JPS5981849A - Beam irradiator for charged particle - Google Patents

Beam irradiator for charged particle

Info

Publication number
JPS5981849A
JPS5981849A JP57191586A JP19158682A JPS5981849A JP S5981849 A JPS5981849 A JP S5981849A JP 57191586 A JP57191586 A JP 57191586A JP 19158682 A JP19158682 A JP 19158682A JP S5981849 A JPS5981849 A JP S5981849A
Authority
JP
Japan
Prior art keywords
diaphragm
aperture
objective
charged particle
small aperture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57191586A
Other languages
Japanese (ja)
Other versions
JPH0463504B2 (en
Inventor
Hiroyoshi Soejima
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Shimazu Seisakusho KK
Original Assignee
Shimadzu Corp
Shimazu Seisakusho KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp, Shimazu Seisakusho KK filed Critical Shimadzu Corp
Priority to JP57191586A priority Critical patent/JPS5981849A/en
Publication of JPS5981849A publication Critical patent/JPS5981849A/en
Publication of JPH0463504B2 publication Critical patent/JPH0463504B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/02Details
    • H01J37/04Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement, ion-optical arrangement
    • H01J37/09Diaphragms; Shields associated with electron or ion-optical arrangements; Compensation of disturbing fields

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Electron Beam Exposure (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

PURPOSE:To make a beam diametral characteristic selectable in a state of being desired as well as to simplify the changeover control of a diaphragm aperture, by securing a large aperture diaphragm upon rigid positional adjustment, while making a small aperture diaphragm free of going in and out at will. CONSTITUTION:Requirements for making an objective diaphragm turn to a small aperture is the case alone that one wants to secure the high resolution image of a sample surface by the secondary electron emitted out of a sample, in general so that positional slippage in the objective diaphragm toward an optical axis is inconsiderable indeed. Therefore, although positional adjustment in case of using the small aperture diaphragm is required, it is enough to merely use a positioning stopper at the most. A large aperture objective diaphragm B is secured upon rigid positional adjustment in time of assembling a beam irradiator for charged particle. A small aperture objective diaphragm B2 is made to be free of going in and out in a direction at a right angle to the optical axis and can be controlled from the outside of a vacuum device's wall and its positioning in time of application takes place in a way of hitting the stopper. For your information, the small aperture diaphragm B2 may be situated at the lower side of the large aperture diaphragm B, if necessary, but the nearer to an objective lens L2 the smaller in the influence of positional errors.

Description

【発明の詳細な説明】 本発明は電子線マイクロアナライザとか走査型電子顕微
鏡のような荷電粒子ビームを試料面に収束させて照射す
る型の分析装置に関し、特にその対物絞りの紋り口径可
変装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an analytical device such as an electron beam microanalyzer or a scanning electron microscope that converges and irradiates a charged particle beam onto a sample surface, and particularly relates to an objective aperture variable aperture device thereof. It is related to.

上述した荷電粒子ビーム照射装置では通常大口径絞りを
用いており、特に高分解能を得る必要がある場合に小口
後絞シを用いる。試料上には、荷電粒子線源の縮小像が
形成されておシ、分析の位置的分解能はこの縮小像の大
きさによって決まる。
The above-mentioned charged particle beam irradiation apparatus usually uses a large aperture aperture, and particularly uses a rear aperture aperture when it is necessary to obtain high resolution. A reduced image of the charged particle beam source is formed on the sample, and the positional resolution of the analysis is determined by the size of this reduced image.

縮小像の大きさは電子(或はイオン)光学系の縮小率に
よって決まるのであるが、絞り[1径が大きい場合は光
学系の収差の影響で近軸領域に関する縮小率を上げても
試料上のビーム径は成る限度以上には小さくできない。
The size of the reduced image is determined by the reduction ratio of the electron (or ion) optical system, but if the diameter of the aperture is large, even if the reduction ratio in the paraxial region is increased due to the aberration of the optical system, The beam diameter cannot be made smaller than the limit.

そこでより高い分解能が要求されるときに小口径絞りを
用いることになる0 上述したような理由で絞り口径の変更が行われるのであ
るが、従来は大小複数種類の口径の絞りを交換すること
によって絞り口径を変えていた。
Therefore, when higher resolution is required, a small aperture aperture is used.The aperture aperture is changed for the reasons mentioned above, but in the past, it was done by replacing apertures of multiple sizes, small and large. I was changing the aperture diameter.

しかしこの方式によると大口径絞りに切換えだときも小
口径絞りに切換えだときも一々絞りの光軸合せが必要で
あり、絞り切換え操作は大へん煩雑であった。しかも通
常用いられる大口径絞りにおいて位置調整のわづかな不
充分さが後述するように装置性能に大きく悪影響を与え
るのである。
However, according to this method, it is necessary to align the optical axes of the apertures each time the aperture is switched to a large aperture aperture or to a small aperture aperture, and the aperture switching operation is extremely complicated. Furthermore, even slight insufficiency in position adjustment in commonly used large-diameter apertures has a large negative impact on device performance, as will be described later.

本発明は荷電粒子ビーム照射装置の絞p D径切換えに
関する上述した問題を解決することを目的としてなされ
た。
The present invention has been made with the object of solving the above-mentioned problems regarding switching the aperture pD diameter of a charged particle beam irradiation device.

本発明は大口径絞りを厳密に位置徊整した上で固定し、
小口後絞シを出入自在にすることによって絞り口径切換
えに関する前記問題を解消した。
The present invention secures a large-diameter diaphragm after precisely positioning it,
By making the fore-end rear aperture freely removable and removable, the above-mentioned problem regarding aperture diameter switching has been solved.

大口径絞りは固定されているが、小口径絞りを゛光軸上
に進出させたときは大口径絞りは小口径絞りによりカバ
ーされてし寸うから大口径絞りはないのと同じであり、
小口径絞りを光軸上から退出させれば大口径絞シは固定
されだま\であるから、位置調整の必要なしに大口径絞
シに切換えられたことになる。
The large-diameter diaphragm is fixed, but when the small-diameter diaphragm is moved onto the optical axis, the large-diameter diaphragm is covered by the small-diameter diaphragm, so it is the same as if there is no large-diameter diaphragm.
If the small diameter diaphragm is removed from the optical axis, the large diameter diaphragm remains fixed, so it is possible to switch to the large diameter diaphragm without the need for position adjustment.

本発明によるときは、大口径絞9は固定されているから
絞り口径切換えに伴う位置調整は全く不要であり、かつ
位置のわづかなずれによる性能低下の問題もない。他方
小口径絞りは可動であるので小口径絞りを用いる表きは
位置調整が必要であるが、小口径絞りを用いるのは特に
高分解能を望1よ む場合であって、通常用いられるのメ大ロ径絞9小口径
絞#)便用の場合に位置調整の労を費やしても荷電粒子
ビーム照射装置の操作性の評価をさ程下げるものではな
く、それに比し小口径から通常用いる大口径絞りに戻し
だとき全く位置調整の必要がないと云うことの操作性の
上での有利さは、大口径絞りの方が位置のずれの悪影響
が大きいだけに、遥かに大きいのである。
According to the present invention, since the large-diameter diaphragm 9 is fixed, there is no need for any position adjustment associated with switching the aperture diameter, and there is no problem of performance deterioration due to slight positional deviation. On the other hand, since the small diameter diaphragm is movable, it is necessary to adjust its position when using the small diameter diaphragm.However, the small diameter diaphragm is used especially when high resolution is desired, and the normally used large diameter diaphragm is used. B-diameter diaphragm 9 Small-diameter diaphragm #) Even if it takes a lot of effort to adjust the position for convenience, it does not significantly reduce the operability of the charged particle beam irradiation device. The advantage in terms of operability that there is no need to adjust the position when returning to the diaphragm is far greater because large-diameter diaphragms are more susceptible to misalignment.

更に本発明を詳説する。第1図は荷電粒子ビーム照射装
置の一般的な構成を示す。Gは電子銃等の荷電粒子線源
装置、Ll−はコンデンサレンズ、L2は対物レンズで
Sは試料である。CはX線分光用凹面彎曲結晶、DはX
線検出器であり、試料Sのビーム照射点O2分光結晶C
の中心、X線検出器りの前面スリットの3点が一つのロ
ーランド置敷上に位置するようにC,Dが配置されて荷
電粒子照射によって試料から放射されるX線の分光を行
う。Pは試料から放出される2次電子を検出する検出器
である。コンデンサレンズL1は荷電粒子線源の縮小像
をaに形成し、対物レンズL2は像aの縮小像を試料S
上に形成している。Bが対物絞りである。この構成でコ
ンデンサレンズL1の焦点距離を変えると像aの位置が
」二下に移動し、焦点距離を長くして像aを絞りBに近
づける程、絞りBによってカットされるビーム流が減小
して試料照射ビーム電流が゛(+、’+、’i加する。
The present invention will be further explained in detail. FIG. 1 shows the general configuration of a charged particle beam irradiation device. G is a charged particle beam source device such as an electron gun, Ll- is a condenser lens, L2 is an objective lens, and S is a sample. C is a concave curved crystal for X-ray spectroscopy, D is X
It is a beam detector, and the beam irradiation point O2 spectroscopic crystal C of the sample S
C and D are arranged so that the center of the X-ray detector and the front slit of the X-ray detector are located on one Roland mounting plate, and spectroscopy of X-rays emitted from the sample by charged particle irradiation is performed. P is a detector that detects secondary electrons emitted from the sample. The condenser lens L1 forms a reduced image of the charged particle beam source on a, and the objective lens L2 forms a reduced image of the image a on the sample S.
formed on top. B is the objective aperture. In this configuration, if you change the focal length of condenser lens L1, the position of image a will move downward by 200 degrees, and as the focal length is increased and image a is brought closer to aperture B, the beam flow cut by aperture B will decrease. Then, the sample irradiation beam current is added.

第2図は横軸に試料照射ビー1電流をとシ縦軸に試料面
上のりの場合である。ビーム電流を増すためにコンデン
サレンズLlの焦点距離を長くすると電子(イオン)光
学系の投影縮小率が減小して試料上の線源像が大きくな
るからカーブは右上シとなっている。X線分光分析にお
、いて大きな試料照射ビーム電流を得るため大きな口径
の対物絞りを用いコンデンサレンズの焦点距離を長くす
ると、対物レンズ絞りのわづかな位置のずれによって第
3図に示すように荷電粒子線束が絞りによって部分的に
カットされて線束断面が真円でなくなり、まだ投影縮小
率が小さくなっているので、線源側の位置ずれが余シ縮
小されることなく試料面上のビーム照射点の位置すれと
なって現れるだめ、第1図に示すような凹面彎曲結晶を
用いる集光型X線分光器のX線焦点ずれを生じ、分析精
度とくに定量精度1.状態分析精度の低下を来たす。第
3図の各部′は第1図と同じ符号が付してあり、この図
は対物絞りBが右方にずれて七ソトされた状態を示して
いる。荷電粒子線のうち点線で示すものはコンデンサレ
ンズLlのパワーを−にばて投影縮小率を一1=げビー
ム電流を絞った状態で、実線で示し7だ荷電粒子線が大
ビーム電流を得るためコンデンサレンズLlのパワーを
下げた状態を示している。対物絞5Bが右方にずれてい
るため荷電粒子線束の光軸から左側の一部がカットされ
、右側では絞りBが全く効いていない。例えば、最大ビ
ーム電流を得る場合を考えると、コンデンサレンズのパ
ワーを下げ収束点aが対物絞りの付近に位置するように
するが、このとき、対物絞り(犬[」径対物絞り)の径
を300 p mとすると、絞り位置が横へ150μm
ずれると収束点が絞りの縁に乗ってしまってビーム電流
が殆んどカットされてしまうような状態になる。しかも
150 /1m程度の絞り位f6の機械的なずれは現実
的に起り得るものである。対物レンズ(第3図では見え
ていない)に収差がなければビー1、断面が光軸を中心
とする真円でなくなっても試料面上のビーム照射点の位
置も形も変シは生じないが、絞り口径を犬にして対物レ
ンズの収差が無視できない状況ではビームが光軸に対麦 し非対称であると収〆も光軸に対し非対称で試料上の実
効的なビーム照射点は光軸との交点からずれだものとな
る。
FIG. 2 shows the case where the horizontal axis represents the sample irradiation beam 1 current and the vertical axis represents the upward slope of the sample surface. When the focal length of the condenser lens Ll is lengthened in order to increase the beam current, the projection reduction ratio of the electron (ion) optical system decreases and the source image on the sample becomes larger, so the curve is in the upper right corner. In X-ray spectroscopy, when a large aperture objective aperture is used and the focal length of the condenser lens is lengthened in order to obtain a large sample irradiation beam current, a slight shift in the position of the objective lens aperture causes a phenomenon as shown in Figure 3. The charged particle beam is partially cut by the aperture, and the cross section of the beam is no longer a perfect circle, and the projection reduction ratio is still small. This appears as a misalignment of the irradiation point, which causes a shift in the X-ray focus of a concentrating X-ray spectrometer using a concave curved crystal as shown in Fig. 1, which impairs analytical accuracy, especially quantitative accuracy. This results in a decrease in condition analysis accuracy. Each part' in FIG. 3 is given the same reference numeral as in FIG. 1, and this figure shows a state in which the objective diaphragm B has been shifted to the right and has been rotated seven degrees. The charged particle beam shown by the dotted line is shown by the solid line when the power of the condenser lens Ll is set to −1 to reduce the projection reduction ratio by 1, and the beam current is narrowed down to 7. The charged particle beam shown by the solid line obtains a large beam current. Therefore, the power of the condenser lens Ll is lowered. Since the objective diaphragm 5B is shifted to the right, a part of the left side from the optical axis of the charged particle beam is cut off, and the diaphragm B is not effective at all on the right side. For example, to obtain the maximum beam current, the power of the condenser lens is lowered so that the convergence point a is located near the objective aperture, but at this time, the diameter of the objective aperture (dog-diameter objective aperture) is If it is 300 p m, the aperture position will be 150 μm laterally.
If it deviates, the convergence point will be on the edge of the aperture, and most of the beam current will be cut off. Moreover, a mechanical deviation of the aperture position f6 of about 150/1 m can realistically occur. If there is no aberration in the objective lens (not visible in Figure 3), there will be no change in the position or shape of the beam irradiation point on the sample surface even if the cross section is no longer a perfect circle centered on the optical axis. However, in situations where the aperture aperture is set to 100 mm and the aberration of the objective lens cannot be ignored, if the beam is asymmetrical with respect to the optical axis, the convergence will also be asymmetrical with respect to the optical axis, and the effective beam irradiation point on the sample will be aligned with the optical axis. It will be shifted from the intersection with .

上述したように対物絞りの口径が犬である場合には絞り
の光軸と直角の方向の位置ずれによって色々な悪影響が
出るので、位置精度の要求が高い。
As mentioned above, when the objective diaphragm has a dog-shaped aperture, positional deviation in the direction perpendicular to the optical axis of the diaphragm causes various adverse effects, so there is a high requirement for positional accuracy.

反対に対物絞りを小口径にするのは一般的に試料から放
出される2次電子による試料面の高分解能の映像を得た
い場合であり、2次電子検出方法は集光型X線分光器が
X線発生点の位置変化に対し敏感であるのと異って、2
次電子発生点の移動の影響は受けない上、高分解能を得
るだめ光学系の投影縮小率を大きくしているので線源側
の位置ずれも縮小されており、対物絞シの光軸方向の位
置ずれは殆んど問題にしなくてもよい。従って小口径絞
りを用いる場合の位置調整と云っても、位置決め用スト
ッパーを利用する程度でも充分である。
On the other hand, the objective aperture is generally set to a small diameter when it is desired to obtain a high-resolution image of the sample surface using secondary electrons emitted from the sample, and the secondary electron detection method is a condensing X-ray spectrometer. is sensitive to changes in the position of the X-ray generation point, whereas 2
In addition to being unaffected by the movement of the secondary electron generation point, the projection reduction ratio of the optical system is increased in order to obtain high resolution, so the positional deviation on the source side is also reduced, and the positional deviation of the objective diaphragm in the optical axis direction is reduced. Misalignment does not need to be a problem. Therefore, when using a small-diameter diaphragm, it is sufficient to use a positioning stopper for position adjustment.

第4図は本発明の一実施例の要部を示す。Llはコンデ
ンサレンズ、B2は対物レンズで、B1′は大口径対物
絞シ、B2は小]コ径対物絞シである。
FIG. 4 shows a main part of an embodiment of the present invention. Ll is a condenser lens, B2 is an objective lens, B1' is a large diameter objective diaphragm, and B2 is a small diameter objective diaphragm.

B1は荷電粒子ビーム照射装置の組立時に厳密に位置調
整して固定する。B2は光軸と直角方向に出入自在で装
置の真空器壁の外から操作することができ、ストッパー
fIに当接させることで使用時の位置決めがなされる。
B1 is precisely positioned and fixed during assembly of the charged particle beam irradiation device. B2 can be freely moved in and out in a direction perpendicular to the optical axis and can be operated from outside the wall of the vacuum chamber of the apparatus, and is positioned during use by bringing it into contact with the stopper fI.

図は小口径絞りB2を使っている状態を示している。こ
の実施例では小口径絞9B2は大口径絞りB1の上側に
配置されているが、これは下側でもよく、対物レンズに
近い方が位置の誤差の影響はより一層小さくなる。
The figure shows a state in which a small diameter aperture B2 is used. In this embodiment, the small diameter diaphragm 9B2 is placed above the large diameter diaphragm B1, but it may be placed below, and the influence of positional errors will be further reduced if it is closer to the objective lens.

また大口径対物絞りB1も対物レンズL2の上方に位置
しているが、この絞シも対物レンズに近づけ、或は固定
されるものであるから、対物レンズL2の中に設置して
もよい。
Further, the large-diameter objective diaphragm B1 is also located above the objective lens L2, but since this diaphragm is also placed close to the objective lens or is fixed, it may be placed inside the objective lens L2.

本発゛明によれば、荷電粒子照射装置を走査型電子顕微
鏡として用いる場合、X線マイクロアナラ用法における
切換え操作が大へん簡単化されることになる。
According to the present invention, when the charged particle irradiation device is used as a scanning electron microscope, the switching operation in the X-ray microanalyzer usage is greatly simplified.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は荷電粒子照射装置の一般的な構成を示す側面図
、第2図は最小ビーム径とビーム電流との関係を示すグ
ラフ、第3図は荷電粒子線束と絞りとの位置関係を示す
側面図、第4図は本発明の一実施例の側面図である。 G・・・荷電粒子線源装置、Ll・・・コンデンサレン
ズ、B2・・・対物レンズ、B・・・対物絞り、B1・
・・大口径対物絞9、B2・・・小口径対物絞シ、S・
・・試料、C・・・X線分光用凹面彎曲結晶、D・・・
X線検出器、P・・・2次電子検出器。 代理人 弁理士  縣   浩  介
Fig. 1 is a side view showing the general configuration of a charged particle irradiation device, Fig. 2 is a graph showing the relationship between the minimum beam diameter and beam current, and Fig. 3 is a graph showing the positional relationship between the charged particle beam flux and the aperture. Side View FIG. 4 is a side view of one embodiment of the present invention. G...Charged particle beam source device, Ll...Condenser lens, B2...Objective lens, B...Objective aperture, B1...
...Large diameter objective aperture 9, B2...Small diameter objective aperture, S.
...Sample, C...Concave curved crystal for X-ray spectroscopy, D...
X-ray detector, P... secondary electron detector. Agent Patent Attorney Kosuke Agata

Claims (1)

【特許請求の範囲】[Claims] 大口径対物絞りを固定し、小口径対物絞りを同一光軸−
Fに出入自在に取付けだことを特徴とする荷電粒子ビー
ム照射装置。
Fix the large-diameter objective diaphragm and set the small-diameter objective diaphragm on the same optical axis.
A charged particle beam irradiation device characterized in that it can be installed in and out of F.
JP57191586A 1982-10-30 1982-10-30 Beam irradiator for charged particle Granted JPS5981849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57191586A JPS5981849A (en) 1982-10-30 1982-10-30 Beam irradiator for charged particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57191586A JPS5981849A (en) 1982-10-30 1982-10-30 Beam irradiator for charged particle

Publications (2)

Publication Number Publication Date
JPS5981849A true JPS5981849A (en) 1984-05-11
JPH0463504B2 JPH0463504B2 (en) 1992-10-12

Family

ID=16277104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57191586A Granted JPS5981849A (en) 1982-10-30 1982-10-30 Beam irradiator for charged particle

Country Status (1)

Country Link
JP (1) JPS5981849A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100252A (en) * 1988-10-07 1990-04-12 Jeol Ltd Opening angle control device in electron beam device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366157U (en) * 1976-11-08 1978-06-03
JPS56143645A (en) * 1980-04-09 1981-11-09 Hitachi Ltd Locking angle setting device of scanning electron microscope

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366157U (en) * 1976-11-08 1978-06-03
JPS56143645A (en) * 1980-04-09 1981-11-09 Hitachi Ltd Locking angle setting device of scanning electron microscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100252A (en) * 1988-10-07 1990-04-12 Jeol Ltd Opening angle control device in electron beam device

Also Published As

Publication number Publication date
JPH0463504B2 (en) 1992-10-12

Similar Documents

Publication Publication Date Title
JP5899033B2 (en) Astigmatism correction of TEM without distortion
JPH04242060A (en) Reflecting electronic microscope
JPS6180744A (en) Ion micro-beam apparatus
JP4523594B2 (en) Particle optics device
JP2001357811A (en) Scanning type charged particle microscope, method of focusing it and method of compensating its astigmatism
JPS5981849A (en) Beam irradiator for charged particle
US4218621A (en) Electron beam exposure apparatus
JPH08195345A (en) Electron beam drawing device
JP3896043B2 (en) Spherical aberration correction device for electron microscope
JP3351647B2 (en) Scanning electron microscope
JPS61294745A (en) Alignment method for charged beam
JPH0414490B2 (en)
JP2000323083A (en) Projection type ion beam machining device
JP2000100364A (en) Charged particle beam transfer device
JP2000156189A (en) Electron beam device and detecting method for shift in electron beam axis
JPH10172497A (en) Electron microscope
SU1307490A2 (en) Method of adjusting electromagnetic probe-forming system
JP2000215842A (en) In situ observation system in composite emission electron microscope
JPS61294750A (en) Charged beam lithography equipment
JP2000011934A (en) Mapping type electron microscope
JPS58119146A (en) Electron microscope
JPS5840527Y2 (en) Magnetic shielding device for X-ray microanalyzer
JPS63141248A (en) Electron beam exposing device
JP2005310512A (en) Electron optical system and electron microscope
JPS6029187B2 (en) electronic microscope