal energy recovered by the exhaust gas boiler and the amount of miscellaneous steam change.
The power also changes according to the change in the required power inside the ship.So, if the auxiliary turbine generated output is smaller than the shaft required power La, the -〇power shortage Lm is compensated for from the main force. That is, in FIG. 2, Lw = Lo -LT, and the power shortage Li is replenished from the main engine side to the shaft generator/in the direction indicated by the arrow.

また、補助タービン7の出力LTが軸元所要動力Loよ
シ大きい場合には、余分の動力(−Lm)は主機りに同
って返還される。すなわちこの場合には、第3図に示す
ように、  −Lm = La −LTとなって、余分
の動力C−Lm)は主機グに同って矢印の方向に返還さ
れる。この際の主機りから補充される動力あるいは主義
グに返還される動力の主機側歯車3における伝達トルク
TIが、その場所における捩シ変動トルクTvより小さ
い場合には、第y図に示すようeこ、主戦(1111歯
箪においてギアハンマリングの現象音発生するおそれが
ある。
Further, when the output LT of the auxiliary turbine 7 is larger than the shaft required power Lo, the extra power (-Lm) is returned to the main engine at the same time. That is, in this case, as shown in FIG. 3, -Lm = La -LT, and the excess power C-Lm) is returned to the main engine in the direction of the arrow. At this time, if the transmission torque TI of the power supplemented from the main engine or the power returned to the main engine at the main engine side gear 3 is smaller than the torsional fluctuation torque Tv at that location, as shown in Fig. There is a risk of gear hammering noise occurring in the main battle (1111 gearbox).

この発明は、タービンに供給される蒸気圧力の変動によ
って軸発電動機を制御することによシ、軸発電動機の使
用態様の如何を問わず常に伝達歯車におけるギアハンマ
リングの発生を回避することを可能ならしめると同時に
、主戦間の排ガスエネルギーを無駄なく有効に利用しう
る舶用軸発電動機の動力伝達制御方法を提供すること金
目的とする。
This invention makes it possible to avoid gear hammering in the transmission gear at all times, regardless of how the shaft generator is used, by controlling the shaft generator by fluctuations in the steam pressure supplied to the turbine. It is an object of the present invention to provide a power transmission control method for a marine shaft generator, which makes it possible to use exhaust gas energy during main battles effectively without wasting it.

本発明方法は上記の目的全達成するための手段として、
軸発電mU 4Aの一方の軸端を歯車を介して主機関に
連結し、主機関の排ガスエネルギーを利用する補助ボイ
ラの蒸気によって駆動されるタービン奮そなえ、該ター
ビンと上目己軸元椛励俄とは動力伝達制御方法tして相
互に連結の関係にある舶用推進発電プラントに2いて、
補助ボイラからタービンに供給さ1する蒸気圧力の変I
IIυに応じて軸元/4c鯛壁の発電機能と「ル勤槻姫
との使用態様の切換操作を行うとともに、上記そyi、
ぞれの使用態様を上記歯車の伝達負荷の大きさが歯車の
ギアハンマリングの発生全回避し得る最小値以上の大き
さに保持される使用態様とするように軸発電動機を該蒸
気圧力の震動によって制御することを特徴とするもので
ある。
The method of the present invention, as a means to achieve all of the above objectives,
One shaft end of the shaft power generator mU 4A is connected to the main engine via a gear, and a turbine is driven by steam from an auxiliary boiler that utilizes the exhaust gas energy of the main engine. A power transmission control method is used in a marine propulsion power generation plant that is connected to each other.
Change in steam pressure supplied from the auxiliary boiler to the turbine I
Depending on IIυ, the power generation function of the shaft base / 4c sea bream wall and the usage mode with ``Rukintsukihime'' are switched, and the above-mentioned
The shaft generator is controlled at the steam pressure so that the magnitude of the transmission load of the gears is maintained at a value greater than the minimum value that can completely avoid occurrence of gear hammering of the gears. It is characterized by being controlled by vibration.

つぎに本発明方法の構成につき実施例を挙げて詳細に説
明する。
Next, the structure of the method of the present invention will be explained in detail by giving examples.

9711図において、排ガスボイ2♂で主機りの排ガス
エネルギーによシ発生した蒸気量とバランスする補助タ
ービン7の出力’j: LsTinとしくこれは前圧制
御全行った場合の出力に相当し、排ガスエネルギーと称
する)、これと軸発電#Jh機/の所、反動力LGとの
差乱が、捩り変動トルクに相当する動力Lv (以下に
おいて捩り変動トルりと称する)より大きい場合は、ギ
アハンマリングは発生しないので、従来通り前圧制御を
行うo鈍の検出は・LEIT nとLaと奮υτLlj
 t、てその差を計算してもよく、または直接に△I7
を吹出してもよい0 鳳がLvよシも小さい場合には、七のま\ではギアハン
マリングが発生するので、補助タービン出力LTが、軸
元所要動カブラス捩り変動動力(LG+Lv)、あるい
は、軸元所要1リカマイナス捩り変動動力(La −L
v )以上となるように制丁叩しく出力制御)、主機側
歯車が捩り変ルυ動力、すなわち捩り変動トルクTv以
上のトルク金伝達するようにする。このとき、補助ター
ビン出力LTと排ガスエネルギーLsraが一致しない
ので補助ボイラ圧力PABが変化す心ため、補助ボイラ
圧力を検知して、補助タービン出力?、L0+(Lv+
α)と、La−CLv+α)に切換えて補助ポイラの圧
力変化を一定範囲内に保つようにする0すなわち、LT
がLBTRよシ小さい場合、余った熱エネルギーは補助
ボづう保有水の温度上昇(結果として圧力上昇)として
蓄え、LTがL8Tycより大きい場合は、蓄えてめつ
几エネルギーを放出することにより、排ガスボイラで吸
収した熱エネルギーを有効に利用する。その原理が第!
図、第に図および第7図に示される0 また第1図は異なる実施例金示し、同図において/3は
ターボ発電機で、排ガスボイラ♂によって回収したエネ
ルギーによυ補助ボイラタで発生した蒸気をガバナ弁/
グを経て発電機タービン/jに供給して駆動される0本
例では、軸発電動機/とターボ発電機/3とは配電盤/
6を介して′市、気的に結合されでいる0ふつうには、
ターボ発電偵/3の出力音、排ガスボイラ♂の発生した
蒸気から船内雑用蒸気を除いた残余の全蒸気を発電偵タ
ービンljで消費するように制御する。
In Figure 9711, the output of the auxiliary turbine 7 that balances the amount of steam generated by the exhaust gas energy of the main engine in the exhaust gas boiler 2♂ is expressed as 'j: LsTin, which corresponds to the output when full front pressure control is performed. If the difference between this and the reaction force LG at the shaft generator #Jh machine/ is larger than the power Lv corresponding to the torsional fluctuation torque (hereinafter referred to as the torsional fluctuation torque), the gear Since hammering does not occur, forward pressure control is performed as usual. ・LEIT n, La, and υτLlj
t, the difference between them may be calculated, or directly △I7
0 If Lv is smaller than Lv, gear hammering will occur at the seventh stage, so the auxiliary turbine output LT will be equal to the required dynamic cabrus torsional fluctuating power (LG+Lv) at the shaft base, or, Shaft required 1 Lika minus torsional fluctuation power (La -L
(v) Output control is performed in a strict manner so that the gears on the main engine side transmit torsional variable force υ, that is, torque greater than torsional variable torque Tv. At this time, since the auxiliary turbine output LT and exhaust gas energy Lsra do not match, the auxiliary boiler pressure PAB is expected to change, so the auxiliary boiler pressure is detected and the auxiliary turbine output? ,L0+(Lv+
α) and La-CLv+α) to keep the pressure change of the auxiliary boiler within a certain range 0, that is, LT
When LT is smaller than LBTR, the excess thermal energy is stored as a temperature increase (resulting in an increase in pressure) of the auxiliary water, and when LT is larger than L8Tyc, the excess thermal energy is stored and released to reduce exhaust gas. Effectively utilizes the thermal energy absorbed by the boiler. That principle is number one!
Figure 1 shows a different embodiment, in which /3 is a turbo generator, and the energy recovered by the exhaust gas boiler ♂ is generated in the υ auxiliary boiler. Steam governor valve/
In this example, the shaft generator/ and turbo generator/3 are connected to the switchboard/
6, which is connected to the 0 normally,
The output sound of the turbo power generator/3 and the steam generated by the exhaust gas boiler ♂ are controlled so that the remaining steam after removing the ship's miscellaneous steam is consumed by the power generator turbine lj.

たとえば、補助ディ2ワのドラム圧力(るるいはガバナ
ヲP/り前の圧力)が一定となるように制御する。この
ような制御を溢流負荷分担制御と称する。溢流負荷分担
制御全行うと、ターボ発電機13の出力は、排ガスボイ
ラざで発生する蒸気量および雑用蒸気量の変化に従って
変化する。−万、船内所要電力は、俵器の発停などに従
って変化する。そうして、船内所要動力Wr、 75X
タ一ボ発電機出力WTよシ大きい場合、軸発電動機/は
発電機として運転されて不足電力We ’に供給し、こ
の場合の軸発電動機/を駆動するための動力Laは、主
機グの側から歯車3を介して供給される。第り図はその
状態を示す。また、船内所要動力WLがターボ発電機出
力WTより小さい場合、軸発電動機/は電動機として運
転され、余分な′電力We’を消費して動力LMを発生
し、その動力は歯車3を介して主機りの側に返還される
。第1θ図はその状態を示す。
For example, the drum pressure of the auxiliary pump (pressure before the governor) is controlled to be constant. Such control is called overflow load sharing control. When the overflow load sharing control is fully performed, the output of the turbo generator 13 changes according to changes in the amount of steam generated in the exhaust gas boiler and the amount of miscellaneous steam. -The power required on board changes depending on the start and stop of the straw rack, etc. Then, the required power on board Wr, 75X
When the output of the turbo generator is larger than WT, the shaft generator/is operated as a generator to supply the insufficient power We', and in this case, the power La for driving the shaft generator/is the power of the main engine. It is fed from the side via gear 3. Figure 2 shows the situation. Further, when the required power WL in the ship is smaller than the turbo generator output WT, the shaft generator / is operated as an electric motor, consumes the extra 'power We' and generates the power LM, and the power is transmitted through the gear 3. It is returned to the main engine. Figure 1θ shows this state.

主機グから軸元′tに動機/に供給さfLる動力LG、
あるいは軸発電動機/から主機グに供給される動力LM
の伝達歯車での伝達トルクT鵞が、その場所での捩り変
動トルクTvより小さい場合には、伝達歯車においてギ
アハンマリングを発生するおそれがある。そこでこJt
¥回避するために、InII発Wf、 #u依/の発?
IZ機としての運転時および電動機としての運転時のそ
れぞれの出力を一定とし・その大きさを伝達歯車の伝達
トルクTelが捩り変IJI9 )ルクTvよシも大き
くなるように設定する。そうして軸発電動機は補助ボイ
ラの圧力を検出してその指令によシ、発N、機としての
運転と電動機としての運転とを交互に緑返す。第1/図
は、この要領によって軸元[動機の運転を継続するとき
の状況を示すものである。
Power fL is supplied from the main engine to the axis 't to the motive force LG,
Or the power LM supplied to the main engine from the shaft generator/
If the transmission torque T in the transmission gear is smaller than the torsional fluctuation torque Tv at that location, gear hammering may occur in the transmission gear. So this Jt
In order to avoid ¥, Wf from InII, #u dependence/?
The respective outputs during operation as an IZ machine and as an electric motor are kept constant, and their magnitudes are set so that the transmission torque Tel of the transmission gear torsionally changes and the torque Tv also increases. Then, the shaft generator detects the pressure of the auxiliary boiler and, according to the command, turns on, turns on, and alternates between operating as a machine and operating as an electric motor. Figure 1 shows the situation when the shaft base [motor] continues to operate according to this procedure.

この発明にか\る舶用軸発電動機の動力伝達制呻方法は
以上のように構成されるので、軸元′FgJ動僚の制御
によって伝達歯車におrJるギアハンマリングの発生を
回避することを可能ならしめると同時に、主(表門の排
ガスのエネルギーによって発生せしめた蒸気を無駄なく
利用することができるというすぐれた効果がある。
Since the power transmission damping method for a marine shaft generator according to the present invention is configured as described above, the occurrence of gear hammering in the transmission gear can be avoided by controlling the shaft base mechanism. At the same time, it has the excellent effect of making it possible to utilize the steam generated by the energy of the exhaust gas from the main gate without wasting it.

なお、上記の実施例では、補助タービン7と軸発電動機
lとを連結する動力伝達手段として、第1図のものでは
歯車乙による俵械的手段を採用した例を示し、第♂図の
ものではターボ発電機/3と軸発電動機/とを連結する
手段として配電盤/乙による電気的手段を採用した例を
示したが、該動力伝達手段としては、このほか弾性接手
、′frL磁接手、もしくは流体接手などの公知の伝達
手段の採用が可能であることを1言うまでもない0
In the above embodiments, as a power transmission means for connecting the auxiliary turbine 7 and the shaft generator l, the example shown in Fig. 1 uses a mechanical means using a gear B, and the example shown in Fig. In the above, an example was shown in which an electric means using a switchboard /B was used as a means for connecting the turbo generator /3 and the shaft generator /.However, as the power transmission means, there are also elastic joints, 'frL magnetic joints, Alternatively, it goes without saying that it is possible to employ known transmission means such as fluid couplings.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法の一実施例を示す舶用推進発電プラ
ントの配置図、gfj、:z図および第3図はいずれも
動力伝達のそれぞ〕1.異なる要領を示す説明図、第Z
図tユ動力伝達に関するグラフ線図、第5図および第6
図はいずJlも動力伝達のそれぞれ異なる要領を示す説
明図、第7図は動力伝達の制御に関するグラフ線図 9
1S 7図は本発明方法の他の実施例を示す舶用プラン
トの配置図、第り図および9irl/θ図はいすn、も
動力伝達のそれぞれ異なる要領を示す説明図、第1I図
は動力伝達の制御方法に関するグラフ線図である。 /01.軸元電動14セ、コ、j 、、、軸端、3.乙
0.。 +−R車、り91.土俵、700.補助タービン、!。 1.排ガスボイラ、? 、、、補助ボイラ、/θ01.
加減弁、/1.、、推進軸系、/、2.、、推進器、/
3.、。
Fig. 1 is a layout diagram of a marine propulsion power generation plant showing an embodiment of the method of the present invention, gfj,:z diagram, and Fig. 3 are power transmission diagrams respectively]1. Explanatory diagram showing different points, Part Z
Graph diagrams related to power transmission, Figures 5 and 6
The figure is an explanatory diagram showing the different methods of power transmission for both JLs, and Figure 7 is a graph diagram related to control of power transmission.9
Fig. 1S7 is a layout diagram of a marine plant showing another embodiment of the method of the present invention, Fig. 9 and Fig. 9irl/θ are explanatory diagrams showing different methods of power transmission, and Fig. 1I is a power transmission diagram. It is a graph line diagram regarding the control method of. /01. Shaft electric motor 14, ko, j, ,, shaft end, 3. Otsu 0. . +-R car, ri91. Dohyo, 700. Auxiliary turbine! . 1. Exhaust gas boiler? , , auxiliary boiler, /θ01.
Adjustment valve, /1. ,,propulsion shaft system,/,2. ,,propulsion device,/
3. ,.

Claims (1)

【特許請求の範囲】[Claims] 軸発電動機の一万の軸端を歯車を介して主機関に連結し
、主機関の排ガスエネルギーを利用する補助ボイラの蒸
気によって駆動されるタービンをそなえ、該タービンと
上記軸発電動域とは動力伝達手段を介して相互に連結の
関係にある舶用推進発電プラントにおいて、補助ボイラ
かもタービンに供給される蒸気圧力の変動に応じて軸発
電動機の発電機能と電動機能との使用態様の切換操作を
行うとともに、上記それぞれの使用態様を上記歯車の伝
達負荷の大きさが両車のギアハンマリングの発生を回避
し得る最小値以上の大きさに保持される使用態様とする
ように軸発電動機を該蒸気圧力の変動によって制御する
ことを特徴とする舶用軸発′1に動域の動力伝達制御方
法。
The shaft generator has 10,000 shaft ends connected to the main engine through gears, and is equipped with a turbine driven by steam from an auxiliary boiler that utilizes the exhaust gas energy of the main engine. In a marine propulsion power generation plant that is connected to each other via a power transmission means, switching operation between the power generation function and the electric function of the shaft generator in response to fluctuations in steam pressure supplied to the auxiliary boiler or turbine. At the same time, each of the above-mentioned usage conditions is such that the magnitude of the transmission load of the gears is maintained at a minimum value or higher that can avoid the occurrence of gear hammering of both vehicles. 1. A method for controlling power transmission in a moving range to a marine shaft engine, characterized in that the power transmission is controlled by fluctuations in the steam pressure.
JP57191320A 1982-10-29 1982-10-29 Power transmission control method of marine shaft dynamotor Granted JPS5982507A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191320A JPS5982507A (en) 1982-10-29 1982-10-29 Power transmission control method of marine shaft dynamotor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191320A JPS5982507A (en) 1982-10-29 1982-10-29 Power transmission control method of marine shaft dynamotor

Publications (2)

Publication Number Publication Date
JPS5982507A true JPS5982507A (en) 1984-05-12
JPS6213486B2 JPS6213486B2 (en) 1987-03-26

Family

ID=16272588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191320A Granted JPS5982507A (en) 1982-10-29 1982-10-29 Power transmission control method of marine shaft dynamotor

Country Status (1)

Country Link
JP (1) JPS5982507A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277804A (en) * 1985-06-03 1986-12-08 Yanmar Diesel Engine Co Ltd Exhaust gas turbine power apparatus
JPH0789491A (en) * 1993-09-09 1995-04-04 Dalnevostoch Gos Morskaya Akad Im Admirala Gi Nevelskogo Marine power plant used both for training and for sailing

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61277804A (en) * 1985-06-03 1986-12-08 Yanmar Diesel Engine Co Ltd Exhaust gas turbine power apparatus
JPH0789491A (en) * 1993-09-09 1995-04-04 Dalnevostoch Gos Morskaya Akad Im Admirala Gi Nevelskogo Marine power plant used both for training and for sailing

Also Published As

Publication number Publication date
JPS6213486B2 (en) 1987-03-26

Similar Documents

Publication Publication Date Title
US4214450A (en) Apparatus for recovering heat from exhaust gases of marine prime movers
JP2010501409A (en) Ship equipped with propulsion system with waste heat recovery and driving method thereof
DK2508418T3 (en) Ship propulsion device with exhaust heat of the recovery type, ship equipped with the same, and control method of ship propulsion device with exhaust heat of the recovery type
JP5260390B2 (en) Ship propulsion device
US8981583B2 (en) Method for stabilization of the network frequency of an electrical power network
SE515966C2 (en) Engine assembly comprising an internal combustion engine and a steam engine
JP2007326556A (en) Operation method of parallel hybrid driving path
EP0902168A2 (en) Method and arrangement for a combi power plant
JPS5982507A (en) Power transmission control method of marine shaft dynamotor
JP2012116452A (en) System and method for shift transmission control at hybrid vehicle engine starting
JP2007223358A (en) Marine propulsion plant, vessel furnished therewith and control method of marine propulsion plant
JPS6234598B2 (en)
CN115306637A (en) Variable pitch drive system, variable pitch driver and master-slave motor drive method
JPS6153531B2 (en)
JP5461101B2 (en) Integrated control apparatus and ship equipped with the same
KR20150055560A (en) Control device, ship equipped with the same, and integrated control method
JP5675928B2 (en) Ship integrated control apparatus and ship equipped with the same
WO2020144792A1 (en) Marine power supply system, vessel equipped with same, marine power supply system control method, and marine power supply system control program
JPH0372807B2 (en)
JP3680329B2 (en) Method for controlling power generator
JPS6368493A (en) Method of controlling output of shaft generator/motor
JPS6234599B2 (en)
JP2956066B2 (en) Generator control method
JPH0331884B2 (en)
JPH029999B2 (en)