JPS598191A - Delay discharge circuit - Google Patents

Delay discharge circuit

Info

Publication number
JPS598191A
JPS598191A JP57116055A JP11605582A JPS598191A JP S598191 A JPS598191 A JP S598191A JP 57116055 A JP57116055 A JP 57116055A JP 11605582 A JP11605582 A JP 11605582A JP S598191 A JPS598191 A JP S598191A
Authority
JP
Japan
Prior art keywords
word line
collector
transistor
emitter
discharge circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57116055A
Other languages
Japanese (ja)
Other versions
JPH0156473B2 (en
Inventor
Yoshinori Okajima
義憲 岡島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57116055A priority Critical patent/JPS598191A/en
Priority to EP83303859A priority patent/EP0100160B1/en
Priority to US06/510,349 priority patent/US4604728A/en
Priority to DE8383303859T priority patent/DE3380543D1/en
Publication of JPS598191A publication Critical patent/JPS598191A/en
Publication of JPH0156473B2 publication Critical patent/JPH0156473B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/41Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming static cells with positive feedback, i.e. cells not needing refreshing or charge regeneration, e.g. bistable multivibrator or Schmitt trigger
    • G11C11/413Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction
    • G11C11/414Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing, timing or power reduction for memory cells of the bipolar type
    • G11C11/415Address circuits

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Static Random-Access Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

PURPOSE:To make a delay discharge circuit small-sized, by connecting a PNP transistor (TR), whose emitter is connected to a high potential-side word line, and a multicollector NPN TR, whose one collector is connected to a low potential-side word line, to constitute a PNPN TR. CONSTITUTION:The delay discharge circuit consists of a PNP TR Q1 whose emitter is connected to a high potential-side word line W, a multicollector NPN TR Q2 whose one collector is connected to a low potential-side word line C which makes a pair together with a word line W1, and a constant current source I which flows a current I to the emitter of the TR Q2. Since the collector of the TR Q1 and the base of the TR Q2 are connected commonly and the base of the TR Q1 and the collector of the TR Q2 are connected commonly, a PNPN TR is constituted. Thus, a sufficient delay time is attained, and the occupied area is small because no capacitors and high resistances are used.

Description

【発明の詳細な説明】 発明の技術分野 本発明は、スタティック型メモリのワード線電位を非選
択への移行時に速やかに低下させる遅延放電回路に関す
る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a delayed discharge circuit that quickly lowers the word line potential of a static memory upon transition to non-selection.

技術の背景 PNPNメモリ(CやI2LメモリICなどの飽和型セ
ルを用いたメモリICでは、選択ワード線を非選択に移
行させる際にその電位を速やかに低下させることが多重
選択防止上重要である。このためにワード線に対する放
電回路が設けられるが、この回路はワード線を駆動(選
択)したワード線ドライバの出力が非選択レベルに切換
った後も一定時間(一般に5〜10 n5ec)は該選
択ワード線の電荷を放電し続ける遅延型であることが必
要である。
Technical Background In memory ICs that use saturated cells such as PNPN memory (C and I2L memory ICs), it is important to quickly lower the potential of a selected word line when it becomes unselected to prevent multiple selections. For this purpose, a discharge circuit is provided for the word line, but this circuit continues to operate for a certain period of time (generally 5 to 10 n5ec) even after the output of the word line driver that drives (selects) the word line switches to the non-selection level. It is necessary to be a delay type that continues to discharge the charges on the selected word line.

従来技術と問題点 従来の遅延型放電回路では放電時定数(遅延時間)をコ
ンデンサと抵抗で決定するのが一般的であるため、充分
な遅延時間を得るためにはコンデンサのサイズが大きく
なって放電回路全体の占有面積が大となる欠点がある。
Conventional technology and problems In conventional delayed discharge circuits, the discharge time constant (delay time) is generally determined by a capacitor and a resistor. This has the disadvantage that the entire discharge circuit occupies a large area.

発明の目的 本発明は各ワード線毎の放電回路にPNPN構造の素子
を用いて遅延放電を可能としかつ全体の占有面積を小さ
くしようとするものである。
OBJECTS OF THE INVENTION The present invention uses elements of PNPN structure in the discharge circuit for each word line to enable delayed discharge and to reduce the overall occupied area.

発明の構成 本発明は、スタティック型メモリセルが接続されるワー
ド線対に接続され、該ワード線対の選択から非選択への
移行時に該ワード線の電位を強制的に低下させる遅延放
電回路であって、高電位側ワード線にレベルシフト素子
を介してエミッタが接続されたPNP )ランリスク、
該PNP )ランリスクのコレクタおよびベースにそれ
ぞれベースおよび第1のコレクタが接続され第2のコレ
クタ又は第2のエミッタが低電位側ワード線に接続され
たNPN )ランリスク、および該NPN)ランリスク
のエミッタに接続されて該l・ランリスクにワード線放
電電流を流させる定電流源または定電圧源を備えて成る
ことを特徴とするが、以下図面を参照しながらこれを詳
細に説明する。
Structure of the Invention The present invention is a delayed discharge circuit connected to a word line pair to which a static memory cell is connected, and forcibly lowering the potential of the word line when the word line pair is transitioned from selection to non-selection. PNP whose emitter is connected to the high potential side word line via a level shift element) run risk,
The PNP) run risk has its base and first collector connected to the collector and base of the run risk, respectively, and the second collector or second emitter is connected to the low potential side word line, and the NPN) run risk. It is characterized by comprising a constant current source or a constant voltage source connected to the emitter of the word line to cause a word line discharge current to flow through the l-run risk, which will be explained in detail below with reference to the drawings.

発明の実施例 第1図(alは本発明の遅延放電回路の基本構成で、Q
;はそのエミッタが正側(高電位側)ワード線Wに接続
されるPNP !−ランジスタ、Q2は一方のコレクタ
が該ワード線Wと対をなす負側(低電位側)のワード線
Cに接続されるマルチコレクタ型のNPN )ランリス
ク、■はトランジスタQ2のエミッタに電流1を流させ
る定電流源である。
Embodiment of the invention FIG. 1 (al is the basic configuration of the delayed discharge circuit of the invention, Q
; is a PNP whose emitter is connected to the positive side (high potential side) word line W! - The transistor Q2 is a multi-collector type NPN whose one collector is connected to the negative side (low potential side) word line C that pairs with the word line W.) Run risk, ■ is the current 1 at the emitter of the transistor Q2. It is a constant current source that causes a current to flow.

トランジスタQ1のコレクタとトランジスタQ2のベー
ス(いずれもP型)は共通に接続され、且つトランジス
タQ1のベースとトランジスタQ2の残りのコレクタ(
いずれもN型)は共通に接続されるので、素子構造はサ
イリスクと同様にPNPNとなる。同図(blはこれを
示したもので、2はトランジスタQ1のエミッタ、3は
同トランジスタのベースおよびトランジスタQ2のコレ
クタ、4はトランジスタQ1のコレクタおよびトランジ
スタQ2のベース、5はトランジスタQ2のエミッタで
ある。サイリスクはトリガしないとオンにならないが、
集積回路で形成されたサイリスクの直流特性は、第1図
(C)に示すダイオード6と等価である。なぜなら電流
が流れている状態においては、PNP トランジスタQ
1もNPN l−ランリスクQ2も飽和して3つの接合
はすべて順バイアスされるからである。尚、ダイオード
6と等価な電流−電圧特性を得るには2つのトランジス
タQ + 。
The collector of transistor Q1 and the base of transistor Q2 (both P type) are connected in common, and the base of transistor Q1 and the remaining collector of transistor Q2 (
Since both N-type devices are connected in common, the element structure is PNPN like Cyrisk. The same figure (bl shows this, 2 is the emitter of the transistor Q1, 3 is the base of the same transistor and the collector of the transistor Q2, 4 is the collector of the transistor Q1 and the base of the transistor Q2, and 5 is the emitter of the transistor Q2. Yes, Cylisk will not turn on unless it is triggered, but
The DC characteristics of the SIRISK formed by an integrated circuit are equivalent to the diode 6 shown in FIG. 1(C). This is because when current is flowing, the PNP transistor Q
1 and the NPN l-run risk Q2 are saturated and all three junctions are forward biased. Note that two transistors Q + are required to obtain current-voltage characteristics equivalent to the diode 6.

Q2のパラメータを適切な値にコントロールしなければ
ならないが、これは非常に容易である。本発明は、この
飽和特性を利用するものである。一般に知られているよ
うに、飽和したトランジスタのコレクタ・エミッタ接合
容量は拡散容量成分のため非常に大きくなり大きな蓄積
電荷がある。これは従来のコンデンサを小型化できるこ
とを意味する。本発明ではこの点も利用する。
The parameter of Q2 must be controlled to an appropriate value, but this is very easy. The present invention utilizes this saturation characteristic. As is generally known, the collector-emitter junction capacitance of a saturated transistor becomes very large due to the diffusion capacitance component, and there is a large amount of accumulated charge. This means that conventional capacitors can be made smaller. The present invention also takes advantage of this point.

第2図は本発明の一実施例を示す図で、71〜7nは各
ワード線毎に設けられた遅延放電回路(要素)、WD+
〜WDnはワード線ドライバ、MC1〜M Cnは飽和
型メモリセルである。放電回路1+〜1nのPNP )
ランリスクQ■〜Q1nは第1図のQIに相当し、また
NPNトランジスタQ、1〜Q 2 nばQ2に相当す
る。定電流源1ば共通に設けられ、トランジスタQ21
〜Q 2 nのエミッタが共通に接続される(カレント
スイッチを構成する)。R1−Rnはワード線W I−
W nとトランジスタQ+’+ −Q + nのエミッ
タとの間に挿入されたレベルシフト用又は電圧降下用の
抵抗である。メモリセルMC(MC+ 、MC2・・・
・・・を代表する、以下同じ)は例えば第3図に示す構
成をとる。同図においてQ3.Q4は負荷となるPNP
トランジスタ、Q5.Q6は駆動用のNPN トランジ
スタ(マルチエミッタ)、B、Bはビット線対である。
FIG. 2 is a diagram showing an embodiment of the present invention, and 71 to 7n are delayed discharge circuits (elements) provided for each word line, WD+
~WDn are word line drivers, and MC1~MCn are saturated memory cells. PNP of discharge circuit 1+~1n)
Run risks Q1 to Q1n correspond to QI in FIG. 1, and NPN transistors Q,1 to Q2n correspond to Q2. Constant current source 1 is provided in common, and transistor Q21
The emitters of ~Q 2 n are connected in common (forming a current switch). R1-Rn are word lines W I-
This is a level shift or voltage drop resistor inserted between W n and the emitter of the transistor Q+'+ -Q + n. Memory cells MC (MC+, MC2...
. . . (hereinafter the same shall apply) takes the configuration shown in FIG. In the same figure, Q3. Q4 is a PNP that becomes a load.
Transistor, Q5. Q6 is a driving NPN transistor (multi-emitter), and B and B are a bit line pair.

今、選択信号X1がハイ電位(たとえば−0,9■)で
、ワード線W1が選択され他の選択信号(Xnはその1
つ)はロー電位(たとえば−1,9V)で非選択状態に
あるとする。定電流源1の電流lは最も電位の高いワー
ド線W1に接続された放電回路71のみに流れる。つま
り、ワード線W1の電位が高いと先ずトランジスタQ1
1のエミッタ、ベース間に電流が流れ、これが同トラン
ジスタのベース電流となってコレクタ電流が流れる。こ
のコレクタ電流はトランジスタQ21のベース電流とな
り、Q、1のベース電流がC21のコレクタ電流となり
トランジスタQ21がオンする。これによりトランジス
タQ、1のエミッタからトランジスタQ21のエミッタ
に至るPNPN構造はオンする。このときトランジスタ
Q、1及びC21は、深く飽和しており、C21のベー
ス電位はQllのエミッタ電位にほぼ等しくなる(図中
では同電位としている)。
Now, the selection signal
1) is in a non-selected state at a low potential (for example, -1.9V). The current l of the constant current source 1 flows only through the discharge circuit 71 connected to the word line W1 having the highest potential. In other words, when the potential of the word line W1 is high, first the transistor Q1
A current flows between the emitter and base of the transistor 1, which becomes the base current of the transistor, and the collector current flows. This collector current becomes the base current of transistor Q21, and the base current of Q,1 becomes the collector current of C21, turning on transistor Q21. This turns on the PNPN structure from the emitter of transistor Q,1 to the emitter of transistor Q21. At this time, transistors Q, 1, and C21 are deeply saturated, and the base potential of C21 becomes approximately equal to the emitter potential of Qll (the same potential is shown in the figure).

またC21はマルチコレクタトランジスタであるので、
引かれる電流(1)の一定の割合(たとえば80%)は
、第2のコレクタから流れる。たとえばR= 1.5 
KΩとした場合、Q、1のエミッタからは0.4 m 
A、流れることになる。尚、このとき非選択行に接続す
る放電回路(たとえば?n)もオン状態にある。すなわ
ち放電回路7nは電位の低いワード線に接続しているた
め放電電流は流れないので、Qlnのエミッタ電位はほ
ぼWnの電位(−1,9V)と等しい。またC2nの第
2のコレクタの電位はCnの電位(−2,TV)に等し
い。従ってC2nの第2のコレクタがエミッタ動作して
QlnのエミッタからC2nの第2のコレクタに至るP
NPNがオンすることになる。但しQ、nのエミッタか
らC2nのエミッタに至る糸路のPNPN構造はオフし
ている。ここで選択列W1のドライバー1ランジスタW
D+のベース(Xl)の電位が選択電位(−0,IV)
から非選択電位(−1,IV)に切り替る場合を考えて
みる。
Also, since C21 is a multi-collector transistor,
A certain proportion (eg 80%) of the drawn current (1) flows from the second collector. For example R=1.5
KΩ, 0.4 m from the emitter of Q, 1
A. It will flow. Note that at this time, the discharge circuit (for example, ?n) connected to the non-selected row is also in the on state. That is, since the discharge circuit 7n is connected to a word line with a low potential, no discharge current flows, so the emitter potential of Qln is approximately equal to the potential of Wn (-1.9V). Further, the potential of the second collector of C2n is equal to the potential of Cn (-2, TV). Therefore, the second collector of C2n acts as an emitter and connects P from the emitter of Qln to the second collector of C2n.
NPN will be turned on. However, the PNPN structure of the thread path from the emitters of Q and n to the emitter of C2n is off. Here, driver 1 transistor W of selection column W1
The potential of the base (Xl) of D+ is the selection potential (-0, IV)
Let us consider the case where the voltage is switched from to the non-selection potential (-1, IV).

第4図はワード線電位と放電電流の変動を示す概念図で
ある。前述したようにトランジスタQ11゜C2,は飽
和しており、ベース電位の変動には遅れがあるのでこれ
により放電電流Iはある遅延時間流れ続ける。こうして
ワード線WIが非選択に移行した後も放電が継続され、
ワード線W、C、メモリセル部に残留蓄積していた電荷
は強制排除され、ワード線は急峻に下り2電選択が阻止
される。
FIG. 4 is a conceptual diagram showing fluctuations in word line potential and discharge current. As described above, the transistor Q11°C2 is saturated and there is a delay in the fluctuation of the base potential, so that the discharge current I continues to flow for a certain delay time. In this way, even after the word line WI transitions to non-selection, the discharge continues,
The residual charges accumulated in the word lines W, C and the memory cell portion are forcibly removed, and the word lines descend steeply to prevent two-electrode selection.

また、抵抗RI”Rnは選択行につながる放電回路のレ
ヘルを下げるのに役立つ。これがなければC2,の第2
のコレクタが完全に順バイアスされることになり、放電
電流は主としてW 1.  Q、、の経路で流れてセル
の放電電流がなくなることになる。
In addition, the resistor RI''Rn serves to lower the level of the discharge circuit connected to the selected row.
The collector of will be fully forward biased, and the discharge current will be mainly W1. It flows along the path Q, , and the discharge current of the cell disappears.

第5図は、4図における抵抗R1−RnをダイオードD
1〜Dnに置き換えたものである。抵抗がレヘルシフト
のために必要であった点に注目して変更した実施例であ
る。ただし、この場合には非選択時にPNPNを完全に
オフさせて用いている。
In Figure 5, the resistors R1-Rn in Figure 4 are replaced with diodes D.
1 to Dn. This is an example modified by focusing on the point that a resistance is necessary for level shift. However, in this case, the PNPN is completely turned off when not selected.

第6図は第1図の基本回路が、マルチコレクタのNPN
−Trを用いたのに対しマルチエミッタのNPN−Tr
を用いる例である。この場合選択時に第2のエミッタは
逆動作し、コレクタとして働く。また2個のエミッタの
電流増幅率をかえることにより負側のワード線よりひく
電流をコントロールすることもできる。この場合、回路
の動作原理は、第2図の回路と同じである。尚、いずれ
の例でも定電流源1は定電圧源でもよい。
Figure 6 shows that the basic circuit in Figure 1 is a multi-collector NPN
-Tr is used, whereas multi-emitter NPN-Tr is used.
This is an example using . In this case, when selected, the second emitter operates in reverse and acts as a collector. Furthermore, by changing the current amplification factors of the two emitters, it is also possible to control the current drawn from the negative side word line. In this case, the operating principle of the circuit is the same as the circuit of FIG. Note that in either example, the constant current source 1 may be a constant voltage source.

発明の効果 以上述べたように本発明によれば、コンデンサや高抵抗
を用いる必要がないので遅延放電回路の占有面積が小さ
くて済む。またPNPNメモリに第6図の等価回路で用
いた場合メモリセルとおなし構造をとるので製作が簡単
であり、かつメモリセル容量に応じて自動的に時定数が
変る利点もある。
Effects of the Invention As described above, according to the present invention, there is no need to use a capacitor or a high resistance, so the area occupied by the delayed discharge circuit can be small. Furthermore, when used in a PNPN memory with the equivalent circuit shown in FIG. 6, the structure is the same as that of a memory cell, so manufacturing is simple, and there is also the advantage that the time constant changes automatically according to the memory cell capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の基本構成を示す説明図、第2図は本発
明の一実施例を示す構成図、第3図は飽和型メモリセル
の一例を示す回路図、第4図は遅延放電特性を示す波形
図、第5図は本発明の他の実施例を示す構成図、第6図
は本発明の他の実施例を示す構成図である。 図中、W1〜Wnは正側のワード線、C1〜Cnは負側
のワード線、MC+〜MCnばメモリセル、Qll ”
 Q InはPNPI−ランリスタ、C2,〜Q 2 
nはNPN l−ランリスタ、R+〜Rn、D+〜Dn
はレヘルシフト用の素子、■は定電流源、71〜7nは
遅延放電回路要素である。 出願人 富士通株式会社 代理人弁理士  青  柳    稔 第1図 第2図 第:1図   第4図 第5図
Fig. 1 is an explanatory diagram showing the basic configuration of the present invention, Fig. 2 is a block diagram showing an embodiment of the invention, Fig. 3 is a circuit diagram showing an example of a saturation type memory cell, and Fig. 4 is a delayed discharge diagram. FIG. 5 is a waveform diagram showing characteristics, FIG. 5 is a block diagram showing another embodiment of the present invention, and FIG. 6 is a block diagram showing another embodiment of the present invention. In the figure, W1 to Wn are positive word lines, C1 to Cn are negative word lines, MC+ to MCn are memory cells, and Qll"
Q In is PNPI-run lister, C2, ~Q 2
n is NPN l-run lister, R+~Rn, D+~Dn
1 is a level shift element, 2 is a constant current source, and 71 to 7n are delayed discharge circuit elements. Applicant Fujitsu Ltd. Representative Patent Attorney Minoru Aoyagi Figure 1 Figure 2 Figure 1 Figure 4 Figure 5

Claims (1)

【特許請求の範囲】[Claims] スタティック型メモリセルが接続されるワード線対に接
続され、該ワード線対の選択から非選択への移行時に該
ワード線の電位を細割的に低下させる遅延放電回路であ
って、高電位側ワード線にレベルシフト素子を介してエ
ミッタが接続されたPNP l−ランジスタ、該PNP
 )ランジスタのコレクタおよびベースにそれぞれベー
スおよび第1のコレクタが接続され第2のコレクタ又は
第2のエミッタが低電位側ワード線に接続されたNPN
トランジスタ、および該N P N’ )ランジスタの
エミッタに接続されて該トランジスタにワード線放電電
流を流させる定電流源または定電圧源を備えて成ること
を特徴とするワード線の遅延放電回路。
A delayed discharge circuit that is connected to a word line pair to which a static memory cell is connected, and that lowers the potential of the word line in small steps when the word line pair is transitioned from selection to non-selection, and is connected to a high potential side. A PNP l-transistor whose emitter is connected to the word line via a level shift element, the PNP
) NPN whose base and first collector are connected to the collector and base of the transistor, respectively, and whose second collector or second emitter is connected to the low potential side word line.
1. A word line delayed discharge circuit comprising: a transistor; and a constant current source or constant voltage source connected to the emitter of the N P N' transistor to cause a word line discharge current to flow through the transistor.
JP57116055A 1982-07-02 1982-07-02 Delay discharge circuit Granted JPS598191A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP57116055A JPS598191A (en) 1982-07-02 1982-07-02 Delay discharge circuit
EP83303859A EP0100160B1 (en) 1982-07-02 1983-07-01 Semiconductor memory devices with word line discharging circuits
US06/510,349 US4604728A (en) 1982-07-02 1983-07-01 Semiconductor memory device
DE8383303859T DE3380543D1 (en) 1982-07-02 1983-07-01 Semiconductor memory devices with word line discharging circuits

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57116055A JPS598191A (en) 1982-07-02 1982-07-02 Delay discharge circuit

Publications (2)

Publication Number Publication Date
JPS598191A true JPS598191A (en) 1984-01-17
JPH0156473B2 JPH0156473B2 (en) 1989-11-30

Family

ID=14677581

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57116055A Granted JPS598191A (en) 1982-07-02 1982-07-02 Delay discharge circuit

Country Status (1)

Country Link
JP (1) JPS598191A (en)

Also Published As

Publication number Publication date
JPH0156473B2 (en) 1989-11-30

Similar Documents

Publication Publication Date Title
US4322820A (en) Semiconductor integrated circuit device
DE4121445C2 (en) Memory cell with bipolar transistors and method for writing and reading data
US4369502A (en) Semiconductor memory circuit
US4604728A (en) Semiconductor memory device
US4769785A (en) Writing speed of SCR-based memory cells
US4373195A (en) Semiconductor integrated circuit device
JPS598191A (en) Delay discharge circuit
JPH0758897B2 (en) Switching stage
JPH0156472B2 (en)
IE53338B1 (en) Field programmable device
US4398268A (en) Semiconductor integrated circuit device
US4456979A (en) Static semiconductor memory device
KR910002502B1 (en) Memory circuit with sereal variable clamp type memory cell
US4922455A (en) Memory cell with active device for saturation capacitance discharge prior to writing
US4413191A (en) Array word line driver system
US4922411A (en) Memory cell circuit with supplemental current
US4899311A (en) Clamping sense amplifier for bipolar ram
JPS593965A (en) Semiconductor memory device
US4701882A (en) Bipolar RAM cell
KR850001869B1 (en) Decorder circuit
US5383153A (en) Semiconductor memory device with flash-clear function
JPS6228515B2 (en)
JPS6245635B2 (en)
JPS5856283A (en) Word line discharging circuit of semiconductor storage device
JPS6249677B2 (en)