JPS5981539A - Direct emission spectrochemical analyzer of molten metal - Google Patents

Direct emission spectrochemical analyzer of molten metal

Info

Publication number
JPS5981539A
JPS5981539A JP19108782A JP19108782A JPS5981539A JP S5981539 A JPS5981539 A JP S5981539A JP 19108782 A JP19108782 A JP 19108782A JP 19108782 A JP19108782 A JP 19108782A JP S5981539 A JPS5981539 A JP S5981539A
Authority
JP
Japan
Prior art keywords
molten metal
tube
inert gas
lens
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19108782A
Other languages
Japanese (ja)
Other versions
JPS6314903B2 (en
Inventor
Akihiro Ono
小野 昭紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP19108782A priority Critical patent/JPS5981539A/en
Publication of JPS5981539A publication Critical patent/JPS5981539A/en
Publication of JPS6314903B2 publication Critical patent/JPS6314903B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • G01N21/69Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence specially adapted for fluids, e.g. molten metal

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

PURPOSE:To analyze rapidly and directly each component contained in a molten metal sample in a production site by using an excited light focusing constitution from just above direction against the molten metal surface and a focusing tube constitution to which an opposing electrode and a focusing lense are provided. CONSTITUTION:The focusing lense 5 and the opposing electrode 8 whose top end 8' is near the lense 6 are fixed at lower end part of the focusing tube 2. Inner part of an emitting chamber 1 is fixed with gaseous Ar and is lowered by an elevator 24, and the gap between the end 8' and a bath surface is held to prescribed distance by a bath surface level sensor 10 and a controller 23 of gap between electrodes. An emitting device 29 is functioned to perform spark discharge between the end 8' and a molten metal 22 surface. The emitted light intensity is measured by a spectral detector 27, spectral beam intensity of each constituent is corrected by a calculator 28, and contained percentage of each constituent contained in the molten metal is obtained.

Description

【発明の詳細な説明】[Detailed description of the invention]

全行わせ、発生する励起光を分光分析して浴融金桃中の
各種成分の含有率を直接求める溶融金鶏の直接発光分光
分析装置に関するものである。 金属の製造に於ける工程管理分析には、サンズ化 リングして固定させたブロック試料を対象とする発光分
光分析が最も活用されている。しかし、より迅速な工程
管理のために、溶融状態で直接分析できる装置の開発が
強く要請されている。電気的放電による溶融金属の直接
発光分光分析の試みは、これまでにいくつか見られ、ア
イアン・アンドースチ−ル・インターナショナルの52
 (1979)77〜83負や米国特許3,645,6
25.3,659,944、:i、669,546に掲
載されている。しかし、これらのいずれも実験段階にあ
ると言える。と云うのけ実際に製造現場で実用できる溶
融金属の直接分析装置であるためには、湯面レベル変動
に基づく′
This invention relates to a direct emission spectroscopic analyzer for molten molten roe, which spectrally analyzes the generated excitation light to directly determine the content of various components in the molten roe. For process control analysis in metal manufacturing, emission spectrometry is most commonly used for block samples fixed in a sand ring. However, for faster process control, there is a strong demand for the development of an apparatus that can directly analyze the molten state. There have been several attempts to perform direct emission spectroscopy of molten metal using electrical discharge, including the Iron and Steel International 52
(1979) 77-83 Negative and U.S. Patent No. 3,645,6
25.3,659,944, :i, 669,546. However, all of these can be said to be in the experimental stage. However, in order to be a direct analysis device for molten metal that can actually be put into practical use at manufacturing sites, it is necessary to

【匠(保間間隙の変化による励起光強度の変
動を吸収する手段、高熱、振動等による励起光の集光に
於ける光軸変動を抑制する手段、などについての記載が
ないからである。 本発明は実用化のだめに必要な上記各手段について実験
、研究の結果到達したもので、主要構成として、溶融金
属表面に対して直上方向からの励起光集光構成及び対電
極と集光レンズを近接固設した集光筒構成を有する電気
的放電による溶融金を4の直接発光分析装置であり、詳
細には下端部には先端が溶融金属表面とわずかな間隙を
保った対、に極を、該対電極の先端の上部には対電極先
端に、光軸を合致させて設けた励起光集光レンズを、該
集光レンズの周囲には不活性ガス吐出孔を有し、外側部
に昇降装置を有する下部円t’:;’i ’i’l、及
び、不活性ガス吹き込み管を装着してあり、上記嗅光レ
ンズと光軸を合致させた分光器入射用レンズを内部に固
定゛してあり、該入射用レンズの周囲に不活性ガス通過
孔を有し、上端部には分光器が接続され、下14部が上
記下部円筒管内に挿入されている上部円筒管の、2つの
円筒管から成る密閉状で@直に設けた集光筒と;該集光
筒を内包し、上部には不活性ガス吹き込み管を、下部に
は出面ンベル検出器を、そして、集光筒との間には不活
性ガス通路を有し、下端部に溶融金属表面に対向して開
口する開口部を備え、下部周囲には測定時に下端を溶融
金属内に浸漬できる長さをもち、上部に不活性ガス排出
口を設けた大気漉へい用円筒を有している集光筒の保護
円筒と;がら成るスパーク発光チーヤンパー、及び、 対電極と溶融金属とのそれぞれの間に結線した発光装置 を具備していることを特徴とする溶融金属の直接発光分
光分析装置である。 、1X発明装置11の説明に先立ち、本発明装置に到達
する斗でに行つ/こ実験について説明する。 ス/Q−りなどの電気的放電による発光分光分析では、
対電極先端と金属試料面との間隙が変化するとI+、’
I) ri遵光強1f〔が変ってし壕うためにこの電極
間間隙を一定1/C保つ必要がある。固体ブロック試料
全対象とするJkh合には、電極間間隙を一定に保つこ
とrよ容易であるが溶融金属を対象とする場合は湯面レ
ベルが変++7+I して一定に保てない。従って潟]
Ifiレベルが変動しても、その変動が集光に与える影
響を極力小さくすることが必要になる。本発明者は、こ
の問題を励起光の集光角度として特定の角度を選ぶこと
によって電、陰間間隙の変動の影響を大幅に緩和吸収で
きることを下記実験によって知った。 固体ブロック試料を対象とするスパーク発光分光分析で
は、試料表面に対して30度の角度から1基尤しており
、−ヒ述の米国特許では溶融金属表面に対して30度あ
るいは水平方向からの集光を採用している。 本発明者はスノξ−り励起光を各角度から集光できる実
験装置6を1ji′I発して鉄を対象に電極間間隙と各
角度に於る励起光強度との関係について実験により詳細
に調査した。実験結果の1例全第1図VC示す。この図
では、横軸に各集光角(gに於る電極間間隙を、縦軸に
鉄中の各成分に起因する各スペクトル線強度の鉄のスペ
クトル線強度に対する比をとり、間隙全2.5 smか
ら45鯖に変えた時の強度比の変化割合を示しである。 この図において、例えばsrr 288.2 / Fe
l1271.4 Kついてみれば、288.2nmの8
1  の発光強度の271.4.nmのFe  の強度
に対する強度比が間隙を25鞄から45闘(で変えた時
、集光角度90度では44楚、60度では128%、3
0度では3C)4%変化することを示している。第1図
の各個所のグラフから、各成分ともに湯面に対して90
度の垂i9:5向からの集光の場合が、電極間間隙の影
響全層も受けにくいことが明らかになった。そして、こ
の()Ooという角度にすると実際の装置としても、湯
面に対して水平方向や30度の角度から集光する場合に
比べ、発光チャンノ々−の湯面に対する位置設定が容易
であり、角度設定が確実に行え、溶融金属の輻射熱の影
響も最も受けにくいなどの点での利点があることが知ら
れた。 そこで、本発明装置は、励起光を湯面に対向した的、#
1位置/ン・ら集光する構成を主要構成とする。 次に、本発明の突施例装#を示す第2図によって本発明
の詳細な説明する。 本実施例装置は、垂直に設置され、溶融金属22と対’
d’i 極8の間に高電圧をかけてスパークなどの′串
、気的放電を行う発光チャンバー1、高電圧全発生させ
る発光装置29、発生した励起光を集光する集光レンズ
6及び分光器入口スリットへ入射−ノーるレンズ7を備
えた集光筒2、励起光を分光して各スペクトル線強Jj
、Ck測定する分光検出器27及びマ) IJラックス
分のスペクトル線強度による補正や強度から含有率の算
出などを行う計算機28などを主体に構成される。 発光チーヤンパ−1は本発明の主要部分であり、集光筒
2、保護円筒5、大気遮へい筒9などから成る。集光筒
2Vi上部集光筒4と下部集光筒3とからなり、下部集
光筒3は通電可能なステンレス環とし、上部集光筒4は
絶縁材であるベークライト製とした。上部集光筒4の上
端fli!Iは、同定されている分光検出器27に固装
してあり、その下端部には下部集光筒3の上端部が摺動
自在に、しかし気密に挿入しであるの上部集光筒4的に
は、分光検出器27の入口に設けたスリット26に励起
光全入射するレンズ7が固定してあり、該レンズ7の周
囲にはガス通過孔16が設けである。一方の下部集光筒
3には、その下端部に集光レンズ6と、該集光レンズ6
の光軸線上にあり、該集光レンズ6に近接したところに
先端8′をおく対電極8とか固定されていて、集光レン
ズ60周囲にはガス吐出孔】7が設けである。該集光レ
ンズ6の元軸と前記入射レンズ7との光軸は一致させで
ある○ 集光筒2は以上のように構成され−こいるので溶融金属
22の湯面レベルが犬きぐ変ったときには、下部集光筒
3のみを該表面レベルの変動に対応して上、下動して、
該表面と対ih極の先端との間隔を所定間隔に調整制御
でき、上部集光筒4は動がないので入射レンズ7と分光
検出器27々の間隔が変わることは々く、溶融金属湯面
レベルが大巾に変動しても、分光検出機の測定分析精度
に影響を与えることはない。 尚対′電極にはタングステン製で3mφ×50・胴の小
型の電極を下部集光筒の下端部に、斜め上方から先端8
′が湯面に向くように取り付けである。 土部集光筒4の上端附近には、Ar  等の不活性ガス
全欧き込むための管】4が取り付けてあり、ここから吹
き込まれたガスは上部集光筒4、下部集光筒3の内部全
充満して不活性雰囲気全作ち、入射用レンズ7の周囲に
設けられたガス通過孔】6を通電、集光レンズ6周囲に
設けられたガス吐出孔]7から集光筒開口部に向けて高
速で吹き出う−。この吹き出した不活性ガスは、対電極
先端部の大気ヲ進い出し正常な放電を行わせ、集光筒2
内に於ける貢空紫外域の励起光の吸収損失を防さ”、下
部集光筒3の下部の空冷及び蒸発金属による集光レンズ
6表面の汚れ全防止するなどの作用をする。 下部集光筒3の上側部には、電極間間隙調整装置23が
取り付けてあり、これにより集光筒3を上下に移動させ
て湯面と対電極先端との間隙全調整できる。本実施例装
置では湯面レベル検出器13からの信号によって間隙調
整装置2;3が作動し、一定間隙に自動調整される機構
にしである、。 下部集光筒3はステンレス環としたので、上部に対電極
の端子を設けて、下部集光筒を介して対電極に通電でき
る。この端子と溶融金属中に浸漬した試料電極I2とは
、高圧ケーブルで発光装置29に接続しである。 集光筒2の外側には、保護円筒5が設けてあり、集光筒
の下部を内包し保護する○保護円筒5は、ステンレス環
の31管でできてお9、空気、水などの冷却媒体金管1
9から供給し、管2oから排出して該保護円筒及び該円
筒の内域の冷却ケすることができる。又、該円筒50内
外壁にはマグネシア等の耐火材を被覆して耐熱性をもた
せてあり、該円筒5の下端には下部集光筒3に取り付り
られた対電極8の先端が位置する開口部21が設けであ
るが、この下端部は溶融金属の輻射熱や測光に不?2な
光をさけるために該開口部21は15m程度に口径をし
ぼった形にするのがよい。 対電極8の先端と湯面との間隙は放電時(測足時)ンこ
は通常10關以下であるので、開口部21は湯面に近い
ところに位置する。前記の管14や15からの吹き込ま
れたA、r  ガス等の不活性ガスは開口部21から吹
き出されて放電個所及びその附近の空気を〕Hい出して
スパークなどの放電全行い易い不活性雰囲気?形成する
ことになる○さらに保縁円筒5の下部3′には測〆時に
下端を溶融金属22&で浸漬できる長さで該下部3′を
回読す61t’を大物製の大気遮へい筒9を取り付けで
あるので、開口部21から吹き出されたAr  ガスは
大気遮へい節9の上部に設けた管18から該大気遮へい
筒9内の空気と共に大気中に排出され、開口部211\
」近は確実に不活性雰囲気が保たれ放電個所に空気を巻
込むことがなく正常な放電が実施できる。 実施にあたっては、予め耐火板等を駆動させて天部分の
スラグを機械的に排除したのちに、該排除した個所にチ
ャンバー1を下降させて大気遮へい円筒9を湯面に浸漬
させることにより該円筒9内にスラグが存在せず、正常
な放電ができる。仮に多少残存するスラグがあっても開
口部21がら吹き出すAr  ガスにより、開口部21
から大気遮へい筒9の方向へ残存スラグは排除され、溶
融金属の電気的放電に支障が、ない。 採掘円筒5下部には湯面検出器13と接続する湯面レベ
ルセンサー10が取り付けてあり、湯面レベルk 測定
する。このセンサーは静電容景、測温、光や超音波を利
用したものなどいずれでもよい。発光チャンバー1は支
持台25に保持されており、昇降装置24によって上下
移動が行なえるようになっている。 本実施例装置で溶融金属の分析を実施するにあたっては
、先ず冷却水及びAr  ガスを流して発光チャンバー
1の内部iAr  ガスで満たしておく。 次に昇降装#24を働かせてチャンノ々−1全下降させ
、湯面レベルセンサー10と電極間間隙調整装置23を
作動させて、対電極8先端8′と湯ih1との間Iψを
2〜10喘程度の範囲内の所望距離に保持させる。発y
色装置ff 297に:作動させて対電極8先端と溶融
金属22表面間に周波数200〜800fiz  程度
のス・−′−り放電を行わせ、最初の3〜5秒程ルニを
予備放電として、そのあとの5〜10秒間程度に於ける
発光強度を分光検出器27で測定し、it s゛J機2
8によって各成分のスペクトル線強度全マトリックス成
分のスペクトル線強度で比をとるなどの補正をし、溶融
金属中に含まれる各成分の官有率を求める□ 試料中の谷含有成分をサンプリング等の煩雑な操作を行
わずに迅速に直接分析することができ、金属の4−ij
錬プロセス等の操業管理に極めて有益であり、効果が大
きい^
This is because there is no description of means for absorbing fluctuations in the intensity of excitation light due to changes in the spacing, or means for suppressing fluctuations in the optical axis during convergence of excitation light due to high heat, vibration, etc. The present invention was arrived at as a result of experiments and research on each of the above-mentioned means necessary for practical application, and the main components include an excitation light condensing configuration from directly above the molten metal surface, a counter electrode, and a condensing lens. This is a direct emission spectrometer for measuring molten gold by electrical discharge, which has a condensing tube configuration that is fixedly installed in close proximity to the molten metal. , an excitation light condensing lens provided above the tip of the counter electrode with its optical axis aligned with the tip of the counter electrode, an inert gas discharge hole around the condensing lens, and an inert gas discharge hole on the outer side. A lower circle t':;'i 'i'l with a lifting device and an inert gas blowing tube are installed, and a spectrometer entrance lens whose optical axis is aligned with the above-mentioned olfactory lens is fixed inside. 2 of the upper cylindrical tube, which has an inert gas passage hole around the entrance lens, a spectroscope is connected to the upper end, and the lower 14 part is inserted into the lower cylindrical tube. A condensing tube that is installed directly in a sealed shape consisting of two cylindrical tubes; There is an inert gas passage between the upper and lower ends, an opening facing the molten metal surface at the lower end, and a length around the lower part that allows the lower end to be immersed in the molten metal during measurement. a protective cylinder for the condenser tube, which has an air purifying cylinder provided with an inert gas outlet; and a spark light emitting device, which is connected between the counter electrode and the molten metal, respectively. This is a direct emission spectroscopy analyzer for molten metal characterized by comprising: In emission spectroscopic analysis using electrical discharge such as /Q-ri,
When the gap between the counter electrode tip and the metal sample surface changes, I+,'
I) It is necessary to maintain the gap between the electrodes at a constant value of 1/C in order to prevent the ri light intensity 1f from changing. When dealing with all solid block samples, it is easier to keep the gap between the electrodes constant, but when dealing with molten metal, the level of the molten metal varies and cannot be kept constant. Therefore, the lagoon]
Even if the Ifi level fluctuates, it is necessary to minimize the influence of the fluctuation on light collection. The inventor of the present invention learned from the following experiment that this problem can be solved by selecting a specific angle as the convergence angle of the excitation light to greatly alleviate and absorb the effects of fluctuations in the electric and negative gaps. In spark emission spectrometry analysis of a solid block sample, one beam is taken from an angle of 30 degrees to the sample surface, and in the US patent mentioned above, one beam is taken from an angle of 30 degrees or horizontally to the molten metal surface. Employs light focusing. The present inventor used an experimental device 6 capable of concentrating Snow ξ-reflection excitation light from various angles, and conducted experiments to find out in detail the relationship between the electrode gap and the excitation light intensity at each angle for iron. investigated. An example of the experimental results is shown in Figure 1 VC. In this figure, the horizontal axis shows the gap between the electrodes at each convergence angle (g), and the vertical axis shows the ratio of each spectral line intensity caused by each component in iron to the spectral line intensity of iron, and the total gap 2 The graph shows the rate of change in the intensity ratio when changing from .5 sm to 45 sm. In this figure, for example, srr 288.2 / Fe
l1271.4 K If you look at it, 8 of 288.2 nm
1 emission intensity of 271.4. When the intensity ratio to the intensity of Fe in nm is changed from 25 to 45 nm, the concentration ratio is 44 at 90 degrees, 128% at 60 degrees, and 3
At 0 degrees, it shows a change of 3C)4%. From the graph at each point in Figure 1, each component is 90% relative to the hot water level.
It has become clear that when light is focused from the vertical i9:5 direction, the entire layer is less affected by the inter-electrode gap. When the angle is set to ()Oo, it is easier to set the position of the light-emitting channels relative to the water surface in the actual device, compared to the case where the light is focused horizontally or at an angle of 30 degrees to the water surface. It is known that the angle setting can be performed reliably, and it is least susceptible to the effects of radiant heat from molten metal. Therefore, the device of the present invention directs the excitation light to a target facing the hot water surface.
The main configuration is one that focuses light at one position/n. Next, the present invention will be explained in detail with reference to FIG. 2, which shows an embodiment of the present invention. The device of this embodiment is installed vertically and is connected to the molten metal 22.
d'i A light emitting chamber 1 that applies a high voltage between the poles 8 to generate a spark or gas discharge, a light emitting device 29 that generates a high voltage, a condensing lens 6 that focuses the generated excitation light, and The excitation light is incident on the spectrometer entrance slit.
, Ck, and a calculator 28 that performs correction based on the spectral line intensity of IJ lux and calculation of the content rate from the intensity. The light emitting team 1 is the main part of the present invention, and is composed of a condenser tube 2, a protection cylinder 5, an atmosphere shielding tube 9, and the like. The condenser tube 2Vi consists of an upper condenser tube 4 and a lower condenser tube 3, the lower condenser tube 3 is made of a stainless steel ring that can conduct electricity, and the upper condenser tube 4 is made of Bakelite which is an insulating material. The upper end of the upper condenser tube 4 fli! I is fixed to the identified spectroscopic detector 27, and the upper end of the lower condenser tube 3 is slidably but airtightly inserted into the lower end of the upper condenser tube 4. Specifically, a lens 7 through which all of the excitation light is incident is fixed to a slit 26 provided at the entrance of the spectroscopic detector 27, and a gas passage hole 16 is provided around the lens 7. One of the lower condensing tubes 3 has a condensing lens 6 at its lower end, and a condensing lens 6 at its lower end.
A counter electrode 8 having a tip 8' is fixed on the optical axis of the condenser lens 6, and a gas discharge hole 7 is provided around the condenser lens 60. The original axis of the condensing lens 6 and the optical axis of the incident lens 7 are made to coincide. The condensing tube 2 is constructed as described above, and the level of the molten metal 22 changes drastically due to the condensing tube 2. Sometimes, only the lower condensing tube 3 is moved up or down in response to changes in the surface level.
The distance between the surface and the tip of the counter-Ih pole can be adjusted and controlled to a predetermined distance, and since the upper condenser tube 4 does not move, the distance between the input lens 7 and the spectroscopic detector 27 does not often change. Even if the surface level fluctuates widely, it will not affect the measurement and analysis accuracy of the spectroscopic detector. The counter electrode is a small electrode made of tungsten with a diameter of 3 m x 50 mm and is placed at the lower end of the lower condenser tube.
It should be installed so that '' is facing the hot water surface. Tsuchibe A tube 4 for injecting an inert gas such as Ar is installed near the upper end of the condenser tube 4, and the gas blown from this tube flows into the upper condenser tube 4 and the lower condenser tube 3. The interior is completely filled to create an inert atmosphere, the gas passage hole provided around the entrance lens 7 is energized, and the gas discharge hole provided around the condenser lens 6 is energized from the condenser tube opening. It blows out at high speed towards the area. This blown out inert gas advances into the atmosphere at the tip of the counter electrode and causes normal discharge, and the condenser tube 2
It also prevents the absorption loss of excitation light in the ultraviolet region within the lower condenser tube 3, and completely prevents contamination of the surface of the condenser lens 6 due to air cooling of the lower part of the lower condenser tube 3 and evaporated metal. An inter-electrode gap adjusting device 23 is attached to the upper part of the light tube 3, and by this, the gap between the hot water level and the tip of the counter electrode can be fully adjusted by moving the light condensing tube 3 up and down. The gap adjustment device 2; 3 is activated by the signal from the hot water level detector 13, and the gap is automatically adjusted to a constant gap.The lower condenser tube 3 is made of a stainless steel ring, so there is a counter electrode on the upper part. A terminal is provided so that current can be applied to the counter electrode through the lower condenser tube.This terminal and the sample electrode I2 immersed in the molten metal are connected to the light emitting device 29 by a high voltage cable. A protective cylinder 5 is provided on the outside, which encloses and protects the lower part of the condensing tube. The protective cylinder 5 is made of 31 tubes made of stainless steel ring 9, and a metal tube 1 for cooling medium such as air or water.
9 and discharged from pipe 2o to cool the protective cylinder and the inner region of the cylinder. The inner and outer walls of the cylinder 50 are coated with a fireproof material such as magnesia to provide heat resistance, and the tip of the counter electrode 8 attached to the lower condenser tube 3 is located at the lower end of the cylinder 5. However, this lower end is not suitable for radiant heat of molten metal or for photometry. In order to avoid excessive light, the opening 21 should preferably have a diameter of about 15 m. Since the gap between the tip of the counter electrode 8 and the hot water surface is usually 10 degrees or less during discharge (during foot measurement), the opening 21 is located close to the hot water surface. The inert gases such as A and R gases blown from the tubes 14 and 15 are blown out from the opening 21 and the air in and around the discharge point is discharged to form an inert gas that makes it easy to cause sparks and other discharges. atmosphere? ○Additionally, to the lower part 3' of the edge-retaining cylinder 5, attach a large-sized atmospheric shielding cylinder 9 with a length 61t' that allows the lower end to be immersed in the molten metal 22 during measurement. Therefore, the Ar gas blown out from the opening 21 is discharged into the atmosphere from the pipe 18 provided at the upper part of the atmospheric shielding tube 9 together with the air inside the atmospheric shielding tube 9, and the Ar gas is blown out from the opening 211\
An inert atmosphere is reliably maintained near the discharge area, and normal discharge can be carried out without air being drawn into the discharge area. In implementation, after mechanically removing the slag at the top by driving a refractory plate or the like, the chamber 1 is lowered to the removed area and the atmosphere shielding cylinder 9 is immersed in the hot water surface. There is no slag in 9 and normal discharge is possible. Even if some slag remains, the Ar gas blown out from the opening 21 will cause the opening 21 to
The remaining slag is removed from the atmosphere toward the atmosphere shielding cylinder 9, and there is no hindrance to electrical discharge of the molten metal. A hot water level sensor 10 connected to a hot water level detector 13 is attached to the lower part of the mining cylinder 5 to measure the hot water level k. This sensor may be an electrostatic sensor, a temperature sensor, or one that uses light or ultrasonic waves. The light emitting chamber 1 is held on a support base 25 and can be moved up and down by a lifting device 24. When analyzing molten metal using the apparatus of this embodiment, first, cooling water and Ar gas are flowed to fill the interior of the luminescence chamber 1 with iAr gas. Next, operate the elevator #24 to lower the channel 1 completely, operate the hot water level sensor 10 and the interelectrode gap adjustment device 23, and adjust the distance Iψ between the tip 8' of the counter electrode 8 and the hot water ih1 by 2~ It is maintained at a desired distance within a range of about 10 mm. Issue
The color device ff 297 is activated to generate a linear discharge at a frequency of about 200 to 800 fiz between the tip of the counter electrode 8 and the surface of the molten metal 22, and for the first 3 to 5 seconds, Luni is used as a preliminary discharge. After that, the luminescence intensity for about 5 to 10 seconds is measured by the spectroscopic detector 27, and it is
8. Correct the spectral line intensity of each component by taking the ratio of the spectral line intensities of all matrix components to find the ownership rate of each component contained in the molten metal □ Calculate the valley-containing components in the sample by sampling, etc. 4-ij of metals can be analyzed quickly and directly without complicated operations.
It is extremely useful and highly effective for operational management of smelting processes, etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は浴融金属中含有諸成分のスノξ−り発光強度に
及ばず集光角度と電極間間隙についての実験丘;占果の
一例會示すグラフであり、第2図は本発明実施例装置の
縦断面図である。 1は発光チャンバー、2は集光筒、5は保護円筒、6は
集光レンズ、7は入射用レンズ、8は対電極、9は大気
遮へい筒、10は湯面レベルセンサー、22は溶融金属
、23は電極間間隙調整装置、24はチャン、S−昇降
装置、27は分光検出器、28は含有率計算機、29は
発光装置代理人 弁理士  秋 沢 政 光 他2名
Fig. 1 is a graph showing an example of the experimental results regarding the condensing angle and the gap between the electrodes, which does not reach the luminescence intensity of the various components contained in the bath molten metal, and Fig. 2 is a graph showing an example of the result of the present invention. FIG. 2 is a longitudinal cross-sectional view of an example device. 1 is a luminous chamber, 2 is a condensing tube, 5 is a protective cylinder, 6 is a condensing lens, 7 is an incident lens, 8 is a counter electrode, 9 is an atmosphere shielding tube, 10 is a hot water level sensor, 22 is a molten metal , 23 is an electrode gap adjustment device, 24 is a Chan, S-lifting device, 27 is a spectroscopic detector, 28 is a content rate calculator, 29 is a light emitting device agent, patent attorney Masamitsu Akizawa, and 2 others.

Claims (1)

【特許請求の範囲】[Claims] (1)  TtM部にfd先端が溶融金属表面とわずか
な間隙全作った対′d工極を、該対電極の先端の上部に
は7」電楡先端に光軸を合致させて設けた励起光集光レ
ンズを、該集光レンズの周囲には不活性ガス吐出孔を有
し、外側部に昇降装置を有する下部円m1管、及び、不
活性がスジ(き込み管を装着してあり、上H己集光レン
ズと光軸を合致させた分光器入射用レンズ全内部に固定
してうり、該入射用レンズの周囲に不活性ガス通過孔を
有し、上端部には分光器が接続さ、t′L、下端部が上
記下部円筒管内に挿入されている上部円筒管の2つの円
筒管から成る密閉状で垂IBに設けた集光筒と;該集光
筒を内包し、−F部には不活性ガス吹き込み管を、下部
には湯面レベル検出器を、そして呆光筒との間には不活
性ガス通路を有し、下端部に溶融金属表面に対間して開
口する開口1部を備え、下部周囲には測定時に下端全溶
融金属内に浸漬できる長さ全もち、上部に不活性ガス排
出口を設けた大気遮へい用円筒を自している集光筒の保
瞼円筒と;から成るス・ξ−り発光チャ/パー、及び、 対′成極と溶融金属とのそれぞれの間に結線した発光装
置、 (f−具備していること全特徴とする溶融金属の1育J
妥づら光分光分析装置。
(1) In the TtM section, a pair of electrodes with a small gap between the fd tip and the molten metal surface was installed, and an excitation electrode was placed above the tip of the counter electrode with the optical axis aligned with the tip of the 7" electric beam. The light condensing lens is equipped with a lower circular M1 tube that has an inert gas discharge hole around the condensing lens, a lifting device on the outside, and an inert tube (with an inert pipe attached). , is fixed inside the spectrometer entrance lens whose optical axis is aligned with the upper H self-condensing lens, has an inert gas passage hole around the entrance lens, and has a spectrometer at the upper end. connected, t'L, with a condensing tube provided vertically in a sealed manner consisting of two cylindrical tubes, an upper cylindrical tube whose lower end is inserted into the lower cylindrical tube; - The F part has an inert gas blowing pipe, the lower part has a hot water level detector, and the inert gas passage between it and the light tube. The condenser tube is equipped with an opening to open, a cylinder around the lower part has a length that allows the lower end to be fully immersed in the molten metal during measurement, and an atmosphere shielding cylinder with an inert gas outlet at the upper part. A light-emitting device connected between each of the eyelid cylinder and the molten metal; Metal 1st grade J
Nizura optical spectrometer.
JP19108782A 1982-10-30 1982-10-30 Direct emission spectrochemical analyzer of molten metal Granted JPS5981539A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19108782A JPS5981539A (en) 1982-10-30 1982-10-30 Direct emission spectrochemical analyzer of molten metal

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19108782A JPS5981539A (en) 1982-10-30 1982-10-30 Direct emission spectrochemical analyzer of molten metal

Publications (2)

Publication Number Publication Date
JPS5981539A true JPS5981539A (en) 1984-05-11
JPS6314903B2 JPS6314903B2 (en) 1988-04-02

Family

ID=16268637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19108782A Granted JPS5981539A (en) 1982-10-30 1982-10-30 Direct emission spectrochemical analyzer of molten metal

Country Status (1)

Country Link
JP (1) JPS5981539A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020033884A (en) * 2000-10-30 2002-05-08 이구택 Measurement method of impurities in hot metal
JP2009287965A (en) * 2008-05-27 2009-12-10 Nippon Steel Corp Molten metal measuring device
US9625388B2 (en) 2007-10-29 2017-04-18 Sysmex Corporation Cell analysis apparatus and cell analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020033884A (en) * 2000-10-30 2002-05-08 이구택 Measurement method of impurities in hot metal
US9625388B2 (en) 2007-10-29 2017-04-18 Sysmex Corporation Cell analysis apparatus and cell analysis method
JP2009287965A (en) * 2008-05-27 2009-12-10 Nippon Steel Corp Molten metal measuring device

Also Published As

Publication number Publication date
JPS6314903B2 (en) 1988-04-02

Similar Documents

Publication Publication Date Title
EP0176625A2 (en) Method of laser emission spectroscopical analysis of steel and apparatus therefor
Khater et al. Time-integrated laser-induced plasma spectroscopy in the vacuum ultraviolet for the quantitative elemental characterization of steel alloys
US10830705B2 (en) Method and device for spectral analysis of a chemical composition of molten metals
CN111316088B (en) Spark emission spectrometer and method of operating the same
Ishizuka et al. Laser-vaporized atomic absorption spectrometry of solid samples
US4652128A (en) Method of performing continuous on-line laser emission spectroscopic analysis on a flowing fluid sample by laser and apparatus therefor
JPS5981539A (en) Direct emission spectrochemical analyzer of molten metal
JPS61181947A (en) Direct laser emission spectrochemical analyzer for molten metal
JPS61181946A (en) Direct laser emission spectrochemical analyzer for molten metal
Garton et al. Flash-absorption spectra of the plasmas of arcs and other discharges
JPS5981540A (en) Direct emission spectrochemical analyzer of molten metal
JPH0151939B2 (en)
Pak et al. Spatial characterization of the atmospheric-pressure moderate-power He microwave-induced plasma
JPS5979842A (en) Apparatus for spectroscopic analysis of spark luminescence of molten metal
JP3736427B2 (en) Method and apparatus for analyzing components in molten metal
Dimitrov et al. Decreasing the laser radiation absorption in the plasma plume and improving the sensitivity in quantitative laser microspectral analysis
CA1225844A (en) Method of continuously analyzing fluidized body by laser and apparatus therefor
JPS6315544B2 (en)
JPS59157539A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
JPH01126526A (en) Apparatus for analyzing molten metal
JPS59157540A (en) Direct analyzer of molten metal in deep layer by fine particle generating plasma emission spectrochemical method
Hu et al. Absorption of laser energy by a welding arc
JPS59210330A (en) Plasma emission spectrochemical analyzer for carrying fine particle for long distance of automatic controlling type of electrode interval in molten metal
JPH0560694A (en) Molten steel direct analyzer using plasma irradiation
Grove et al. Parameters Involved in the Spectroscopic Monitoring of Atmospheric Contaminants in the Tungsten–Inert Gas Arc Process