JPH029999B2 - - Google Patents

Info

Publication number
JPH029999B2
JPH029999B2 JP56038346A JP3834681A JPH029999B2 JP H029999 B2 JPH029999 B2 JP H029999B2 JP 56038346 A JP56038346 A JP 56038346A JP 3834681 A JP3834681 A JP 3834681A JP H029999 B2 JPH029999 B2 JP H029999B2
Authority
JP
Japan
Prior art keywords
generator
steam
main engine
main
steam turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP56038346A
Other languages
Japanese (ja)
Other versions
JPS57151495A (en
Inventor
Ryotaro Ogiwara
Keiji Tsujino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kawasaki Heavy Industries Ltd
Original Assignee
Kawasaki Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Heavy Industries Ltd filed Critical Kawasaki Heavy Industries Ltd
Priority to JP3834681A priority Critical patent/JPS57151495A/en
Publication of JPS57151495A publication Critical patent/JPS57151495A/en
Publication of JPH029999B2 publication Critical patent/JPH029999B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/20Use of propulsion power plant or units on vessels the vessels being powered by combinations of different types of propulsion units

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

【発明の詳細な説明】 本発明は、液化石油ガス運搬船やコンテナ船な
どのように、きわめて大量の電力が要求される船
舶などに適用して特に効力を発揮する舶用推進プ
ラントに関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a marine propulsion plant that is particularly effective when applied to ships that require extremely large amounts of electric power, such as liquefied petroleum gas carriers and container ships.

従来のこれらの船舶に対しても一般船の場合と
同様に、主機関の発生する排ガスエネルギーを有
効に利用するシステムとして蒸気タービン発電機
が採用されてきた。しかし、上記特定の船舶にお
いては、主機関の排ガスエネルギーを最大限に利
用して発電しても、なお船内最大電力負荷を賄う
ことができない場合があり、そのときは、主機関
用燃料油に比較してより高級な燃料油を使用する
発電機を別に設けて並列運転したり、主軸発電機
を設けて並列運転することなどにより、不足分の
電力を補う必要があつた。主軸発電機と並列運転
するケースでは、主軸発電機と蒸気タービン発電
機とが並列運転可能とするために高価なサイリス
タコンンバータなどを設ける必要があつた。更に
船内電力負荷を低減し、蒸気タービン発電機のみ
で船内電力負荷を賄い得る機会を増すため、吸収
式冷凍機の採用など、高価な電力負荷低減策を講
じられた場合もあつた。また一方、排ガスのエネ
ルギーや船内電力負荷は、季節、航行状態、積荷
の状態などにより変化するため、場合によつては
船内所要電力負荷よりも排ガスエネルギーの方が
上まわる場合や、別に設けられた発電機との並列
運転時に、その発電機の最小発生電力に蒸気ター
ビン発電機の発生電力を加えた合計電力に対して
船内所要電力の方が下まわる場合があり、このよ
うなとき、余分排ガスエネルギーは大気に捨てら
れていた。
As in the case of general ships, steam turbine generators have been adopted for these conventional ships as a system to effectively utilize the exhaust gas energy generated by the main engine. However, in the above-mentioned specific ships, even if the exhaust gas energy of the main engine is fully utilized to generate electricity, it may still not be possible to cover the maximum power load on board, and in that case, the fuel oil for the main engine may be It was necessary to make up for the power shortage by installing a separate generator that uses comparatively higher grade fuel oil and running it in parallel, or by installing a main shaft generator and running it in parallel. In the case where the main shaft generator and the steam turbine generator are operated in parallel, it is necessary to install an expensive thyristor converter or the like in order to enable the main shaft generator and the steam turbine generator to operate in parallel. In some cases, expensive power load reduction measures were taken, such as the adoption of absorption chillers, in order to reduce the onboard power load and increase the chances that the onboard power load could be covered by steam turbine generators alone. On the other hand, the exhaust gas energy and onboard power load change depending on the season, navigation conditions, cargo conditions, etc., so in some cases, the exhaust gas energy exceeds the required onboard power load, or a separate power load is required. When operating in parallel with a generator, the required onboard power may be lower than the total power obtained by adding the minimum power generated by that generator to the power generated by the steam turbine generator. Exhaust gas energy was being dumped into the atmosphere.

第4図は、実公昭44−15084号公報に示される
もので、主内燃機関とその排ガスを利用して駆動
される蒸気タービンとの負荷の分担をたがいに調
整可能に配置した従来装置の一例を示し、主内燃
機関21よりの排気ガスを導管29により排ガス
ヒーター22に導き、こゝで発生した蒸気を配管
30によつて蒸気タービン23に導き、蒸気ター
ビン23の出力を歯車伝達装置24を経てその一
部を発電機25の駆動用に、又残部を歯車伝達装
置27を経て推進軸28の駆動用に使用するよう
に構成し、上記推進軸28の駆動用の機構中に主
内燃機関の速度変動が発電機の速度変動許容範囲
以上になると脱となる軸継手26を介在せしめ、
且つ蒸気発生量の少ない際に主内燃機関21より
の出力が軸継手26を介して発電機25に伝達さ
れるように構成したものである。
Figure 4 is shown in Japanese Utility Model Publication No. 44-15084, and is an example of a conventional system in which the load sharing between a main internal combustion engine and a steam turbine driven using its exhaust gas can be adjusted. , the exhaust gas from the main internal combustion engine 21 is led to the exhaust gas heater 22 through a conduit 29, the steam generated here is led to the steam turbine 23 through the pipe 30, and the output of the steam turbine 23 is transmitted to the gear transmission device 24. Then, a part of it is used to drive the generator 25, and the remaining part is used to drive the propulsion shaft 28 via the gear transmission 27, and the main internal combustion engine is included in the mechanism for driving the propulsion shaft 28. A shaft coupling 26 is provided which disengages when the speed fluctuation exceeds the allowable speed fluctuation range of the generator,
Further, the output from the main internal combustion engine 21 is transmitted to the generator 25 via the shaft coupling 26 when the amount of steam generated is small.

しかし、上記従来装置では、たとえば船舶の停
泊時に主内燃機関21を発電用動力源として使用
して安価な電力を多量に得ることが不可能であ
る。また、主内燃機関21が故障を起こした場
合、蒸気タービン23のみによる推進動力しか得
られず、しかも排ガスヒータ22による蒸気の発
生が期待できず、他の蒸気発生源から導入する蒸
気によつてかろうじて蒸気タービン23を駆動し
なければならないことになる。さらに、主内燃機
関21の故障が焼付事故などのように運転不能の
故障の場合には、事情は一層困難なものとなる。
However, with the above-mentioned conventional device, it is impossible to obtain a large amount of inexpensive electric power by using the main internal combustion engine 21 as a power source for power generation, for example, when the ship is at anchor. Furthermore, if the main internal combustion engine 21 fails, only the steam turbine 23 can provide propulsion power, and the exhaust gas heater 22 cannot be expected to generate steam, and steam introduced from other steam generation sources can be used. This means that the steam turbine 23 must be driven just barely. Furthermore, if the failure of the main internal combustion engine 21 is a failure that makes it inoperable, such as a seizure accident, the situation becomes even more difficult.

この発明の目的は、主機関を稼動して船舶を航
走せしめるに際し、主機関の発生する排ガスエネ
ルギーの完全利用を達成して省エネルギーを実現
しうる舶用推進プラントを提供することにある。
An object of the present invention is to provide a marine propulsion plant that can achieve energy savings by fully utilizing the exhaust gas energy generated by the main engine when operating the main engine to propel the ship.

この発明の他の目的は、きわめて大量の電力が
要求される船舶に適用して、充分にその電力需要
を充たすことができ、かつきわめて低廉なコスト
の電力を供給しうるプラントを提供することにあ
る。
Another object of the present invention is to provide a plant that can be applied to ships that require an extremely large amount of electric power, can sufficiently satisfy the electric power demand, and can supply electric power at an extremely low cost. be.

この発明のさらに他の目的は、主機関の故障時
に際しても、主機関以外のこれに代わる推進器駆
動手段として使用しうる装置をそなえ、かつ該装
置の発動を容易に実施することのできるプラント
を提供することにある。
Still another object of the present invention is to provide a plant that is equipped with a device that can be used as an alternative propulsion drive means other than the main engine even when the main engine fails, and that can easily activate the device. Our goal is to provide the following.

つぎに本発明プラントの構成につき、一実施例
を示す図面に基いて以下に具体的に説明する。
Next, the configuration of the plant of the present invention will be specifically explained below based on drawings showing one embodiment.

第1図において、1は主機関、2は蒸気タービ
ンであり、3は、主機関1および蒸気タービン2
のそれぞれの出力軸系を連結する減速装置、4は
減速装置3を介して回転駆動される推進器であ
る。5は増速装置で、主機関1と減速装置3とを
連結する出力軸系の途中に介設され、その前後に
継手9およびクラツチ10が設けられる。6は主
軸発電機で、主軸発電機6は別の発電機7からの
電力供給によつて電動機としても作動せしめうる
構成とされている。そのため、継手9を“接”、
クラツチ10を“断”とすることによつて主機関
1の動力を主軸発電機6のみに伝達し、継手9お
よびクラツチ10の両方をいずれも“接”とする
ことによつて主機関1の動力を主軸発電機6の駆
動と推進器4の駆動との両方に伝達することがで
きるとともに、継手9を“断”、クラツチ10を
“接”とすることによつて主軸発電機6を電動機
として作動せしめてその動力を増速装置5を介し
て推進器4に伝達することも可能である。勿論こ
の状態では、増速装置5は減速装置として機能す
るものなることは言うまでもない。また、以上の
説明から容易に理解されるように、継手9は、こ
の個所における断接の操作の頻度がクラツチ10
の個所の同操作の頻度に比べて実務上はるかに少
いために継手構造を採用したに過ぎず、そのたた
め継手9の代りにこの個所にクラツチを使用して
もなんら差支えない。
In FIG. 1, 1 is a main engine, 2 is a steam turbine, and 3 is a main engine 1 and a steam turbine 2.
A speed reduction device 4 connects the output shaft systems of the respective output shaft systems, and 4 is a propulsion device rotationally driven via the speed reduction device 3. Reference numeral 5 denotes a speed increasing device, which is interposed in the middle of an output shaft system that connects the main engine 1 and the speed reducing device 3, and a joint 9 and a clutch 10 are provided before and after the speed increasing device. Reference numeral 6 denotes a main shaft generator, and the main shaft generator 6 is configured to be able to operate as an electric motor by being supplied with power from another generator 7. Therefore, the joint 9 is "connected",
By disengaging the clutch 10, the power of the main engine 1 is transmitted only to the main shaft generator 6, and by disengaging both the joint 9 and the clutch 10, the power of the main engine 1 is transmitted to the main shaft generator 6 only. Power can be transmitted to both the drive of the main shaft generator 6 and the drive of the propulsion device 4, and by turning the joint 9 "disconnected" and the clutch 10 "connected", the main shaft generator 6 can be transferred to the electric motor. It is also possible to transmit the power to the propulsion unit 4 via the speed increasing device 5. Needless to say, in this state, the speed increasing device 5 functions as a speed reducing device. Further, as can be easily understood from the above explanation, the frequency of connection/disconnection operations at this location of the joint 9 is higher than that of the clutch 10.
The joint structure was only adopted because the frequency of the same operation at this point is far less in practice, and therefore there is no problem in using a clutch at this point instead of the joint 9.

11は継手で、蒸気タービン2と減速装置3を
連結する出力軸系の途中に設けられる。継手11
についても、前記継手9と同様の理由により、こ
れをクラツチ機構によつて代替せしめることは勿
論可能である。8は主機関1の排ガスエネルギー
を利用する排ガスボイラ、12は主機関1の排ガ
スエネルギー以外の熱エネルギーを利用するボイ
ラで、これらのボイラから取り出された蒸気は図
中の破線に沿つて取り出され、蒸気制御弁13を
経て蒸気タービン2に導入され、あるいは加熱も
しくは雑用などの蒸気需要先15に送られる。1
4は船内電力負荷で、主軸発電機6ないし発電機
7の発生電力により賄われる。
Reference numeral 11 denotes a joint, which is provided in the middle of the output shaft system that connects the steam turbine 2 and the speed reduction device 3. Joint 11
It is of course possible to replace this with a clutch mechanism for the same reason as the joint 9. 8 is an exhaust gas boiler that uses the exhaust gas energy of the main engine 1, and 12 is a boiler that uses heat energy other than the exhaust gas energy of the main engine 1. Steam taken out from these boilers is taken out along the broken line in the figure. The steam is introduced into the steam turbine 2 via the steam control valve 13, or sent to a steam demand 15 for heating or miscellaneous purposes. 1
Reference numeral 4 denotes an inboard power load, which is supplied by the power generated by the main shaft generator 6 or generator 7.

以上のように構成される本発明プラントにおけ
る作用について説明すると、 (1) 通常航海時 継手9、クラツチ10および継手11はすべ
て“接”とする。その結果、主機関1の全排ガ
スエネルギーは排ガスボイラ8を経て有効に蒸
気タービン2に吸収されて推進器4の駆動動力
として活用される。また、主機関1の発生動力
は推進器駆動動力として使用されるほかに、主
軸発電機6によつて電力化され、この電力によ
つて航海中の船内電力を賄うことができる。
The operation of the plant of the present invention configured as described above will be explained: (1) During normal voyage The joint 9, clutch 10, and joint 11 are all "contacted". As a result, the entire exhaust gas energy of the main engine 1 is effectively absorbed into the steam turbine 2 via the exhaust gas boiler 8 and utilized as driving power for the propulsion device 4. Further, the power generated by the main engine 1 is used not only as driving power for the propeller, but also is converted into electricity by the main shaft generator 6, and this electricity can cover the onboard power during the voyage.

(2) 停泊時 継手9は“接”、クラツチ10は“断”とす
る。その結果、主機関1の発生動力は主軸発電
機6のみに投入されることになり、停泊中独立
の発電機として使用することができる。
(2) When berthing: Coupling 9 should be "engaged" and clutch 10 should be "disengaged". As a result, the power generated by the main engine 1 is input only to the main shaft generator 6, and it can be used as an independent generator while at berth.

(3) 主機関の故障時 (a) 継手9および11を“断”とし、クラツチ
10を“接”とする。この状態で発電機7を
稼動してその発生電力により主軸発電機6を
電動機として機能せしめ、前記の要領にした
がつて推進器4を駆動し、航走する。
(3) In the event of main engine failure (a) Joints 9 and 11 should be "disconnected" and clutch 10 should be "connected". In this state, the generator 7 is operated, and the generated power causes the main shaft generator 6 to function as an electric motor, and the propeller 4 is driven in accordance with the above-mentioned procedure for cruising.

(b) クラツチ10を“断”とし、継手11を
“接”とする。この状態で排ガスボイラ8を
追焚きし(排ガスボイラ8を追焚き可能のボ
イラとされているとき)、または別に設けた
ボイラ12からの蒸気によつて蒸気タービン
2を駆動し、推進器4を回転駆動する。
(b) Set the clutch 10 to "disconnected" and the joint 11 to "connected". In this state, the exhaust gas boiler 8 is reheated (when the exhaust gas boiler 8 is a boiler that can be reheated), or the steam turbine 2 is driven by steam from a separately provided boiler 12, and the propulsion device 4 is driven. Drive rotation.

(c) 継手9を“断”とし、クラツチ10および
継手11をいずれも“接”とする。この状態
で上記(a)の電動機による動力と、上記(b)の蒸
気タービン2による動力を併用し、推進動力
の増強を図る。
(c) Set the joint 9 to "disconnected" and set both the clutch 10 and the joint 11 to "connected". In this state, the power from the electric motor in (a) above and the power from the steam turbine 2 in (b) above are used together to increase the propulsion power.

なお、前記の構成において、推進器4の前後進
回転の切換えを行うとき、蒸気タービン2の逆転
操作に際し、蒸気制御弁13による供給蒸気の制
御が必要であるが、推進器4が可変ピツチプロペ
ラの場合には、前記進切換えが迅速に行える半
面、プロペラ負荷の減少に主機出力の減少が追随
できないで、オーバースピードになるケースが多
い。蒸気タービン2への蒸気供給量は、当該プラ
ントのように主機関の排ガスによる排ガスボイラ
を蒸気供給源とする場合、手機関出力が急激に減
少しても排ガスボイラの保有熱量のために急速に
は減少せず、したがつて主機関のみで推進器を駆
動する他のプラントよりもオーバースピードし易
い状況にある。そのため、推進器に可変ピツチプ
ロペラを使用するプラントの場合には、前後進の
切換操作をきわめて容易に、かつ高度の追随性の
もとに行うことができるように、蒸気タービンへ
の蒸気供給量を制御しうる蒸気制御弁を装備する
必要がある。
In the above configuration, when switching the forward and backward rotation of the propeller 4, it is necessary to control the supplied steam by the steam control valve 13 when the steam turbine 2 is reversely operated. In this case, although the forward switching can be performed quickly, the decrease in main engine output cannot keep up with the decrease in propeller load, resulting in overspeed in many cases. If the steam supply source to the steam turbine 2 is an exhaust gas boiler using exhaust gas from the main engine as in the plant in question, the amount of steam supplied to the steam turbine 2 will increase rapidly due to the heat capacity of the exhaust gas boiler even if the hand engine output suddenly decreases. is not reduced, and therefore is more prone to overspeed than other plants that drive the propulsion unit only with the main engine. Therefore, in the case of a plant that uses a variable pitch propeller for its propulsion unit, the amount of steam supplied to the steam turbine must be adjusted so that forward and backward switching operations can be performed extremely easily and with a high degree of followability. It is necessary to equip a steam control valve that can control the

第2図は蒸気制御弁の特性を、弁開度と時間に
ついてグラフとして示したもので、図中の弁開度
Aは前進度Aは前進時の弁開度を示し、Bは後進
時の弁開度を示す。後進発令がなされた後の二点
鎖線の曲線は、一般に考えられる制御方式、す
なわち、排ガスボイラの蒸気圧力、蒸気温度なら
びに蒸気タービンの許容蒸気条件のみによつて制
御される方式の蒸気制御弁を用いたときの弁開度
の推移を示し、曲線は以下に述べる本発明の制
御方式による蒸気制御弁を用いたときの弁開度の
推移を示す。曲線において、蒸気制御弁が最小
開度の状態から開度増大に転じる変曲点Pの位置
は、排ガスボイラの蒸気圧力、蒸気温度、可変ピ
ツチプロペラのピツチ角ならびに主軸回転数によ
つて決まる。また、弁開度AおよびBは、排ガス
ボイラの蒸気圧力、蒸気温度ならびに蒸気タービ
ンの許容蒸気条件によつて決定される。したがつ
て、第3図に示すように、排ガスボイラの蒸気圧
力、蒸気温度、可変ピツチプロペラのピツチ角、
および主軸回転数の各数値を信号としてコントロ
ーラに入力し、また後進発令の信号をコントロー
ラに入力してそれによつて蒸気制御弁を制御する
ようにすれば、第2図の曲線に示す弁開度の推
移、すなわち、後進発令と同時に急速に弁開度を
減少し、プロペラピツチがニユートラルを通過し
て後進側の領域に進んだ時点でP点から急速に弁
開度を増大せしめる推移を実現せしめることが可
能であり、この種の蒸気タービンの蒸気制御を可
変ピツチプロペラの切換操作に対して効率よく追
随せしめることができる。なおこの場合、コント
ローラに入力される信号は、場合により一部省略
することも可能である。
Figure 2 shows the characteristics of the steam control valve as a graph with respect to valve opening degree and time. In the figure, valve opening degree A indicates the forward movement degree A indicates the valve opening degree when moving forward, and B indicates the valve opening degree when moving backward. Indicates the valve opening degree. The two-dot chain line curve after the reverse command is issued indicates the steam control valve in a generally considered control method, that is, a method in which the steam control valve is controlled only by the steam pressure and steam temperature of the exhaust gas boiler and the permissible steam conditions of the steam turbine. The curve shows the change in valve opening when using the steam control valve according to the control method of the present invention, which will be described below. In the curve, the position of the inflection point P where the steam control valve changes from the minimum opening to the increased opening is determined by the steam pressure of the exhaust gas boiler, the steam temperature, the pitch angle of the variable pitch propeller, and the main shaft rotation speed. Further, the valve opening degrees A and B are determined by the steam pressure and steam temperature of the exhaust gas boiler and the allowable steam conditions of the steam turbine. Therefore, as shown in Fig. 3, the steam pressure of the exhaust gas boiler, the steam temperature, the pitch angle of the variable pitch propeller,
If the numerical values of the rotation speed and the main shaft rotation speed are input to the controller as signals, and a reverse command signal is input to the controller to control the steam control valve, the valve opening shown in the curve in Figure 2 can be obtained. In other words, the valve opening is rapidly decreased at the same time as the reverse command is issued, and the valve opening is rapidly increased from point P when the propeller pitch passes through neutral and advances to the astern region. This allows the steam control of this type of steam turbine to efficiently follow the switching operation of the variable pitch propeller. Note that in this case, some of the signals input to the controller may be omitted depending on the case.

本発明にかゝる舶用推進プラントは以上のよう
に構成されるので、主機関を稼動して船舶を航走
せしめるに際し、主機関の発生する排ガスエネル
ギーの完全利用を達成して省エネルギーを実現す
ることができる。
Since the marine propulsion plant according to the present invention is configured as described above, when the main engine is operated to make the ship sail, the exhaust gas energy generated by the main engine is fully utilized, thereby realizing energy saving. be able to.

また、本発明プラントでは、蒸気タービンの出
力はすべて推進軸の駆動用に使用し、発電機駆動
用動力はすべて主機関より供給されるように構成
され、且つ、主機関と発電機を推進軸系から容易
に切離し、独立のデイーゼル発電機として使用で
きるように構成される。他の表現をすれば、蒸気
タービンと発電機とを別々に推進軸系に接続し、
且つ、発電機は主機関により駆動されるように接
続した構成とされている。そのため本願発明で
は、船舶の停泊時に主機関と発電機を推進軸系か
ら切離し、独立のデイーゼル発電機として使用す
ることができる。デイーゼス発電機はタービン発
電機より熱効率がよいので、単位発電量当りの燃
料消費量が少なく、したがつて安価な電力を大量
に供給することができる。これに対して第4図例
の従来装置では、デイーゼル発電機として使用す
ることができないので、本願発明のような効果が
ない。
Furthermore, in the plant of the present invention, all output of the steam turbine is used to drive the propulsion shaft, and all power for driving the generator is supplied from the main engine, and the main engine and the generator are connected to the propulsion shaft. It is constructed so that it can be easily disconnected from the system and used as an independent diesel generator. In other words, the steam turbine and generator are connected separately to the propulsion shaft system,
Further, the generator is connected to be driven by the main engine. Therefore, in the present invention, when the ship is at anchor, the main engine and generator can be separated from the propulsion shaft system and used as an independent diesel generator. Since diesel generators have better thermal efficiency than turbine generators, they consume less fuel per unit of power generation, and can therefore supply a large amount of inexpensive electricity. On the other hand, the conventional device shown in FIG. 4 cannot be used as a diesel generator, so it does not have the same effect as the present invention.

さらに、本願発明プラントでは、主機関の故障
時に、主機関を容易に推進軸系から切離し、蒸気
タービンのみによつて船舶の航走が可能で、また
主機関と発電機との間に設けられた継手9を断と
し、発電機を推進軸系に接続(クラツチ10を接
続)して発電機を電動機として作動するようにで
きるので、蒸気タービンと電動機の両方の合計出
力によつて船舶を航走させることができる。
Furthermore, in the plant of the present invention, when the main engine fails, the main engine can be easily separated from the propulsion shaft system, and the ship can be navigated using only the steam turbine. By disconnecting the joint 9 and connecting the generator to the propulsion shaft system (connecting the clutch 10), the generator can be operated as an electric motor, so the ship can be sailed with the combined output of both the steam turbine and the electric motor. It can be run.

なお、第4図例の従来装置では、蒸気タービン
出力が発電機駆動動力より大きい時はその差だけ
軸継手26を介して推進軸に動力が伝えられ、蒸
気タービン出力が発電機駆動動力より小さい時は
その差だけ主機関から軸継手26を介して発電機
に動力が伝えられる。このことは、軸継手26及
び歯車伝達装置27を介して伝達される動力は、
当然にある場合は大きく、ある場合は小さくな
り、極端な場合は零になる。一般に歯車伝達装置
では変動トルクよりも伝動トルクが小さいとハン
マリンゲ現象が発生すると言われており、伝達ト
ルクが小さくなる可能性のある伝達装置では、こ
れに対する何らかの対策が必要な場合が多い。一
方、本願発明では、蒸気タービンはすべての出力
を推進軸系に伝え、また、発電機はその必要動力
をすべて主機から取るので、両方ともその伝達装
置にて伝達トルクが非常に小さくなることはな
い。即ち、本願発明装置では、上記従来装置で必
要とするような対策は必要でないという優れた効
果がある。
In the conventional device shown in FIG. 4, when the steam turbine output is larger than the generator driving power, the difference is transmitted to the propulsion shaft via the shaft coupling 26, and the steam turbine output is smaller than the generator driving power. At that time, power is transmitted from the main engine to the generator via the shaft coupling 26 by the difference. This means that the power transmitted via the shaft coupling 26 and gear transmission 27 is
Naturally, in certain cases it will be large, in other cases it will be small, and in extreme cases it will be zero. In general, it is said that in a gear transmission device, a hammering phenomenon occurs when the transmitted torque is smaller than the fluctuating torque, and in a transmission device where the transmitted torque can become small, some kind of countermeasure is often required to deal with this. On the other hand, in the present invention, the steam turbine transmits all its output to the propulsion shaft system, and the generator takes all its necessary power from the main engine, so the transmitted torque in both transmission devices will not be very small. do not have. That is, the device of the present invention has an excellent effect in that it does not require the measures required in the conventional device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明プラントの配置系統図、第2図
は蒸気制御弁の機能を説明するための特性曲線
図、第3図はそのブロツク線図、第4図従来装置
の配置系統図である。 1……主機関、2……蒸気タービン、3……減
速装置、4……推進器、5……増速装置、6……
主軸発電機、7……発電器、8……排ガスボイ
ラ、9,11……継手、10……クラツチ、12
……ボイラ、13……蒸気制御弁。
Figure 1 is a layout diagram of the plant of the present invention, Figure 2 is a characteristic curve diagram for explaining the function of the steam control valve, Figure 3 is its block diagram, and Figure 4 is a layout diagram of the conventional equipment. . 1... Main engine, 2... Steam turbine, 3... Reduction device, 4... Propulsion device, 5... Speed increase device, 6...
Main shaft generator, 7... Generator, 8... Exhaust gas boiler, 9, 11... Coupling, 10... Clutch, 12
...Boiler, 13...Steam control valve.

Claims (1)

【特許請求の範囲】[Claims] 1 主機関と該主機関の排ガスエネルギを利用す
る排ガスボイラから供給される蒸気によつて駆動
される蒸気タービンとを併設しそれぞれの出力軸
系を共通の減速装置に連結して推進器を駆動する
舶用推進プラントにおいて、主機関と減速装置と
を連結する出力軸系の途中に主機関側に設けた継
手9と前記減速装置側に設けたクラツチ10とを
設けしかもこれら両継手間に増速装置を介設し、
該増速装置の増速軸に主軸発電機を連結し、かつ
該主軸発電機を電動機として作動せしめるための
別の電力供給源を該主軸発電機に連結するととも
に前記蒸気タービンと前記減速装置とを連結する
出力軸系の途中に継手11を設けたことを特徴と
する舶用推進プラント。
1 A main engine and a steam turbine driven by steam supplied from an exhaust gas boiler that utilizes the exhaust gas energy of the main engine are installed together, and each output shaft system is connected to a common reduction gear to drive the propulsion device. In a marine propulsion plant, a joint 9 provided on the main engine side and a clutch 10 provided on the reduction device side are provided in the middle of the output shaft system connecting the main engine and the reduction device, and a speed increasing Interpose a device,
A main shaft generator is connected to the speed increasing shaft of the speed increasing device, and another power supply source for operating the main shaft generator as an electric motor is connected to the main shaft generator, and the steam turbine and the speed reducing device are connected to each other. A marine propulsion plant characterized in that a joint 11 is provided in the middle of an output shaft system that connects.
JP3834681A 1981-03-16 1981-03-16 Propelling plant for ship Granted JPS57151495A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3834681A JPS57151495A (en) 1981-03-16 1981-03-16 Propelling plant for ship

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3834681A JPS57151495A (en) 1981-03-16 1981-03-16 Propelling plant for ship

Publications (2)

Publication Number Publication Date
JPS57151495A JPS57151495A (en) 1982-09-18
JPH029999B2 true JPH029999B2 (en) 1990-03-06

Family

ID=12522717

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3834681A Granted JPS57151495A (en) 1981-03-16 1981-03-16 Propelling plant for ship

Country Status (1)

Country Link
JP (1) JPS57151495A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232130A (en) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp Vehicle-to-vehicle distance detector and alarm

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5086323B2 (en) * 2009-11-30 2012-11-28 三菱重工業株式会社 Waste heat recovery type ship propulsion device, ship equipped with the same, and control method of exhaust heat recovery type ship propulsion device
WO2012053112A1 (en) * 2010-10-22 2012-04-26 三菱重工業株式会社 Propulsion device and ship with same
JP5255144B2 (en) * 2012-09-06 2013-08-07 三菱重工業株式会社 Ship control method and ship

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4415084Y1 (en) * 1965-11-09 1969-06-28
JPS5587697A (en) * 1978-12-25 1980-07-02 Mitsubishi Heavy Ind Ltd Propulsion system by variable pitch propeller

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4415084Y1 (en) * 1965-11-09 1969-06-28
JPS5587697A (en) * 1978-12-25 1980-07-02 Mitsubishi Heavy Ind Ltd Propulsion system by variable pitch propeller

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04232130A (en) * 1990-12-28 1992-08-20 Mitsubishi Motors Corp Vehicle-to-vehicle distance detector and alarm

Also Published As

Publication number Publication date
JPS57151495A (en) 1982-09-18

Similar Documents

Publication Publication Date Title
EP2508418B1 (en) Exhaust heat recovery-type ship propulsion device, ship equipped with same, and control method for exhaust heat recovery-type ship propulsion device
US20140373533A1 (en) Energy recovery and cooling system for hybrid machine powertrain
US8357019B2 (en) Propulsion chain
SG178333A1 (en) Marine propulsion device
US20200277035A1 (en) Gas-electric parallel-serial hybrid marine power train system with lng cooling
KR20100024452A (en) Method and apparatus for operation of a marine vessel hybrid propulsion system
JP2004359112A (en) Vessel propulsion apparatus and its control method
CN109305315A (en) A kind of ship craft integrated seawater energy system
CN104334449A (en) Method of converting steam turbine - powered lng carriers
JPH029999B2 (en)
JPH0446892A (en) Propulsion device for lng transport vessel
KR20160015869A (en) Hybrid propulsion system and method of floating structure
US6161374A (en) Transportation propulsion system
US20240025527A1 (en) A propulsion system for vessel and a vessel comprising the propulsion system
JPS6234598B2 (en)
CN111017180A (en) Ship hybrid propulsion method and system
KR20230040781A (en) Vessel
JPH09301275A (en) Propulsion engine for vessel
KR20220160293A (en) Vessel
WO2020144759A1 (en) Hybrid propulsion ship operation method and hybrid propulsion ship
US20230242232A1 (en) Marine powertrain unit and method for powering a marine vessel
Ammar et al. Overview of the main benefits and challenges of different ship propulsion systems
US20140373534A1 (en) Energy recovery system for machine with cylinder activation and deactivation system
Richardson The Friction Clutch Reverse-Reduction Gears for the GTS Adm. Wm. M. Callaghan
KR20220155769A (en) Power supply apparatur for vessel