JPS5981476A - Refrigerator - Google Patents

Refrigerator

Info

Publication number
JPS5981476A
JPS5981476A JP18948282A JP18948282A JPS5981476A JP S5981476 A JPS5981476 A JP S5981476A JP 18948282 A JP18948282 A JP 18948282A JP 18948282 A JP18948282 A JP 18948282A JP S5981476 A JPS5981476 A JP S5981476A
Authority
JP
Japan
Prior art keywords
temperature
evaporator
low
compartment
freezer compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18948282A
Other languages
Japanese (ja)
Inventor
藤本 真嗣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Refrigeration Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Refrigeration Co filed Critical Matsushita Refrigeration Co
Priority to JP18948282A priority Critical patent/JPS5981476A/en
Publication of JPS5981476A publication Critical patent/JPS5981476A/en
Pending legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は高沸点冷媒と低沸点冷媒との非共沸混合冷媒を
用いた多温度式冷蔵庫の特に、低温冷凍室に係わるもの
である。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multi-temperature refrigerator using a non-azeotropic mixed refrigerant of a high boiling point refrigerant and a low boiling point refrigerant, particularly to a low temperature freezing chamber.

従来例の構成とその問題点 従来の混合冷媒を用いた多温度式冷蔵庫は第1図に示す
様に、断熱材1を有する冷蔵庫本体2を仕切壁3で冷凍
室4.冷蔵室已に区画しかつ、冷凍室4は取りはずし可
能な仕切板6により低温冷凍室4aと一般の冷凍室4b
に区画しそれぞれにエバポレータ7.8.9を設けてい
る。冷凍サイクルは第2図に示す様にコンプレッサ10
、コンデンサ11、キャピラリ11a、低温冷凍室エノ
くポレータγ、冷凍室エバポレータ8、冷蔵室二ノ(ボ
レータ9をそれぞれ直列に接続し冷凍サイクルを形成し
ている。冷凍システム内には、高沸点冷媒と低沸点冷媒
、例えばR−152aとR−221   を混合させた
非共沸混合冷媒を封入しているので、前記各エバポレー
タでの蒸発温度は、下流側のエバポレ〜りにいくほど高
くなるので、一つの冷凍サイクルで多温度式冷蔵庫、例
えば−30℃の低温冷凍室と、−18℃の冷凍室、+3
℃の冷蔵室を構成していた。この様な構成において、低
温冷凍室4aの温度が最も低温の為コンプレッサ8がり
7内に流入凝縮する為低温冷凍室4aの温度が上昇する
欠点を有していた。又、低温冷凍室エバポレータ7と、
冷凍室エバポレータ8は直列に接続配管している為、低
温冷凍室4aを停止させ、冷凍負荷を減少させて節電を
図るということが出来ない等の欠点を有していた。
Structure of a conventional example and its problems As shown in FIG. 1, a conventional multi-temperature refrigerator using a mixed refrigerant has a refrigerator main body 2 having a heat insulating material 1 separated by a partition wall 3 into a freezer compartment 4. The freezer compartment 4 is divided into a refrigerator compartment and a removable partition plate 6 to separate a low-temperature freezer compartment 4a and a general freezer compartment 4b.
The area is divided into 2 areas, and evaporators 7, 8, and 9 are provided in each area. The refrigeration cycle consists of a compressor 10 as shown in Figure 2.
, a condenser 11, a capillary 11a, a low-temperature freezer compartment eno-porator γ, a freezer compartment evaporator 8, and a refrigerator compartment borator 9 are connected in series to form a refrigeration cycle. Since a low boiling point refrigerant, for example, a non-azeotropic mixed refrigerant mixture of R-152a and R-221, is sealed, the evaporation temperature in each evaporator increases as it goes downstream. Multi-temperature refrigerator with one refrigeration cycle, for example -30℃ low temperature freezer compartment, -18℃ freezer compartment, +3
℃ constituted a cold room. In such a configuration, since the temperature of the low-temperature freezing chamber 4a is the lowest, it flows into the compressor 8 and condenses, so that the temperature of the low-temperature freezing chamber 4a rises. Also, a low temperature freezing chamber evaporator 7,
Since the freezer compartment evaporator 8 is connected and piped in series, it has the disadvantage that it is not possible to stop the low-temperature freezer compartment 4a and reduce the refrigeration load to save power.

発明の・目的 そこで本発明は、コンブレラツー停止中に、低温冷凍室
エバポレータ内に、高温高圧冷媒が流入することにより
生ずる不用な温度上昇を防止すると共に低温冷凍室エバ
ポレータへの冷媒流入を制御し、低温冷凍室の運転と停
止が切換可能とし、更に低温冷凍室使用時に、冷凍室エ
バボレiりの冷却能力を低減し、低温冷凍室エバポレー
タの冷却能力を十分に発揮することを目的としている。
OBJECTS OF THE INVENTION Therefore, the present invention prevents an unnecessary temperature rise caused by high-temperature and high-pressure refrigerant flowing into the low-temperature freezer compartment evaporator while the combrella two is stopped, and also controls the refrigerant inflow into the low-temperature freezer compartment evaporator. The purpose is to enable switching between operation and stop of the low-temperature freezer compartment, and further to reduce the cooling capacity of the freezer compartment evaporator when the low-temperature freezer compartment is used, and to fully utilize the cooling capacity of the low-temperature freezer compartment evaporator.

発明の構成 この目的を達成する為、本発明はコンプレッサ、コンデ
ンサ、低温冷凍室エバポレータ、冷凍室エバポレータを
直列に接続し、低温冷凍室エバポレータをバイパスする
バイパス回路と、低温冷凍室エバポレータおよび冷凍室
エバポレータの上流部にそれぞれ電磁弁を設けて冷凍サ
イクルを形成し、この冷凍サイクル内には沸点の異なる
2種類の冷媒を混合させた非共沸混合冷媒を封入し、冷
凍室冷却用ファンモータは高速回転と低速回転の切換可
能とし、低温冷凍室使用時は、冷凍室冷却用ファンモー
タを低速回転、低温冷凍室不使用(停止)時は、冷凍室
冷却用ファンモータを高速回転とし低温冷凍室の運転時
に、冷凍室エバポレータの熱交換量をファンモータの低
速化により創シ、冷凍室温度でコントロールされている
圧縮機の運転時間を延長するとともに、低温冷凍室エバ
ポレータの蒸発温度を充分に低下・維持し、又、低温冷
凍室の停止時には、冷凍室エバポレータの熱交換量をフ
ァンモータの高速化によりその蒸発温度を最適とするも
のである。
Structure of the Invention In order to achieve this object, the present invention provides a bypass circuit that connects a compressor, a condenser, a low-temperature freezing chamber evaporator, and a freezing chamber evaporator in series, bypassing the low-temperature freezing chamber evaporator, and a bypass circuit that bypasses the low-temperature freezing chamber evaporator and the freezing chamber evaporator. A solenoid valve is provided upstream of each to form a refrigeration cycle, and a non-azeotropic mixed refrigerant, which is a mixture of two types of refrigerants with different boiling points, is sealed in this refrigeration cycle, and the fan motor for cooling the freezer compartment operates at high speed. It is possible to switch between rotation and low-speed rotation, and when the low-temperature freezer is in use, the fan motor for cooling the freezer compartment rotates at low speed, and when the low-temperature freezer is not in use (stopped), the fan motor for cooling the freezer compartment is rotated at high speed. During operation, the heat exchange amount of the freezer compartment evaporator is reduced by slowing down the fan motor, the operating time of the compressor, which is controlled by the freezer compartment temperature, is extended, and the evaporation temperature of the low-temperature freezer compartment evaporator is sufficiently lowered. - When the low-temperature freezer is stopped, the heat exchange amount of the freezer compartment evaporator is optimized by increasing the speed of the fan motor.

実施例の説明 以下、本発明の一実施例を添付図面に従い説明する。第
3図〜4図において、12は冷蔵庫本体であり、本体1
2内を、断熱材13を有する区画壁14により第2の区
画室16(以下冷凍室16という)、冷蔵室16に区画
し、この区画壁14内には前記画室15.16の循環空
気の吸入ダク)17.18を形成している。19は冷蔵
庫本体12内の背壁面に前記吸入ダク)17,1Bの後
部開口に連通し、この吸入ダク)17.18の上方に位
置する第2のエバポレータ20(以下フィン付エバポレ
ータ2oという)を内装すると共に一端を冷凍室16に
開口した冷却室であり、この冷却室19の上部開口部2
1にファン22f:設けている。23はファン22から
吐出された冷気を冷蔵室16へ流入させるための吐出ダ
クトで、冷蔵室16の開口部24には、冷気の流入を自
動的に制御する自動ダンパ26を設け、冷蔵室の温度を
任意に調整している。26は第1の区画室(以下低温冷
凍室という)で、外箱27、断熱材28、内箱を兼用す
る第1のエバポレータ29(以下プレート式エバポレー
タ29という)、除霜用ヒータ30からなる低温冷凍室
本体31とガスケット厚さは、低温冷凍室26が冷却時
、外箱27に着霜せず又除霜時、冷凍室15内に熱影響
を大きく与えない範囲で最も薄い厚さとしている。又低
温冷凍室26はサービス交換が出来る様に第4図に示す
如く予じめ、冷凍室エバポレータ20と低圧ユニットと
して組立てた後、冷蔵庫本体12内に設置する。36は
低温冷凍室26を冷蔵庫本体12内に固定する取付具で
、低温冷凍室26の上部−2後部と冷蔵庫本体12内面
とで通風ダクト36を形成する様に固定している。37
は冷凍室吐出ダクトで正面と、前記通風ダクト360入
1」部と相対する上方のそれぞれ吐出口を設け、ファン
22より吐出された冷気で低温冷凍室26の外周及び冷
凍室16を冷却するものである。37は冷凍室16のド
ア、38は冷蔵室16のドアである。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the accompanying drawings. In Figures 3 and 4, 12 is the refrigerator main body, and the main body 1
2 is divided into a second compartment 16 (hereinafter referred to as the freezing compartment 16) and a refrigerator compartment 16 by a compartment wall 14 having a heat insulating material 13, and inside this compartment wall 14, the circulating air of the compartment 15. suction duct) 17.18. A second evaporator 20 (hereinafter referred to as finned evaporator 2o) 19 is connected to the rear opening of the suction duct 17, 1B on the back wall surface of the refrigerator main body 12, and is located above the suction duct 17, 18. This is a cooling chamber that is internally installed and has one end opened to the freezing chamber 16, and the upper opening 2 of this cooling chamber 19
1 is provided with a fan 22f. Reference numeral 23 denotes a discharge duct for causing cold air discharged from the fan 22 to flow into the refrigerator compartment 16. An automatic damper 26 that automatically controls the inflow of cold air is provided at the opening 24 of the refrigerator compartment 16, and The temperature is adjusted arbitrarily. Reference numeral 26 denotes a first compartment (hereinafter referred to as a low-temperature freezing room), which includes an outer box 27, a heat insulating material 28, a first evaporator 29 (hereinafter referred to as a plate type evaporator 29) that also serves as an inner box, and a defrosting heater 30. The thickness of the low-temperature freezing chamber main body 31 and the gasket is set to the thinnest thickness within the range that does not cause frost to form on the outer box 27 when the low-temperature freezing chamber 26 is being cooled, and does not have a large thermal effect on the inside of the freezing chamber 15 when defrosting. There is. Further, in order to enable service replacement, the low-temperature freezer compartment 26 is assembled in advance as a low-pressure unit with the freezer compartment evaporator 20 as shown in FIG. 4, and then installed in the refrigerator main body 12. Reference numeral 36 denotes a fitting for fixing the low-temperature freezing chamber 26 within the refrigerator main body 12, and is fixed so that a ventilation duct 36 is formed between the rear part of the upper part 2 of the low-temperature freezing chamber 26 and the inner surface of the refrigerator main body 12. 37
is a freezer compartment discharge duct, which has discharge ports at the front and at the top facing the ventilation duct 360-1" section, and cools the outer periphery of the low-temperature freezer compartment 26 and the freezer compartment 16 with cold air discharged from the fan 22. It is. 37 is a door of the freezer compartment 16, and 38 is a door of the refrigerator compartment 16.

°39は除霜水を蒸発させる為の蒸発皿、4Qは除霜水
の蒸発を促進させる為のホットプレートコンデンサ、4
1.41’は冷蔵庫本体12の外箱内面に埋設したコン
デンサ、42はコンプレッサ、43はコンブレラT42
を冷却する冷却ファン(図示せず〕用の通風ダクトであ
る。
°39 is an evaporation plate for evaporating defrosting water, 4Q is a hot plate condenser for promoting evaporation of defrosting water, 4
1.41' is a capacitor embedded in the inner surface of the outer box of the refrigerator main body 12, 42 is a compressor, and 43 is a combrella T42.
This is a ventilation duct for a cooling fan (not shown) that cools the air.

冷凍サイクルは第5図に示す如く、コンプレッサ42、
ホットプレートコンデンサ40、コンデンサ41.41
’、分流路44、第一のキャピラリチューブ46、グレ
ート式エバポレータ29、逆止弁46、フィン付エバポ
レータ20の順に接続して冷却回路を構成し、更に分流
器44とフィン付エバポレータ20 間に、グレート式
エバポレータ29をバイパスする第2のキャピラリチュ
ーブ48を接続し、且つプレート式エバポレータ29の
上流側及び第2のキャピラリチューブ47人口部に、前
記エバポレータ20.29への冷媒流入を制御する。電
磁弁A48、電磁弁B49をそれぞれ配接している。こ
の冷凍サイクル内には、沸点の異なる2種類の冷媒を適
当な割合で混合(例えばR−22とR−152aを重量
比で50:60に混合)封入しである。
As shown in FIG. 5, the refrigeration cycle includes a compressor 42,
Hot plate capacitor 40, capacitor 41.41
A cooling circuit is constructed by connecting in this order the branch flow path 44, the first capillary tube 46, the grate type evaporator 29, the check valve 46, and the finned evaporator 20, and between the flow diverter 44 and the finned evaporator 20, A second capillary tube 48 bypassing the plate evaporator 29 is connected to the upstream side of the plate evaporator 29 and to the port of the second capillary tube 47 to control the refrigerant inflow into the evaporator 20.29. A solenoid valve A48 and a solenoid valve B49 are respectively arranged. Two types of refrigerants having different boiling points are mixed in an appropriate ratio (for example, R-22 and R-152a are mixed at a weight ratio of 50:60) in this refrigeration cycle.

電気回路図は第6図に示す如くであり60は電源、51
は冷凍室16温度を調節する温度調節器、62はフィン
付エバポレータ2oの除霜用タイマ、63は低温冷凍室
の運転の人、切を切換える切換スイッチ、64は冷凍室
16の冷却用ファン22を駆動するファンモータでタッ
プ切換えによる、高速回転回路54aと低速回転回路5
4bを有しており、電磁弁A48とファンモータ64の
低速回転回路64bを並列に接続し、この並列回路を切
換スイッチ63の”入°°端子53aに接続している。
The electrical circuit diagram is as shown in Figure 6, where 60 is a power supply, 51
62 is a defrosting timer for the finned evaporator 2o; 63 is a person who operates the low-temperature freezing room; a selector switch is used to turn it off; 64 is a cooling fan 22 for the freezing room 16. A high-speed rotation circuit 54a and a low-speed rotation circuit 5 are connected by tap switching using a fan motor that drives the
4b, the solenoid valve A48 and the low speed rotation circuit 64b of the fan motor 64 are connected in parallel, and this parallel circuit is connected to the "on" terminal 53a of the changeover switch 63.

また、電磁弁B49とファンモータ64の高速回転回路
64aを並列に接続し、前記並列回路を切換スイッチ6
3の”切”端子53bに接続し切換スイッチ63にて前
記電磁弁A48、B49、ファンモータ64を制御する
制御回路Cを形成し、前記制御回路Cとコンプレッサ4
2を並列に接続し、前記並列回路と除霜用タイマ62の
常閉接点62a1温度調節器61をそれぞれ直列し冷却
制御回路を形成している。66はフィン付エバポレータ
20の除霜用ヒータで、66は除霜終了検知用バイメタ
ルであり、それぞれ直列に接続し、一端を除霜用タイマ
62の常開接点62bに、他端を電源60に接続してい
る。67は除霜用タイマ62の接点52a、52bを積
算時間により自動的に切換えるためのタイマモータで、
一端を温度調節器61の開閉端子側に接続し、他端を電
源に接続している。68は低温冷凍室26の除霜スイッ
チで手動作動、自動復帰機能をもっており、温度調節器
61と常閉接点6.8 aが直列になる様接続し、常開
接点5sbと電源間に低温冷凍室26の除霜用ヒータ3
0を接続している。
Also, the solenoid valve B49 and the high-speed rotation circuit 64a of the fan motor 64 are connected in parallel, and the parallel circuit is connected to the selector switch 64.
A control circuit C is formed which connects to the "off" terminal 53b of the compressor 4 and controls the solenoid valves A48 and B49 and the fan motor 64 by means of a changeover switch 63, and the control circuit C and the compressor 4
2 are connected in parallel, and the parallel circuit and the normally closed contact 62a1 of the defrosting timer 62 and the temperature regulator 61 are respectively connected in series to form a cooling control circuit. 66 is a defrosting heater for the finned evaporator 20, and 66 is a bimetal for detecting the end of defrosting, which are connected in series, with one end connected to the normally open contact 62b of the defrosting timer 62, and the other end connected to the power source 60. Connected. 67 is a timer motor for automatically switching the contacts 52a and 52b of the defrosting timer 62 according to the accumulated time;
One end is connected to the opening/closing terminal side of the temperature regulator 61, and the other end is connected to a power source. 68 has a manual activation and automatic return function with the defrosting switch of the low temperature freezing chamber 26, and the temperature controller 61 and the normally closed contact 6.8a are connected in series, and the low temperature freezing is connected between the normally open contact 5sb and the power supply. Defrosting heater 3 in chamber 26
0 is connected.

上記構成において低温冷凍室使用時(°°入゛′時)の
冷却運転中は温度調節器61は閉路、除霜スイッチ68
、除霜用タイマ62、切換スイッチ53はそれぞれ常閉
回路を形成しているのでファンモータ64は低速回転回
路54bが形成され電磁弁A48は開路、電磁弁B49
は閉路され、第6図の点線の冷凍ザイクルを形成する。
In the above configuration, the temperature controller 61 is closed during the cooling operation when the low-temperature freezer is used (°° turned on), and the defrost switch 68 is closed.
, the defrosting timer 62, and the changeover switch 53 each form a normally closed circuit, so the fan motor 64 forms a low-speed rotation circuit 54b, so that the solenoid valve A48 is open and the solenoid valve B49 is closed.
is closed, forming a frozen cycle indicated by the dotted line in FIG.

即ちコンプレッサ42で圧縮され、コンデンv41.4
1’で液化された非共沸混合冷媒は、第1のキャピラリ
チューブ46で減圧されて低温冷凍室26のプレート式
エバポレータ29に入り、ここで例えば−36℃で蒸発
を開始する。そしてグレート式エバポレータ29内で蒸
発し、非共沸混合冷媒であるので蒸発が進むにつれて高
沸点冷媒の濃度の高い液冷媒が残り、蒸発温度も上昇す
る。この状態で冷媒は冷凍室15のフィンエバポレータ
2oに入り、ここで例えば−30℃で蒸発し、−24°
Cテ蒸発を完了してすべてガス状になってコンブレラ+
j42に戻る。このときファンモータ54は低速回転し
ているので、冷凍室16のフィン付エバポレータ20で
の冷凍能力を低下させ、低温冷凍室26の温度を低下さ
一オるのに充分な蒸発温度を維持スると共に、コンプレ
ッサ42の運転時間を長くすることができる。そして温
度調節器61が開略し、冷却運転が停止されると、電磁
弁A48゜B49はそれぞれ閉路し、高圧高温冷媒か第
1のキャピラリチー−ブ46第2キャピラリチーーブ4
7を通じて、それぞれのエバポレータ45.47内に流
入するのを防止する。このようにして、〜30℃30℃
程温冷凍室26と、−18℃程度の冷凍室16、そして
ダンパサーモ24により3℃程度の冷蔵室16の温度を
保つものである。
That is, it is compressed by the compressor 42, and the condenser v41.4
The non-azeotropic mixed refrigerant liquefied in step 1' is depressurized by the first capillary tube 46 and enters the plate evaporator 29 of the low-temperature freezing chamber 26, where it starts evaporating at, for example, -36°C. Then, it evaporates in the grate type evaporator 29, and since it is a non-azeotropic mixed refrigerant, as the evaporation progresses, a liquid refrigerant with a high concentration of high boiling point refrigerant remains, and the evaporation temperature also rises. In this state, the refrigerant enters the fin evaporator 2o of the freezer compartment 15, where it evaporates at, for example, -30°C, and -24°C.
After completing the evaporation, everything becomes gaseous and becomes a combrella +
Return to j42. At this time, since the fan motor 54 is rotating at a low speed, the cooling capacity of the finned evaporator 20 of the freezing compartment 16 is reduced, and the evaporation temperature is maintained sufficient to lower the temperature of the low-temperature freezing compartment 26. At the same time, the operating time of the compressor 42 can be extended. Then, when the temperature regulator 61 is opened and the cooling operation is stopped, the solenoid valves A48 and B49 are closed, and the high-pressure and high-temperature refrigerant is transferred to the first capillary tube 46 and the second capillary tube 4.
7 into the respective evaporator 45, 47. In this way, ~30℃30℃
The temperature of the refrigerator compartment 16 is maintained at about 3°C by a moderate temperature freezing room 26, a freezing room 16 at about -18°C, and a damper thermostat 24.

次に、低温冷凍室26を使用しない場合じ切″時)は切
換スイッチ63を手動で°“切” 54 a側に切換え
る。するとファンモータ64は高速回転回路54aを形
成し、電磁弁A48は閉路、電磁弁B49は開路し、第
6図の実線の冷凍サイクルを形成し、低温冷凍室26の
プレート式エバポレータ29へ冷媒を流さず、冷凍室1
6のフィン付エバポレータ2oのみに冷媒を流す。従っ
て低温冷凍室26内を低温にするための冷凍能力が不用
であり、ファンモータ54は高速回転しているのでその
熱交換量を増加しフィン付エバポレータ20での蒸発温
度を最低温度(例えば−36℃)丑で低下さすことなく
、かつ画室使用時よりは低下させてその能力か増大し、
コンプレッ+j42の運転時間は低温冷凍室26使用時
(”入”時)に比べ大幅に減少でき、又冷気吐出温度が
極度に低下することがないため、冷凍室26温度の設定
が大幅に移動し、圧縮機42の運転が極端に短かくなる
ことがなく、未蒸発液冷媒の圧縮機吸入も防げる。又、
低温冷凍室26内は、ファン22がら吐出された冷気及
び冷凍室16内の冷気により冷却されているので、冷凍
室16と同等温度となっている為冷凍室として使用可能
である。
Next, when the low-temperature freezer compartment 26 is not used (when it is turned off), the selector switch 63 is manually switched to the "off" side 54a.Then, the fan motor 64 forms a high-speed rotation circuit 54a, and the solenoid valve A48 is turned off. The circuit is closed, and the solenoid valve B49 is opened, forming the refrigeration cycle shown by the solid line in FIG.
Refrigerant is allowed to flow only through the finned evaporator 2o. Therefore, the refrigerating capacity to lower the inside of the low-temperature freezer compartment 26 to a low temperature is unnecessary, and since the fan motor 54 rotates at high speed, the amount of heat exchange is increased, and the evaporation temperature in the finned evaporator 20 is lowered to the minimum temperature (for example, − (36°C) without lowering it due to heating, and lowering it than when using the chamber, increasing its capacity,
The operating time of the compressor +j42 can be significantly reduced compared to when the low-temperature freezer compartment 26 is used (when it is "on"), and since the cold air discharge temperature does not drop extremely, the temperature setting of the freezer compartment 26 can be changed significantly. , the operation of the compressor 42 will not be extremely shortened, and suction of unevaporated liquid refrigerant into the compressor can also be prevented. or,
The inside of the low-temperature freezer compartment 26 is cooled by the cold air discharged from the fan 22 and the cold air inside the freezer compartment 16, so it has the same temperature as the freezer compartment 16, so it can be used as a freezer.

次に、冷凍室16のフィン付エバポレータ20の除霜は
タイマモータ67の積算時間により自動的に除霜回路に
切換えられ、コンプレッ+j42、ファン22は停止し
第1キヤピラリチユーブ45の入口の電磁弁A4Bは閉
路する。そして除霜用ヒータ56に通電されフィン付エ
バポレータ20が除霜される。このときフィン付エバポ
レータ2Qの上流側に逆止弁があジ、又電磁弁48は閉
路しているので、フィン付エバポレータ20で加熱すれ
たガス冷媒がプレート式エバポレータ29に流入するこ
とがなく、フィン付エバポレータ2oの除霜による、低
温冷凍室26への熱影響を完全に防止することができる
。除霜が完了すると除霜終了検知用のバイメタル66が
開略し、除霜用ヒータ55への通電を解除する。そして
一定時間後タイマモータ6oにより1、自動的に常閉接
点62aに切換シ、冷却運転が再開される。
Next, the defrosting of the finned evaporator 20 in the freezer compartment 16 is automatically switched to the defrosting circuit according to the cumulative time of the timer motor 67, the compressor +j42 and the fan 22 are stopped, and the electromagnetic circuit at the inlet of the first capillary tube 45 is switched to the defrosting circuit. Valve A4B is closed. Then, the defrosting heater 56 is energized and the finned evaporator 20 is defrosted. At this time, there is a check valve on the upstream side of the finned evaporator 2Q, and the solenoid valve 48 is closed, so the gas refrigerant heated in the finned evaporator 20 does not flow into the plate type evaporator 29. It is possible to completely prevent thermal effects on the low temperature freezing chamber 26 due to defrosting of the finned evaporator 2o. When the defrosting is completed, the bimetal 66 for detecting the end of defrosting is opened and the energization to the defrosting heater 55 is canceled. After a certain period of time, the timer motor 6o automatically switches to the normally closed contact 62a and restarts the cooling operation.

次に、低温冷凍室26のプレート式エバポレータ29の
除霜は、手動にて除霜スイッチ68を常開接点68b側
に切換えると冷却運転が停止され、除霜ヒータ30に通
電されプレート式エバポレータ29を除霜し、除霜が完
了すると自動的に除霜スイッチ58が常閉接点68a側
に切換り、冷却運転を再開する。尚除霜時は冷却運転が
停止するが、除霜時間は短かい為、冷凍室16の温度を
著しく上昇させることはない。
Next, to defrost the plate type evaporator 29 in the low-temperature freezer compartment 26, when the defrost switch 68 is manually switched to the normally open contact 68b side, the cooling operation is stopped, and the defrost heater 30 is energized and the plate type evaporator 29 is defrosted. When the defrosting is completed, the defrost switch 58 is automatically switched to the normally closed contact 68a side and the cooling operation is resumed. Although the cooling operation is stopped during defrosting, since the defrosting time is short, the temperature in the freezer compartment 16 does not rise significantly.

従りてコングレッサ停止中、及びフィンコイルエバポレ
ータ20の除霜中に低温冷凍室のプレート式エバポレー
タ29内に高温冷媒が流入することがなく安定した低温
を維持する低温冷凍室26を提供することができる。又
低温冷凍室26を冷凍室としても使用でき、節電を図る
ことが可能である等の効果が得られる。
Therefore, it is possible to provide a low-temperature freezing chamber 26 that maintains a stable low temperature without the high-temperature refrigerant flowing into the plate-type evaporator 29 of the low-temperature freezing chamber while the congressor is stopped and the fin coil evaporator 20 is defrosted. can. Furthermore, the low-temperature freezing chamber 26 can also be used as a freezing chamber, resulting in effects such as being able to save electricity.

発明の効果 以上の説明からも明らかなように、本発明は冷凍室内に
、低温冷凍室を設け、それぞれに専用のエバポレータを
備え、低温冷凍室用エバポレータ、冷凍室用エバポレー
タを直列に接続し、低温冷凍室用エバポレータをバイパ
スするバイパス回路を設け、低温冷凍室用エバポレータ
の上流側に電磁弁Aをバイパス回路中に電磁弁Bを設け
、非共沸冷媒を封入して冷凍システムを形成し、冷凍室
温度調節器、低温冷凍室を運転・停止する切換スイッチ
、高速回転と低速回転が切換できるファンモータとを備
え、低温冷凍室使用時(”入゛時)は電磁弁Bを閉路、
ファンモータは低速回転回路を形成し、冷凍室温度調節
器に電磁弁Aとファンモ−タ、コンプレッサを制御し、
低温冷凍室を使用しない時(“切°“時)は、電磁弁A
を閉路、ファンモータは高速回転回路を形成し、冷凍室
温度調節弁Bとファンモータ、コンプレッサを制御する
ものであるからコンプレッサが停止中に高温高圧冷媒が
、両エバポレータに流入するのが防止でき、低温冷凍室
、冷凍室の温度上昇を最小限にすることができる。又、
低温冷凍室使用時C″人“′時)は冷凍室用エバポレー
タの能力を減少させ、コンプレッサの運転時間を長くす
ると共に蒸発温度を低下させ、安定した低温を維持でき
る低温冷凍室を提供できる。又、低温冷凍室として使用
しない時(“切”時)は冷凍室として使用しコンプレッ
サの冷凍負荷を減少させ且つ熱交換風量の増大に伴って
冷凍室用エバポレータの蒸発温度を最適にしその能力を
増大させ、コンプレッサの運転時間を短かくするので節
電となり又、圧縮機の液冷媒吸引を減少する等の効果が
得られるものである。
Effects of the Invention As is clear from the above explanation, the present invention provides a low-temperature freezing chamber within the freezing chamber, each of which is equipped with a dedicated evaporator, and the evaporator for the low-temperature freezing chamber and the evaporator for the freezing chamber are connected in series. A bypass circuit is provided to bypass the evaporator for the low-temperature freezer compartment, a solenoid valve A is provided upstream of the evaporator for the low-temperature freezer compartment, and a solenoid valve B is provided in the bypass circuit, and a non-azeotropic refrigerant is sealed to form a refrigeration system. Equipped with a freezer temperature regulator, a switch to start and stop the low-temperature freezer, and a fan motor that can switch between high-speed and low-speed rotation.
The fan motor forms a low-speed rotation circuit, and controls the solenoid valve A, fan motor, and compressor in the freezer compartment temperature controller.
When the low-temperature freezer compartment is not in use (when “off”), turn off solenoid valve A.
The fan motor forms a high-speed rotation circuit that controls the freezer compartment temperature control valve B, the fan motor, and the compressor, so it is possible to prevent high-temperature, high-pressure refrigerant from flowing into both evaporators while the compressor is stopped. , the temperature rise in the low-temperature freezing room and freezing room can be minimized. or,
When the low-temperature freezing chamber is in use (C'' hours), the capacity of the evaporator for the freezing chamber is reduced, the operating time of the compressor is lengthened, and the evaporation temperature is lowered, thereby providing a low-temperature freezing chamber that can maintain a stable low temperature. In addition, when it is not used as a low-temperature freezing room (when turned off), it is used as a freezing room to reduce the refrigeration load on the compressor and optimize the evaporation temperature of the evaporator for the freezing room to increase its capacity as the heat exchange air volume increases. Since the compressor operating time is increased and the operating time of the compressor is shortened, it is possible to save power and to obtain effects such as reducing the amount of liquid refrigerant sucked into the compressor.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の冷蔵庫の断面図、第2図は従来の冷凍サ
イクル図、第3図は本発明の一実施例を示す冷蔵庫の断
面図、第4図は第3図の要部組立図、第6図は本発明の
冷凍サイクル図、第6図は本発明の冷蔵庫の電気配線図
である。 16・・・・・・第2の区画室、20・・・・・・第2
のエバポレータ、26・・・・・・第1の区画室、29
・・・・・・第1のエバポレータ、48.49・・・・
・・を磁弁、42・・・・・・コンプレッサ、64・・
・・・・ファンモータ、61・旧・・温度調節器、C・
・・・・・制御回路。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図 第5図 第6図
Fig. 1 is a sectional view of a conventional refrigerator, Fig. 2 is a conventional refrigeration cycle diagram, Fig. 3 is a sectional view of a refrigerator showing an embodiment of the present invention, and Fig. 4 is an assembly diagram of the main parts of Fig. 3. , FIG. 6 is a refrigeration cycle diagram of the present invention, and FIG. 6 is an electrical wiring diagram of the refrigerator of the present invention. 16...Second compartment, 20...Second
evaporator, 26...first compartment, 29
...First evaporator, 48.49...
... is a magnetic valve, 42... is a compressor, 64...
...Fan motor, 61.Old...Temperature controller, C.
...Control circuit. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 第1の区画室と、第2の区画室と、前記第1の区画室の
、運転、停止を切換える切換スイッチ、前記第2の区画
室の温度を調節する温度調節器、前記第1の区画室を冷
却する第1のエバポレータ、前記第2の区画室を冷却す
る第2のエバポレータと、コンプレッサ、コンデンサを
備え電磁弁Aと前記第1のエバポレータと前記第2のエ
バポレータを直列に接続し、一方前記電磁弁Aと前記第
1のエバポレータをバイパスする電磁弁Bを有するバイ
パス回路を設は沸点の異なる2種類の冷媒を混合させた
非共沸混合冷媒を封入し、冷却システムを形成し、前記
第2のエバポレータによる冷気を送風する高速・低速運
転可能なファンモータを備え前記第1の区画室の運転・
停止に応動して前記第1の区画室の運転中には前記ファ
ンモータを低速運転に、前記第1の区画室の停止中には
前記ファンモータを高速運転する制御回路を備えた冷蔵
庫。
A first compartment, a second compartment, a changeover switch for switching between operation and stop of the first compartment, a temperature controller for adjusting the temperature of the second compartment, and a temperature controller for adjusting the temperature of the second compartment; A first evaporator that cools the chamber, a second evaporator that cools the second compartment, a compressor, and a condenser, and a solenoid valve A, the first evaporator, and the second evaporator are connected in series; On the other hand, a bypass circuit having a solenoid valve A and a solenoid valve B that bypasses the first evaporator is installed, and a non-azeotropic mixed refrigerant obtained by mixing two types of refrigerants with different boiling points is sealed to form a cooling system; A fan motor capable of high-speed and low-speed operation is provided to blow cold air from the second evaporator.
The refrigerator includes a control circuit that operates the fan motor at a low speed while the first compartment is in operation in response to the stoppage, and operates the fan motor at a high speed while the first compartment is not operating.
JP18948282A 1982-10-28 1982-10-28 Refrigerator Pending JPS5981476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18948282A JPS5981476A (en) 1982-10-28 1982-10-28 Refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18948282A JPS5981476A (en) 1982-10-28 1982-10-28 Refrigerator

Publications (1)

Publication Number Publication Date
JPS5981476A true JPS5981476A (en) 1984-05-11

Family

ID=16241995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18948282A Pending JPS5981476A (en) 1982-10-28 1982-10-28 Refrigerator

Country Status (1)

Country Link
JP (1) JPS5981476A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108976A (en) * 1985-11-06 1987-05-20 三洋電機株式会社 Controller for refrigerator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62108976A (en) * 1985-11-06 1987-05-20 三洋電機株式会社 Controller for refrigerator
JPH0470545B2 (en) * 1985-11-06 1992-11-11 Sanyo Electric Co

Similar Documents

Publication Publication Date Title
JP3185888B2 (en) Tandem cooling system
JP2002504661A (en) Refrigerator equipped with a cooler in each of the refrigerator compartment and the freezer compartment
WO1995013510A9 (en) Tandem refrigeration system
AU743547B2 (en) Dual-service evaporator system for refrigerators
JPH07120130A (en) Refrigerator
JP2000283626A (en) Refrigerator
JPS5981476A (en) Refrigerator
JP3954835B2 (en) refrigerator
JP2771730B2 (en) Showcase
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3430160B2 (en) refrigerator
JPS5969680A (en) Refrigerator
JPH07160937A (en) Automatic vending machine
JP2001153477A (en) Refrigerating plant
JP3495956B2 (en) refrigerator
JP2002195734A (en) Refrigerator-freezer
JPH0429345Y2 (en)
JPS5919263Y2 (en) Freezer or refrigerated open showcase with air conditioner/heater
JPH09203569A (en) Refrigerator
JPH08240348A (en) Refrigerator
JPH0481102B2 (en)
JPH04273974A (en) Freezing and refrigeration show case
JPS58200975A (en) Freezing refrigerator
JPS62200166A (en) Freezing refrigerator
JP2000337754A (en) Refrigerator