JPS598172B2 - Powder transfer method and device - Google Patents

Powder transfer method and device

Info

Publication number
JPS598172B2
JPS598172B2 JP6347277A JP6347277A JPS598172B2 JP S598172 B2 JPS598172 B2 JP S598172B2 JP 6347277 A JP6347277 A JP 6347277A JP 6347277 A JP6347277 A JP 6347277A JP S598172 B2 JPS598172 B2 JP S598172B2
Authority
JP
Japan
Prior art keywords
powder
granular material
container
pipe
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6347277A
Other languages
Japanese (ja)
Other versions
JPS54352A (en
Inventor
進 吉岡
知彦 宮本
仁一 戸室
武夫 山形
瑞穂 平戸
敬尭 小栗
規博 木内
誠一 内田
義仁 里見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Eneos Corp
Original Assignee
Hitachi Ltd
Nippon Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd, Nippon Mining Co Ltd filed Critical Hitachi Ltd
Priority to JP6347277A priority Critical patent/JPS598172B2/en
Publication of JPS54352A publication Critical patent/JPS54352A/en
Publication of JPS598172B2 publication Critical patent/JPS598172B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Feeding, Discharge, Calcimining, Fusing, And Gas-Generation Devices (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Air Transport Of Granular Materials (AREA)
  • Auxiliary Methods And Devices For Loading And Unloading (AREA)

Description

【発明の詳細な説明】 本発明は粉粒体の移送方法および装置、特に、加圧状態
の容器からその圧力を保持しながら、容器内の粉粒体を
他の低圧状態の容器に連続的に移送する方法および装置
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method and apparatus for transferring powder or granular material, and in particular, to a method and apparatus for transferring powder or granular material, particularly for transferring powder or granular material from a container under pressure to another container under low pressure while maintaining the pressure. The present invention relates to a method and an apparatus for transporting.

粉粒体を取扱う各種工業プロセスにおいては、粉粒体を
一定の場所から他の一定の場所に所定の移送速度で移送
する手段が必ず用いられている。
BACKGROUND ART In various industrial processes that handle powder and granular materials, means are always used to transport the powder and granular materials from one fixed location to another fixed location at a predetermined transfer speed.

これらの移送において、移送側と被移送側との圧力が等
しい場合には、粉粒体の移送量のみを考慮すればよいが
、両者の圧力が異なる場合には、圧力の高い側のガス圧
力をシールして両者間にガス体の流れをなくし、目的の
粉粒体のみを移動することが必要となる。
In these transfers, if the pressures on the transfer side and the transferred side are equal, only the amount of powder or granular material transferred needs to be considered, but if the pressures on the two sides are different, the gas pressure on the side with higher pressure should be considered. It is necessary to seal the two to eliminate the flow of gas between the two and to move only the desired powder or granular material.

たとえば、石油工業においては、流動層反応塔を用いて
減圧残油等の重質油を高温触媒粒子と接触させて分解し
、軽質化および脱金属するプロセスの開発が試みられて
いるが、このプロセスにおいては、副生ずるコークスは
触媒粒子上に析出して触媒活性を低下せしめるので、触
媒粒子を析出コークスとともに流動層再生塔に移送して
空気によってコークスを燃焼、除去して触媒を再生し、
再び流動層反応塔に移送して重質油と接触させている。
For example, in the petroleum industry, attempts have been made to develop a process that uses a fluidized bed reaction tower to decompose heavy oil such as vacuum residue by contacting it with high-temperature catalyst particles, making it lighter and removing metals. In the process, by-product coke precipitates on the catalyst particles and reduces the catalyst activity, so the catalyst particles are transferred together with the precipitated coke to a fluidized bed regeneration tower, the coke is burned and removed by air, and the catalyst is regenerated.
It is transferred again to the fluidized bed reaction tower and brought into contact with heavy oil.

このプロセスにおいて、流動層反応塔は、これに続く蒸
留塔などのプロセスに要する圧力を考慮して加圧状態で
運転される。
In this process, the fluidized bed reaction tower is operated under pressure in consideration of the pressure required for processes such as the subsequent distillation tower.

一方、流動層再生塔は空気圧縮機の所要動力低減のため
流動層反応塔よりも低圧で運転する方法が試みられてい
る。
On the other hand, attempts have been made to operate the fluidized bed regeneration tower at a lower pressure than the fluidized bed reaction tower in order to reduce the power required for the air compressor.

また、高圧部の流動層反応塔のガス体中には、重質油の
分解によって生成した油蒸気等の炭化水素が高濃度で含
まれ、一方の低圧部の再生塔には空気が供給されている
ので、爆発等の保安上および炭化水素の損失防止上、反
応塔内ガスの再生塔への流れをシールし、さらに、安定
操作の確保のため、反応塔ガス圧力を一定に保持して触
媒粒子を連続的に反応塔から再生塔へ移送しなければな
らない、 一般に、ガス圧力をシールして高圧部から低圧部に粉粒
体を移送する方法には、高圧部と低圧部との間に一定容
量の中間タンクを設け、このタンク内の圧力を高圧部と
低圧部の圧力に交互に切換え、平衡させて移送するロッ
クホッパあるいはブロータンクによる方法がある。
In addition, the gas body of the fluidized bed reaction tower in the high pressure section contains a high concentration of hydrocarbons such as oil vapor generated by decomposition of heavy oil, while air is supplied to the regeneration tower in the low pressure section. Therefore, for safety reasons such as explosions and to prevent loss of hydrocarbons, the flow of gas in the reaction tower to the regeneration tower is sealed, and furthermore, to ensure stable operation, the gas pressure of the reaction tower is maintained constant. Catalyst particles must be continuously transferred from the reaction tower to the regeneration tower. In general, the method of sealing the gas pressure and transferring the powder from the high pressure section to the low pressure section requires a transfer between the high pressure section and the low pressure section. There is a method using a lock hopper or a blow tank, in which an intermediate tank with a fixed capacity is provided, and the pressure in this tank is alternately switched between the pressure in a high pressure part and the pressure in a low pressure part, and the pressure is balanced and transferred.

しかし、これらの方法は粉粒体の移送が不連続であり、
さらに中間タンクに充満した容量分だけのガス体は低圧
部へ移動するので厳密にはガス体はシールされていない
However, these methods require discontinuous transportation of powder and granules;
Furthermore, since the gas body corresponding to the volume filled in the intermediate tank moves to the low pressure section, strictly speaking, the gas body is not sealed.

また、移送機の摺動部の間隙を可能な限り小さくし、あ
るいは小さい間隙を直列に並べてラビリンス効果を利用
して高圧部のガス洩れを最小限に抑えるロータリフイー
ダスクリューフイーダがある。
There is also a rotary feeder screw feeder in which the gap between the sliding parts of the transfer machine is made as small as possible, or small gaps are arranged in series to utilize the labyrinth effect to minimize gas leakage in the high-pressure part.

しかし、一般に、1000〜10000mm水銀柱程度
のシールしか得られず、これ以上のシールのためにはこ
れらの装置を数台使用する必要があり、さらに凝集性、
粘着性の強い粉粒体や、粉砕を避けたい粉粒体の場合に
は、直接摺動面をもつ移送方法は使用不可能の場合が多
い。
However, in general, it is only possible to obtain a seal of about 1,000 to 10,000 mm of mercury, and to seal larger than this, it is necessary to use several of these devices, and in addition, there is a problem with cohesiveness,
In the case of highly adhesive powder or granular material whose pulverization is to be avoided, it is often impossible to use a transfer method with a direct sliding surface.

さらに、上述の重質油の分解プロセスの如く高温の粉粒
体を移送する場合には、軸受けを必要とする回転部を有
するこの神装置は、保全上好まし《ない。
Furthermore, when transferring high-temperature granular materials such as in the above-mentioned heavy oil decomposition process, this device having a rotating part that requires bearings is not preferred from the viewpoint of maintenance.

本発明は、加圧状態の容器の圧力を保持しながら、この
容器内の粉粒体を連続的に低圧容器に移送する方法およ
び装置を提供することを目的とするもので、加圧状態の
第1の容器から、この容器内の圧力より低圧状態の第2
の容器に粉粒体を移送する管路に、第1と第2の容器の
圧力差に応じた長さの移送粉粒体により構成される移動
層を形成し、粉粒体の平均移動速度より高い空管基準の
速度を有するシールガスを粉粒体の移動方向に流すこと
によって、第1容器内の圧力を保持しなから粉粒体を第
2容器内に移送することを第1の特徴とし、一端が高圧
状態の第1の容器に実質的に接続し、他端が低圧状態の
第2の容器に接続し、第1の容器から第2の容器に粉粒
体を移送する装置において、粉粒体の平均移動速度より
高い空管基準の速度を有するシールガスを粉粒体の移動
方向に流すシールガス供給手段と、シールガスにより粉
粒体が充填される充填部と、充填部の低圧側において充
填された粉粒体を流動化せしめる流動化部と、流動化部
により流動化された粉粒体を低圧側に送給する送給部と
を有することを第20特徴とし、これらの充填部、流動
化部および送給部が高圧状態の第1の容器に実質的に接
続し、シールガス供給手段の設けられた第1の配管と、
この配管中の粉粒体移動方向が反転する如く設けられた
第2の配管と、この第2の配管側部に開口するガス流入
口と、この第2の配管の端部に設けられこの第2の配管
中の粉粒体移動方向と同一方向に開口するガス流入口と
よりなるものである。
An object of the present invention is to provide a method and apparatus for continuously transferring powder and granular material in a pressurized container to a low-pressure container while maintaining the pressure in the pressurized container. from the first container to the second container, which has a lower pressure than the pressure in this container.
A moving layer composed of the transported powder and granular material with a length corresponding to the pressure difference between the first and second containers is formed in the pipe line for transferring the powder and granular material to the container, and the average moving speed of the powder and granular material is increased. By flowing a sealing gas having a higher speed based on the empty tube in the direction of movement of the powder or granule, the pressure in the first container is maintained and the powder or granule is transferred into the second container. An apparatus characterized in that one end is substantially connected to a first container in a high pressure state, the other end is connected to a second container in a low pressure state, and for transferring powder or granular material from the first container to the second container. , a sealing gas supply means for flowing a sealing gas having a speed based on an empty tube higher than an average moving speed of the powdery material in the moving direction of the powdery material; a filling section in which the powdery material is filled with the sealing gas; The 20th feature includes a fluidizing section that fluidizes the powder and granular material filled in the low pressure side of the section, and a feeding section that feeds the powder and granular material fluidized by the fluidizing section to the low pressure side. , the filling section, the fluidizing section and the feeding section are substantially connected to a first container in a high pressure state, and a first piping is provided with a sealing gas supply means;
A second pipe provided so that the moving direction of the powder or granular material in the pipe is reversed, a gas inlet opening to the side of the second pipe, and a second pipe provided at the end of the second pipe. It consists of a gas inlet opening in the same direction as the moving direction of the powder and granular material in the piping No. 2.

すなわち、本発明は、充填状態の粉粒体にガスを通じた
時の粉粒体充填層の入口と出口に生じる圧力差を移送状
態の充填層、すなわち、粉粒体の移動層に適用して、移
動層に移送粒子の平均移動速度より高い空管基準の流速
でシールガスを通ずることによって、高圧側の圧力をシ
ールし、連続的に粉粒体の移送を行なうものである。
That is, the present invention applies the pressure difference generated between the inlet and outlet of the packed bed of powder and granules when gas is passed through the packed powder to the packed bed in the transferred state, that is, the moving bed of the powder and granules. By passing a seal gas through the moving bed at a flow rate based on an empty tube that is higher than the average moving speed of the particles to be transferred, the pressure on the high pressure side is sealed and the powder and granules are continuously transferred.

粉粒体の移動層に、平均粒子移動速度より高い空管基準
の速度で、粒子と同一方向にガスを通じた時の移動層出
入口の圧力損失は、粉粒体の物理性状、シールガスの性
状および移動層長等との間に次のような関係がある。
When gas is passed through the moving bed of powder and granular material in the same direction as the particles at a speed based on an empty tube that is higher than the average particle moving speed, the pressure loss at the entrance and exit of the moving bed is determined by the physical properties of the powder and the properties of the sealing gas. The following relationship exists between the moving layer length and the moving layer length, etc.

ここで、 ΔP:圧力損失 Ug :空管基準のシールガス速度(m/s)U,:粉
粒体の移動速度(m/s) 7g :シールガスの粘度(Iy−s/m)D,:粉粒
体の平均粒径(71t) φ8 :粉粒体の形成係数(−) ε :粉粒体移動層の空隙率(一) L :移動層の長さ(771) この式の圧力損失ΔPが移動層によってシール可能な圧
力差( kg/ m )となる。
Here, ΔP: Pressure loss Ug: Sealing gas velocity based on empty tube (m/s) U,: Moving speed of powder (m/s) 7g: Viscosity of sealing gas (Iy-s/m) D, : Average particle diameter of powder (71t) φ8 : Formation coefficient of powder (-) ε : Porosity of powder moving layer (1) L : Length of moving layer (771) Pressure loss in this equation ΔP becomes the pressure difference (kg/m) that can be sealed by the moving layer.

従って、この式より明らかな如く、粉粒体の物理的性状
が同一の場合、粉粒体の移動速度とシールガスの空管基
準速度との差Ug−U,と移動層の長さLを変化させる
ことによって、任意の圧力差をシールすることができる
Therefore, as is clear from this equation, when the physical properties of the powder and granule are the same, the difference Ug-U between the moving speed of the powder and the empty tube reference speed of the seal gas and the length L of the moving layer are By varying it, any pressure differential can be sealed.

また、この式における粒子速度とシールガス速度の相対
速度Ug−U,の実現、すなわち、シールガス速度より
低い粉粒体移動速度を保持するには、シールガスの流れ
にさからって粉粒体移動速度を所望の値に制御する手段
が必要であるが、前述の如く、ロータリフイーダあるい
はスクリューフイダー等は、凝集性、粘着性の強い粉粒
体や粉砕を避けたい粉粒体には用いることができない。
In addition, in order to realize the relative velocity Ug-U between the particle velocity and the sealing gas velocity in this equation, that is, to maintain a powder moving velocity lower than the sealing gas velocity, it is necessary to move the powder against the flow of the sealing gas. A means to control the body movement speed to a desired value is required, but as mentioned above, rotary feeders, screw feeders, etc. are suitable for handling powders with strong cohesiveness and stickiness, and powders that need to be avoided from being crushed. cannot be used.

この問題点を解決するためになされたのが本発明であっ
て、移動層終端部に粉粒体流線の反転領域を設け、これ
によって粉粒体の移動速度を抑えて可変としたものであ
る。
The present invention was developed to solve this problem, and it is possible to provide a reversal region of the powder streamline at the end of the moving bed, thereby suppressing and making the moving speed of the powder variable. be.

以下、実施例を図面によって説明する。Examples will be described below with reference to the drawings.

第1図は、流動層反応塔により減圧残渣油等の重質油を
高温触媒粒子と接触させて分解し、軽質化および脱金属
する重質油の分解プロセスに応用したものである。
FIG. 1 shows an application to a heavy oil decomposition process in which heavy oil such as vacuum residue oil is brought into contact with high-temperature catalyst particles and decomposed using a fluidized bed reaction tower to lighten it and remove metals.

この装置は、反応塔1、再生塔2、ストリッパー3およ
び触媒粒子の移動層移送管4、反転容器5、揚送管6お
よび再生触媒の循環導管7より構成されており、反応塔
1でコークスの析出した触媒粒子はストリッパー3、移
動層移送管4、反転容器5、揚送管6を通して再生塔2
に移送され、移送されたコークスの析出した触媒粒子は
再生塔2中で空気によってコークスを燃焼、除去され再
生触媒として再生触媒の循環導管7により反応塔1に送
られる。
This device is composed of a reaction tower 1, a regeneration tower 2, a stripper 3, a moving bed transfer pipe 4 for catalyst particles, an inversion vessel 5, a lift pipe 6, and a regenerated catalyst circulation pipe 7. The precipitated catalyst particles are passed through a stripper 3, a moving bed transfer pipe 4, an inversion container 5, and a lift pipe 6 to a regeneration tower 2.
The precipitated catalyst particles of the transferred coke are burned and removed by air in the regeneration tower 2, and sent to the reaction tower 1 as a regenerated catalyst through the regenerated catalyst circulation conduit 7.

反応塔1は、触媒粒子によって形成された流動層11を
有し、流動層11の中間部には重質油原料12の供給ノ
ズル13が開口し、流動層11の上面は導管14および
15によってストリッパー3と接続しており、反応塔1
の下部には再生触媒の循環導管7と触媒粒子の流動化ス
チーム16の導入管17が接続され、反応塔1の頂部に
はサイクロン18を介して排出ガス導管19が設置され
ている。
The reaction tower 1 has a fluidized bed 11 formed of catalyst particles, a feed nozzle 13 for heavy oil raw material 12 is opened in the middle part of the fluidized bed 11, and the upper surface of the fluidized bed 11 is connected to the fluidized bed 11 by conduits 14 and 15. Connected to stripper 3, reaction column 1
A circulating conduit 7 for regenerated catalyst and an inlet pipe 17 for fluidizing steam 16 for catalyst particles are connected to the lower part of the reactor 1, and an exhaust gas conduit 19 is installed at the top of the reaction tower 1 via a cyclone 18.

ストリッパー3は、その内部に複数個のバックル31が
設けてあり、その底部は触媒粒子の移動層移送管4およ
びこれにつづく触媒粒子の反転容器5に接続している。
The stripper 3 is provided with a plurality of buckles 31 inside thereof, and the bottom thereof is connected to a moving bed transfer pipe 4 for catalyst particles and a reversing container 5 for catalyst particles following this.

さらに、ストリッパー3には、その底部にストリツピン
グスチーム32の導入管33が移動層移送管4の接続部
より上部の位置に開口している。
Furthermore, the stripper 3 has an introduction pipe 33 for introducing stripping steam 32 at the bottom thereof, which opens at a position above the connecting portion of the moving bed transfer pipe 4.

反転容器5は再生塔2と揚送管6を介して連結され、底
部に触媒粒子の揚送ガス51の導管52が接続されてい
る。
The reversing vessel 5 is connected to the regeneration tower 2 via a pumping pipe 6, and a conduit 52 for a pumping gas 51 of catalyst particles is connected to the bottom.

触媒粒子の揚送管6は、反転容器5内底部まで挿入され
て反転容器5内に触媒粒子の移動層部53と反転部54
を形成し、かつ揚送ガス導管52を揚送管下端で内含す
る形態で環状粒子流路55を形成している。
The catalyst particle lifting pipe 6 is inserted up to the inner bottom of the reversing container 5, and a moving layer portion 53 and an inverting portion 54 of the catalyst particles are inserted into the reversing container 5.
and includes a pumping gas conduit 52 at the lower end of the pumping pipe to form an annular particle flow path 55.

この環状粒子流路55にはこの流路に開口するエアレー
ションガス56の導管57が接続されている。
A conduit 57 for aeration gas 56 is connected to this annular particle flow path 55 and opens into this flow path.

揚送管6を介して反転容器5と連結されている再生塔2
には、触媒粒子が分散板21によって流動層22が形成
され、その底部には再生空気23の導入管24、頂部に
はサイクロン25を介して排出ガス導管26が設置され
ている。
A regeneration tower 2 connected to an inversion container 5 via a lift pipe 6
A fluidized bed 22 is formed of catalyst particles by a dispersion plate 21, and an inlet pipe 24 for regenerating air 23 is installed at the bottom of the fluidized bed 22, and an exhaust gas conduit 26 is installed at the top via a cyclone 25.

このような構成において、反応塔1およびストリッパー
3は、後続プロセスの圧力損失を補なうために加圧状態
で運転され、再生塔2は空気圧縮機動力の低減目的から
低圧状態で運転される。
In such a configuration, the reaction tower 1 and the stripper 3 are operated in a pressurized state to compensate for pressure loss in the subsequent process, and the regeneration tower 2 is operated in a low pressure state for the purpose of reducing the power of the air compressor. .

すなわち、減圧残油等の重質油原料12は、導入管17
から供給される流動化スチーム16によって流動化され
、約500℃の温度に保持されている反応塔1内の流動
層11中に供給ノズル13から供給される。
That is, the heavy oil raw material 12 such as vacuum residual oil is transferred to the inlet pipe 17.
It is fluidized by fluidizing steam 16 supplied from the feed nozzle 13 into the fluidized bed 11 in the reaction tower 1, which is maintained at a temperature of about 500°C.

流動層11に供給された重質油は、流動層11内で分解
し、軽質油等のガス状の分解生成物はサイクロン18で
浮遊触媒粒子を除去した後、導管19を通って後続プロ
セスに送られる。
Heavy oil supplied to the fluidized bed 11 is decomposed within the fluidized bed 11, and gaseous decomposition products such as light oil are passed through a conduit 19 to a subsequent process after removing floating catalyst particles in a cyclone 18. Sent.

一方、流動層11を形成する触媒粒子表面上には、重質
油から副生コークスが析出し、触媒活性が低下する。
On the other hand, by-product coke is deposited from the heavy oil on the surface of the catalyst particles forming the fluidized bed 11, and the catalyst activity is reduced.

このように触媒性能の低下した触媒粒子は再生塔2に移
送して析出したコークスを燃焼、除去する。
The catalyst particles whose catalyst performance has been degraded in this way are transferred to the regeneration tower 2, where the precipitated coke is burned and removed.

この移送のため、コークスの析出した触媒粒子は反応塔
1から導管14を通ってストリッパー3に入り、ここで
、導入管33から供給されるストリツピングスチーム3
2による流動化状態でコークス中の揮発分をストリップ
される。
For this transfer, the coke-deposited catalyst particles enter the stripper 3 from the reaction column 1 through the conduit 14, where they pass through the stripping steam 3 supplied from the inlet pipe 33.
The volatile matter in the coke is stripped in the fluidized state according to 2.

このストリップされた揮発分は、スチームとともに導管
15を通って反応塔1に戻される。
The stripped volatiles are returned to the reaction column 1 through conduit 15 along with steam.

ストリップされたコークスの析出した触媒粒子はストリ
ッパー3の底部から触媒粒子の移動層移送管4に入り、
続いて粒子の反転容器5に入る。
The precipitated catalyst particles of the stripped coke enter the catalyst particle moving bed transfer pipe 4 from the bottom of the stripper 3;
Subsequently, the particles enter an inversion container 5.

移動層移送管4および反転容器5において、触媒粒子は
移動層を形成して降下し、反転容器50反転部54にお
いて触媒粒子は反転して環状粒子流路55を通って揚送
管6に入る。
In the moving bed transfer pipe 4 and the reversing container 5, the catalyst particles form a moving bed and descend, and in the reversing section 54 of the reversing container 50, the catalyst particles are reversed and enter the pumping pipe 6 through the annular particle flow path 55. .

反転部54において触媒粒子の流線が反転するので粒子
の移動速度は抑止され、従って移動層移送管4および反
転容器50粒子層は密な充填状態となり、導入管33か
ら導入されたストリツピングスチーム32の一部がシー
ルガスとして移動層移送管4および反転容器5の移動粒
子層の空隙を、粒子の移動速度より高い流速で通過して
圧力降下を生じ、ストリッパー3および反応塔1を加圧
状態に保持する。
Since the streamlines of the catalyst particles are reversed in the reversing section 54, the moving speed of the particles is suppressed, and therefore the particle layer in the moving bed transfer pipe 4 and the reversing container 50 is in a densely packed state, and the stripping introduced from the introduction pipe 33 is A part of the steam 32 passes as a seal gas through the moving bed transfer pipe 4 and the gap in the moving particle bed of the reversing vessel 5 at a flow rate higher than the movement speed of the particles, causing a pressure drop, and applying pressure to the stripper 3 and the reaction column 1. hold under pressure.

一方、反転部54によって抑止された触媒粒子の流れは
、環状粒子流路55への導管57からのエアレーション
ガス56の供給によって密な充填状態がやぶられ流動化
し、揚送ガス用導管52から供給される揚送ガス51に
よって揚送管6を通って再生塔2に送られる。
On the other hand, the flow of the catalyst particles suppressed by the reversing section 54 is fluidized by the supply of aeration gas 56 from the conduit 57 to the annular particle flow path 55 and is fluidized, and is then supplied from the pumping gas conduit 52. The pumping gas 51 is sent to the regeneration tower 2 through the pumping pipe 6.

揚送管6内の粒子の状態には、希薄層または流動層状態
が採用され、プロセスに応じて選択することができる。
The state of the particles in the lift tube 6 is a dilute bed state or a fluidized bed state, which can be selected depending on the process.

再生塔2に送入されたコークス付着の触媒粒子22は、
導入管24、分散板21を通って供給された再生空気2
3によって約850℃で析出コークスを燃焼、除去およ
び加熱し、再生触媒の循環導管7を通って反応塔1の下
部に循環され、触媒および熱媒体として再使用される。
The coke-adhered catalyst particles 22 sent to the regeneration tower 2 are
Regeneration air 2 supplied through the introduction pipe 24 and the distribution plate 21
3, the precipitated coke is burned off, removed and heated at about 850° C. and recycled through the regenerated catalyst circulation conduit 7 to the lower part of the reaction column 1, where it is reused as catalyst and heat carrier.

再生塔2で発生したガスはサイクロン25、排出ガス導
管26を通って熱交換器等の次工程に導かれる。
The gas generated in the regeneration tower 2 passes through a cyclone 25 and an exhaust gas conduit 26 and is led to the next process such as a heat exchanger.

以下に、この実施例の3種の具体例につき説明する。Three specific examples of this embodiment will be explained below.

(1)移動層移送管4を内径52.9mm、外径60.
5m7ILの管材で構成し、反転容器5を内径67.9
mm、外径76.3mmの管材および内径].2.7m
m、外径17.3mmの揚送管6および内径9.2mm
、外径13.8mmの揚送ガス用導管52および内径2
7.6mm、外径34vanの揚送管下端に続く拡大管
で構成し、ストリッパー3内のストリツピングスチーム
の導入管33の上端より反転容器50反転部54間の距
離Lを2mとする移送装置を第1図の重質油分解装置に
設置した。
(1) The moving bed transfer pipe 4 has an inner diameter of 52.9 mm and an outer diameter of 60 mm.
Constructed of 5m7IL tube material, the inversion container 5 has an inner diameter of 67.9
mm, tubing with an outer diameter of 76.3 mm and an inner diameter]. 2.7m
m, lifting pipe 6 with an outer diameter of 17.3 mm and an inner diameter of 9.2 mm.
, a pumping gas conduit 52 with an outer diameter of 13.8 mm and an inner diameter 2
This transfer is composed of an expanding tube that continues to the lower end of the lifting tube with a diameter of 7.6 mm and an outer diameter of 34 van, and the distance L between the inverting container 50 and the inverting section 54 is 2 m from the upper end of the stripping steam introduction tube 33 in the stripper 3. The device was installed in the heavy oil cracking equipment shown in Figure 1.

そしてこの装置に、平均粒径210μの触媒粒子を全系
に所定量充填した後、揚送ガス用導管52から揚送ガス
として10Nm3/hの空気を供給し、導管57からエ
アレーションガス56として空気を供給して、反応塔1
、再生塔2間に触媒粒子を循環しながら、反応塔1およ
びストリッパー3の圧力を1. 5 kg/iGまで上
げたところ、再生塔圧力は3000mm水柱となり、反
応塔1およびストリッパー3の圧力がシールされた。
After filling the entire system with a predetermined amount of catalyst particles having an average particle size of 210 μm, 10 Nm3/h of air is supplied as the pumping gas from the pumping gas conduit 52, and air is supplied as the aeration gas 56 from the conduit 57. to reactor 1 by supplying
While circulating the catalyst particles between the regeneration tower 2, the pressure of the reaction tower 1 and the stripper 3 is set to 1. When the pressure was increased to 5 kg/iG, the regeneration tower pressure became 3000 mm water column, and the pressures of reaction tower 1 and stripper 3 were sealed.

なお、この時、揚送管6の差圧によって検出された触媒
粒子の循環量は340kg/hであり、推定されたシー
ルガスとしてのストリツピングスチームの揚送管6への
もれ込みは630g/hであった。
At this time, the circulation rate of catalyst particles detected by the differential pressure in the lift pipe 6 was 340 kg/h, and the leakage of stripping steam as seal gas into the lift pipe 6 was estimated to be 340 kg/h. It was 630g/h.

もれ込みスチーム中に含有された炭化水素成分は痕跡程
度で、シールガスはストリツピングスチームの一部がも
れ込んだものであった。
Only traces of hydrocarbon components were contained in the leaked steam, and a portion of the stripping steam leaked into the seal gas.

また、この時、反応塔温度は500゜C、再生塔温度は
850゜Cで運転され、再生塔2から反応塔1への触媒
の循環は再生触媒の循環導管7内の触媒粒子による水頭
差でシールが行なわれた。
At this time, the reaction tower temperature is 500°C and the regeneration tower temperature is 850°C. The seal was held at

(2)前述の(1)と同一装置および同一触媒粒径で、
再生塔2の圧力を3000mm水柱に保持しながら反応
塔1の圧力を2. 5 kg/iGまで上昇したところ
、この反応塔圧力のシールが可能で、触媒循環量360
kg/hにおいて、ス} IJツパー3からの推算もれ
込みスチーム量は1300g/hであった。
(2) Using the same equipment and catalyst particle size as in (1) above,
While maintaining the pressure of the regeneration tower 2 at 3000 mm water column, the pressure of the reaction tower 1 is maintained at 2.0 mm. When the pressure rose to 5 kg/iG, it was possible to seal the reaction tower pressure, and the catalyst circulation amount was 360 kg/iG.
kg/h, the estimated amount of steam leaking from IJ Tupper 3 was 1300 g/h.

なお、この時の反応塔、再生塔の温度条件は(1)の場
合と同一である。
Note that the temperature conditions of the reaction tower and regeneration tower at this time are the same as in the case (1).

(3)前述の(1)と同一形状の装置で第1図の移動層
の長さLを4000r/lmとし、平均粒径490μの
触媒粒子を充填して反応塔1と再生塔20間で粒子を循
環しながら、反応塔圧力を1. 5kg/crltGま
で上昇させた。
(3) Using an apparatus having the same shape as in (1) above, the length L of the moving bed in Fig. 1 is set to 4000 r/lm, and catalyst particles with an average particle size of 490 μ are packed between the reaction column 1 and the regeneration column 20. While circulating the particles, the reaction tower pressure was increased to 1. It was increased to 5 kg/crltG.

この時の再生塔圧力は3500mm水柱となり、触媒循
環量は2 9 0kg7/h、推定もれ込みスチーム量
は1100g/hであった。
At this time, the regeneration tower pressure was 3500 mm water column, the amount of catalyst circulation was 290 kg7/h, and the estimated amount of leaked steam was 1100 g/h.

第2図は、本発明の他の実施例を示すもので、第1図と
同一部分は同一符号で示してあり、第1図の装置と異な
るのは、反転容器5を粉粒体の移動層管路と分離して、
粉粒体の反転だけの機能を持たせたものであり、装置上
の複雑さを少なくすることができる。
FIG. 2 shows another embodiment of the present invention, in which the same parts as in FIG. 1 are denoted by the same reference numerals. Separate from layer pipe,
This device has only the function of reversing the powder and granules, and can reduce the complexity of the device.

このように実施例記載の粉粒体の移送装置は、加圧状態
にある容器中の圧力を保持しながら、容器内の粉粒体を
連続的に低圧状態の容器に移送することができ、かつ移
送時の粉粒休の凝集あるいは粉砕を防ぐことができる。
In this way, the powder or granular material transfer device described in the examples can continuously transfer the powder or granular material in the container to the low-pressure container while maintaining the pressure in the pressurized container. Furthermore, it is possible to prevent agglomeration or pulverization of powder particles during transportation.

以上の如く、本発明の粉粒体の移送方法および装置は、
加圧状態にある容器中の圧力を保持しながら、容器内の
粉粒体を連続的に低圧状態の容器に移送することを可能
としたものであって、工業上の効果大なるものである。
As described above, the method and apparatus for transferring powder and granular materials of the present invention are as follows:
This makes it possible to continuously transfer powder and granules in a container to a container under low pressure while maintaining the pressure in the pressurized container, which has a great industrial effect. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の粉粒体の移送装置の一実施例の断面図
、第2図は同じく他の実施例の要部断面図である。 符号の説明、1・・・・・・反応塔、2・・・・・・再
生塔、3・・・・・・ストリッパー、4・・・・・・移
動層移送管、5・・・・・・反転容器、6・・・・・・
揚送管、7・・・・・・再生触媒の循環導管、52・・
・・・・揚送ガスの導管、53・・・・・・移動層部、
54・・・・・・反転部、55・・・・・・環状粒子流
路、57・・・・・・エアレーションガスの導管。
FIG. 1 is a sectional view of one embodiment of a powder transfer device of the present invention, and FIG. 2 is a sectional view of a main part of another embodiment. Explanation of symbols: 1... Reaction tower, 2... Regeneration tower, 3... Stripper, 4... Moving bed transfer tube, 5...・・Inversion container, 6・・・・・
Lifting pipe, 7...Regenerated catalyst circulation pipe, 52...
... Pumping gas conduit, 53 ... Moving layer section,
54... Reversing section, 55... Annular particle flow path, 57... Aeration gas conduit.

Claims (1)

【特許請求の範囲】 1 加圧状態の第1の容器から、該容器内の圧力より低
圧状態の第2の容器に粉粒体を移送する管路に、前記第
1と第2の容器の圧力差に応じた長さの前記移送粉粒体
により構成される移動層を形成し、前記粉粒体の平均移
動速度より高い空管基準の速度を有するシールガスを前
記粉粒体の移動方向に流すことによって、前記第1容器
内の圧力を保持しなから粉粒体を前記第2容器に移送す
ることを特徴とする粉粒体の移送方法。 2 前記移動層の形成が前記曽路の低圧側において粉粒
体を反転移動せしめることにより行なわれる特許請求の
範囲第1項記載の粉粒体の移送方法。 3 一端が高圧状態の第1の容器に実質的に接続し、他
端が低圧状態の第2の容器に接続し、第1の容器から第
2の容器に粉粒体を移送する装置において、該粉粒体の
平均移動速度より高い空管基準の速度を有するシールガ
スを前記粉粒体の移動方向に流すシールガス供給手段と
、前記シールガスにより粉粒体が充填される充填部と、
該充填部の低圧側において、前記の充填された粉粒体を
流動化せしめる流動化部と、該流動化部にて流動化され
た粉粒体を低圧側に送給する送給部とを有することを特
徴とする粉粒体の移送装置。 4 前記充填部、流動化部および送給部が前記の高圧状
態の第1の容器に実質的に接続し、前記シールガス供給
手段の設けられた第1の配管と、該配管中の粉粒体移動
方向が反転する如く設けられた第2の配管と、該第2の
配管側部に開口するガス流入口と、配管の端部に設けら
れ、該第2の配管中の粉粒体移動方向と同一方向に開口
するガス流入口とよりなる特許請求の範囲第3項記載の
粉粒体の移送装置。 5 前記第1の配管が前記第2の配管の外周部に設けら
れている特許請求の範囲第4項記載の粉粒体の移送装置
。 6 前記第1の配管が前記第2の配管底部に開口してい
る特許請求の範囲第4項記載の粉粒体の移送装置。
[Scope of Claims] 1. The first and second containers are connected to a conduit for transferring powder and granular material from a first container under pressure to a second container under pressure lower than the pressure inside the container. A moving layer is formed by the transferred powder and granular material having a length corresponding to the pressure difference, and a sealing gas having a velocity based on an empty tube that is higher than the average moving speed of the powder and granular material is applied in the moving direction of the powder and granular material. A method for transferring powder or granular material, characterized in that the powder or granular material is transferred to the second container while maintaining the pressure in the first container by flowing the powder into the second container. 2. The method of transferring powder or granular material according to claim 1, wherein the formation of the moving layer is performed by reversing the powder or granular material on the low-pressure side of the channel. 3. In an apparatus for transferring powder and granular material from the first container to the second container, with one end substantially connected to a first container in a high pressure state and the other end connected to a second container in a low pressure state, a sealing gas supply means for flowing a sealing gas having a speed based on an empty tube higher than an average moving speed of the granular material in the moving direction of the granular material; a filling section in which the granular material is filled with the sealing gas;
On the low pressure side of the filling section, a fluidizing section that fluidizes the filled powder and granules, and a feeding section that feeds the powder and granules fluidized in the fluidizing section to the low pressure side. A powder or granular material transfer device comprising: 4. A first pipe in which the filling part, the fluidizing part, and the feeding part are substantially connected to the first container in the high-pressure state, and the seal gas supply means is provided, and the powder particles in the pipe are provided. A second pipe provided so that the body movement direction is reversed, a gas inlet opening to the side of the second pipe, and a gas inlet provided at the end of the pipe to control the movement of powder and granular material in the second pipe. 4. The powder and granular material transfer device according to claim 3, comprising a gas inlet opening in the same direction. 5. The powder or granular material transfer device according to claim 4, wherein the first pipe is provided on the outer periphery of the second pipe. 6. The granular material transfer device according to claim 4, wherein the first pipe opens at the bottom of the second pipe.
JP6347277A 1977-05-30 1977-05-30 Powder transfer method and device Expired JPS598172B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6347277A JPS598172B2 (en) 1977-05-30 1977-05-30 Powder transfer method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6347277A JPS598172B2 (en) 1977-05-30 1977-05-30 Powder transfer method and device

Publications (2)

Publication Number Publication Date
JPS54352A JPS54352A (en) 1979-01-05
JPS598172B2 true JPS598172B2 (en) 1984-02-23

Family

ID=13230197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6347277A Expired JPS598172B2 (en) 1977-05-30 1977-05-30 Powder transfer method and device

Country Status (1)

Country Link
JP (1) JPS598172B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627086U (en) * 1985-06-28 1987-01-16
JPS62176770U (en) * 1986-04-29 1987-11-10

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013141659A (en) * 2012-01-12 2013-07-22 Sumitomo Chemical Co Ltd REACTION APPARATUS AND METHOD FOR PRODUCING ε-CAPROLACTAM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS627086U (en) * 1985-06-28 1987-01-16
JPS62176770U (en) * 1986-04-29 1987-11-10

Also Published As

Publication number Publication date
JPS54352A (en) 1979-01-05

Similar Documents

Publication Publication Date Title
US2684931A (en) Fluidized solids process for contacting solids and vapors with the conveyance of the solids in dense phase suspension
US2311564A (en) Handling finely divided materials
US7109290B2 (en) Polymer transfer within a polymerization system
US8739962B2 (en) Active solids supply system and method for supplying solids
US4398852A (en) Process and apparatus for adding and removing particles from pressurized reactors
US2965454A (en) Fluidized conversion and stripping apparatus
US3547809A (en) Solids addition and withdrawal process
US2684124A (en) Gravity moving bed adsorption process and apparatus
JPS63182397A (en) Short contact time fluidized catalytic cracking method
JPS598172B2 (en) Powder transfer method and device
US2625442A (en) Apparatus for elevating granular material
US2268535A (en) Method of effecting catalysis
US2624695A (en) Transfer of granular materials
US2517042A (en) Method for transferring fluidized solid particles
US2797981A (en) Recovery of aluminum chloride from a fluid aluminum chloride-hydrocarbon complex
US2548030A (en) Apparatus for heating fluids to high temperatures
US2723949A (en) Method and apparatus for converting a hydrocarbon oil stream in the presence of a relatively thin moving particle bed
US2586705A (en) Means for distributing solids in gases in catalytic apparatus
US2712476A (en) Method of conveying granular solids
US2441311A (en) Method and apparatus for contacting gases and particle form solid material
JPS5921914B2 (en) Catalytic hydrocarbon conversion method and equipment
US2703732A (en) Mass lift
US3565790A (en) Fluid powder reaction system
US2758884A (en) Transfer and circulation of solid granular material
US2443180A (en) Method and apparatus for transfer of particle form solids