JPS5980809A - Construction of prestressed concrete floor panel in road bridge - Google Patents

Construction of prestressed concrete floor panel in road bridge

Info

Publication number
JPS5980809A
JPS5980809A JP57190506A JP19050682A JPS5980809A JP S5980809 A JPS5980809 A JP S5980809A JP 57190506 A JP57190506 A JP 57190506A JP 19050682 A JP19050682 A JP 19050682A JP S5980809 A JPS5980809 A JP S5980809A
Authority
JP
Japan
Prior art keywords
concrete
steel
slab
prestress
joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57190506A
Other languages
Japanese (ja)
Other versions
JPH023843B2 (en
Inventor
冨沢 三郎
斉藤 光男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ishikawajima Kenzai Kogyo Co Ltd
Original Assignee
Ishikawajima Kenzai Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ishikawajima Kenzai Kogyo Co Ltd filed Critical Ishikawajima Kenzai Kogyo Co Ltd
Priority to JP57190506A priority Critical patent/JPS5980809A/en
Publication of JPS5980809A publication Critical patent/JPS5980809A/en
Publication of JPH023843B2 publication Critical patent/JPH023843B2/ja
Granted legal-status Critical Current

Links

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 本発明は、道路橋等の路面を形成するプレストレストコ
ンクリート床版の架設工法に関Tる。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a construction method for prestressed concrete slabs forming the road surface of road bridges and the like.

近年、交通歇の増大に加えて坦輛の走行速度と重量が大
さくなり、道路の怪力)な弱点でも破損ケ受けるため、
道路維持が一段と漏〃)シくなってさている。なカ)で
も鋼桁上に鉄筋コンクリート床版2置いたいわ1φる鋼
橋では、tgI2鉄筋コンクリート床版の損傷が多くな
っており、その対策として新床版に8いて番ゴ、床版厚
Ct)増加、主桁剛度差による付加曲げモーメントの考
慮、および配筋方法について建設省より新しい指導がな
ざnているう一万、このような鉄筋コンクリート床版の
老朽化に伴ない、床版のFli?強あるいは床版の打替
工事が次第に多くなりつつある。老朽化した床版の補強
対策としてg:t、縦桁増設、鋼板接着、繊維コンされ
ており、また、床版の打替工事を行うにあたっては、現
状の交通下において最少の交通規制のもとで、予め工場
等で製造しておいた公知のコンポスラブ等のコンクリー
トスラブを順次打替えていく方法やセミプレハブとして
公知のユニットスラブを用いて現場でコンクリート打設
を行なっていく方法がとられている。
In recent years, in addition to the increase in traffic interruptions, the traveling speed and weight of vehicles have increased, and vehicles are susceptible to damage due to the weak points of the road.
Road maintenance is becoming increasingly poor. However, in 1φ steel bridges where two reinforced concrete deck slabs are placed on the steel girders, the tgI2 reinforced concrete deck slabs are often damaged, and as a countermeasure, the new deck slabs are installed with a thickness of 8, and the slab thickness Ct). The Ministry of Construction has issued new guidance on consideration of additional bending moments due to differences in stiffness of main girders, and reinforcement methods. ? Construction work to replace steel or floor slabs is gradually becoming more common. As reinforcement measures for the aging floor slab, G:T, additional longitudinal girders, steel plate adhesion, and fiber reinforcement are being used.In addition, when replacing the floor slab, measures will be taken to minimize traffic restrictions under the current traffic conditions. Therefore, there are two methods: one is to sequentially replace concrete slabs such as well-known composite slabs that have been manufactured in advance at a factory, and the other is to use unit slabs known as semi-prefabricated concrete slabs and place concrete on site. It is being

ところで、上述した鋼橋以外の道路橋として、稿げたも
コンクリートで構成したいわゆるコンクリート橋がある
。特に、橋げたをプレストレストコンクリートで構成し
たコンクリート橋は、従来、鋼橋でしか考えられなかっ
た架設地点、支間に対しても通用されつつ61、またそ
の床版もw4橋のy=コンクリート床版に比べ、損傷が
非常に少なく、その利用価値が高まっている。
By the way, as a road bridge other than the above-mentioned steel bridge, there is a so-called concrete bridge made of concrete. In particular, concrete bridges whose girders are made of prestressed concrete are now being used for construction points and spans that were previously considered only for steel bridges. In comparison, there is very little damage and its utility value is increasing.

一方、上記鋼橋の床版にプレストレスを尋人する1歇と
して、プレキャスト床版な用いて主筋方向すなわち幅員
方向はROq造とし、配力筋方向すなわち橋軸方向に縦
細め用プレストレスを導入し、主桁上にコンクリートを
打設して主桁と一体化するものがある。
On the other hand, as a step to apply prestress to the deck of the above-mentioned steel bridge, we used a precast deck, and the main reinforcement direction, that is, the width direction, is ROq construction, and the longitudinal narrowing prestress is applied in the distribution reinforcement direction, that is, the bridge axis direction. There is one that integrates with the main girder by pouring concrete onto the main girder.

ところが、このような従来の1紙は、鉄筋コンクリート
床版の橋軸方向にプレストレスを尋人することによシ、
上記床版の強度、耐久性をある程度向上できるが、鋼橋
のllr床版としては、さらに強度が大きく、耐久性の
憂れた新床版の出現が強く望まれている。
However, such a conventional paper does not solve the problem by applying prestress in the direction of the bridge axis of the reinforced concrete slab.
Although the strength and durability of the above-mentioned deck slabs can be improved to some extent, there is a strong desire for new deck slabs with even greater strength and poor durability as llr deck slabs for steel bridges.

本発明は、以上のような点を考慮してなされたもので、
鋼橋の床版として予めプレストレスを尋人したプレスト
レストコンクリート床版を用い、このプレストレストコ
ンクリート床版によって鋼橋の床版の強度と耐久性を著
しく向上することができ、またコンクリート量を節減す
ることがで為、しかも目地コンクリートの橋軸′及び幅
員方向にプレストレスを尋人できる道路橋等におけるプ
レストレストコンクリート床版の架投工紘を提供するこ
とを目的とする。
The present invention was made in consideration of the above points, and
Prestressed concrete slabs that have been prestressed in advance are used as deck slabs for steel bridges, and the prestressed concrete slabs can significantly improve the strength and durability of steel bridge decks, and also reduce the amount of concrete used. To provide a bridge casting system for prestressed concrete slabs in road bridges, etc., which is easy to use and can also prestress joint concrete in the bridge axis and width directions.

以下、本発明を図面に基づいて詳細に説明する。Hereinafter, the present invention will be explained in detail based on the drawings.

第1図は本発明の実施に用いられるプレストレストコン
クリート床版(以下ps床版と略称する。)を示すもの
で、このPEI床版Aは、上下に複数の主筋1及び複数
の配力筋2がそれぞれ幅員方向及\ び橋軸方向に沿ってコンクリート3内に配筋され、上記
配力筋2の一端すなわち継手flAzaはPa床版Aの
端面から所定のラップ長にそれぞれ突出されている。ま
た、上記PB床版Aは、幅員方向及び橋軸方向(二方向
)に延びるPC鋼材挿入用のダクトを有し、幅員方向ダ
クト内にはpc鋼材4が配置されている。そして仁の幅
員方向ダクト内に配置されたPC鋼材4すなわち上記上
下の主筋lの間に配置されたPC鋼材4は、上記ps床
版Aの両側縁近傍に配置される一本づつのPC@拐4a
、4aを残して他のPC鋼材4を緊張した状態でコンク
リート3内に埋設されている。
FIG. 1 shows a prestressed concrete floor slab (hereinafter referred to as PS slab) used in the implementation of the present invention. are arranged in the concrete 3 along the width direction and the bridge axis direction, respectively, and one end of the distribution reinforcement 2, that is, the joint flAza, projects from the end surface of the Pa slab A by a predetermined lap length. Further, the PB deck A has a duct for inserting a PC steel material extending in the width direction and the bridge axis direction (two directions), and the PC steel material 4 is arranged inside the width direction duct. The PC steel materials 4 placed in the width direction duct, that is, the PC steel materials 4 placed between the above-mentioned upper and lower main reinforcements 1, are connected to one PC@ placed near both side edges of the PS deck A. kidnapping 4a
, 4a, and the other PC steel members 4 are buried in the concrete 3 in a tensioned state.

すなわち、幅員及び橋軸方向(二方向)にダクトを有す
るプレキャストコンクリート床版に於いて幅員方向に配
置されたPC鋼材4のそのうち両側縁近傍に位置する一
本づつを残して他のpc鋼[4が緊張され、これによっ
て上記PB床版Aが形成されている。
In other words, in a precast concrete slab that has ducts in the width and bridge axis directions (two directions), among the PC steel members 4 arranged in the width direction, one of the PC steel members 4 located near both side edges is left, and the other PC steel members [ 4 is tensioned, thereby forming the above-mentioned PB floor slab A.

また、上i柔版Aは、幅員方向の長さ11が橋軸方向の
長さl、よりも長目の寸法化を有し、幅員方向両側下面
と幅員方向中央部下面には、橋軸方向に沿ってハンプ部
5が突設されている。このハンプ部5には、橋軸方向に
処びるシース6が幅員方向に並んで埋設され、このシー
ス6によって橋軸方向に姑びるpc鋼材挿入用の上記ダ
クトが形成されている。また上記ハンチ部5にはP8床
版Aの版厚方向に貝通する円筒状のグラウトホール7が
橋軸方向に並んで形成されている。
In addition, the upper i flexible version A has a dimension in which the length 11 in the width direction is longer than the length l in the bridge axis direction, and the bridge axis A hump portion 5 is provided to protrude along the direction. In this hump portion 5, sheaths 6 extending in the bridge axis direction are embedded side by side in the width direction, and the sheaths 6 form the above-mentioned duct for inserting the PC steel material in the bridge axis direction. Further, in the haunch portion 5, cylindrical grout holes 7 are formed which extend in the thickness direction of the P8 deck slab A and are lined up in the bridge axis direction.

一方、図中8は、目地部の型枠としてPS床版Aに取シ
付けられたグラスファイバ−レイン7オースドコンクリ
ート版(G−R−C!版とmi!1称する。)であり、
9は他機の補強鉄筋をそれぞれ示している。
On the other hand, 8 in the figure is a glass fiber rain 7 austed concrete plate (referred to as G-R-C! plate and mi!1) attached to PS floor slab A as a formwork for the joint area.
9 shows reinforcing bars of other machines.

次に、以上のように構成されたps床販Aを用いた道路
橋等における架設1内について説明する。
Next, an explanation will be given of the inside of the construction 1 in a road bridge or the like using the PS floor sales A configured as described above.

まず、第2図ないし第4図に示すように、鋼製主桁lO
上の上s7ランジ10aの橋軸方向両側にシールゴム1
1を貼付し、予め工場等でjR造しておいた上述のPS
S床版上クレーンによって吊り降ろし上記主桁lO上に
差し渡す。この主桁lOの上部72ンジ10a上には、
Pa床版Aのグラウトホール7内にそれぞれ位置する頭
部付きのジベル12が溶接等の手段により固着されてお
り、したがってPEI床版Aを主桁lO上に差し渡して
いく際には、上記ジベル12をグラウトポール7内に嵌
め入れてFSS床版の位置決めを行なう。
First, as shown in Figures 2 to 4, the steel main girder lO
Seal rubber 1 on both sides of the upper s7 flange 10a in the bridge axis direction.
1 pasted on the above-mentioned PS that has been pre-manufactured at a factory etc.
It will be lowered by a crane above the S floor slab and placed on the main girder 10 above. On the upper 72 inch 10a of this main girder 10,
Dovetails 12 with heads located in the grout holes 7 of the Pa floor slab A are fixed by means such as welding. Therefore, when passing the PEI floor slab A onto the main girder lO, 12 into the grout pole 7 to position the FSS floor slab.

ひとつのPSS床版上主桁10上での位置決めが終われ
ば、次いで、他のP8床版Aをクレーンによって吊シ降
ろし、PSS床版上幅員方向両縁部な互いに所定目地間
隔を設けかつグラウトホール7内にジベル12を嵌め入
れて上記主桁lO上に架設していく。この際、PSS床
版間志の配力筋2の継手端2aを、第4図にその詳細を
示すように互いにラップさせておく。
Once the positioning on the upper main girder 10 of one PSS deck slab is completed, the other P8 floor slab A is then lowered by a crane, and a predetermined joint spacing is established between each other on both edges in the width direction of the PSS floor slab, and grouting is performed. A dowel 12 is fitted into the hole 7 and the girder is constructed on the main girder IO. At this time, the joint ends 2a of the distribution bars 2 between the PSS floor slabs are lapped together as shown in detail in FIG. 4.

このようにして、順次、P8床版Aを、橋軸方向にプレ
ストレスを導入するのに好適な区間L(20〜30m)
だけ主桁10上に架設するとともに、これらps床版A
のハンチ部5に埋設したシース6にPC鋼材15を挿入
して、各PS床版Aをつなぎ合わする。
In this way, the P8 deck slab A is sequentially moved to a section L (20 to 30 m) suitable for introducing prestress in the bridge axis direction.
In addition, these PS floor slabs A
A PC steel material 15 is inserted into the sheath 6 buried in the haunch portion 5 of the PS deck A and each PS floor slab A is joined together.

次いで、ps床版Aの互いに向き合う端面間すなわち目
地部に目地コンクリート16を施して所定の圧縮強度ま
で硬化さげた後、ポストテンション方式によって区間り
の端部で上記PC鋼拐15を緊張することによシPs床
版Aの橋軸方向にプレストレスを尋人する。この際、上
記目地コンクリート16にも橋軸方向にプレストレスが
導入される。
Next, joint concrete 16 is applied between the mutually facing end surfaces of the PS slab A, that is, at the joints, and after hardening to a predetermined compressive strength, the PC steel concrete 15 is tensioned at the end of the section using a post-tension method. Apply prestress to the bridge axis direction of the deck slab A. At this time, prestress is also introduced into the joint concrete 16 in the bridge axis direction.

さらに、上記ps床版Aの幅員方向両側縁近傍の緊張を
与えていないPC鋼@4aにポストテンション方式によ
ってプレストレスを導入し、目地部の目地コンクリート
16に幅員方向のプレストレスを与える。すなわち、上
記目地コンクリート16は、I’S床版Aの両側線近傍
に位置する+A張力を与えていないPC鋼材4aにプレ
ストレスを→入することによって、目地コンクリート1
6の画引すからプレストレスが導入される。したがって
、上記目地コンクリート16には、橋軸方向お上ひ幅員
方向の縦横からプレストレスが導入される。
Further, prestress is introduced into the unstressed PC steel @ 4a near both widthwise edges of the PS floor slab A using a post-tensioning method, and prestress is applied to the joint concrete 16 at the joint in the widthwise direction. That is, the joint concrete 16 is created by applying prestress to the PC steel members 4a, which are located near both sides of the I'S floor slab A and are not subjected to +A tension.
Prestress is introduced from the stroke of 6. Therefore, prestress is introduced into the joint concrete 16 from the longitudinal and lateral directions in the bridge axis direction and upper width direction.

そして、最後に、グラウトホール7内にモルタルグラウ
ト17を施し、P8床版Aを主桁lO上に一体に結合す
る。また、上記PC鋼材4a、15にプレストレスを導
入したのちは、これらPC鋼材4a、15を挿入したダ
クト内にグラウチングを実施して、PC鋼材を完全にモ
ルタルまたはセメントペーストで包み、防錆の役目を果
すと同時に付層を起こさせる。
Finally, mortar grout 17 is applied inside the grout hole 7, and the P8 floor slab A is integrally joined onto the main girder IO. In addition, after introducing prestress into the above-mentioned PC steel materials 4a and 15, grouting is carried out in the duct into which these PC steel materials 4a and 15 are inserted, and the PC steel materials are completely covered with mortar or cement paste to prevent rust. It fulfills its role and at the same time causes an adhesion.

なお、上記グラウトホール7は円筒状に形成され、一方
、主桁10の上部7ランジlOa上にシールゴム11が
貼付されているので、上記PS床版Aは、これらの作用
によってプレストレス導入の際に主桁10上をジベル1
2に当たらないよう゛に滑らぜることができ、また特に
、グラウトホール7にグラウチングを施した後は、モル
タルグラウ)17とジベル12との一体化によってPS
S床版上浮き上がシを阻止する作用を発揮し、さらにP
SS床版上橋軸方向および幅員方向のずれ止めも発揮す
る。
Note that the grout hole 7 is formed in a cylindrical shape, and the seal rubber 11 is pasted on the upper 7 flange lOa of the main girder 10, so that the PS floor slab A can be prevented by these actions when prestress is introduced. to the main girder 10 above the dowel 1
In particular, after the grout hole 7 has been grouted, the mortar grout 17 and dowel 12 are integrated so that the PS
The floating above the S floor plate exerts the effect of preventing the P
It also prevents slippage in the axial and width directions of the SS deck slab.

上述の手順によって区間りにおけるps床版Aの架設が
終わったならば、別の区間に対して上述と同様の手順に
よってPSS床版上架設し、鋼橋の路面を形成する。そ
してすべての区間に対してPB床版Aの架設が終わった
後は、PSS床版上幅員方向両端にコンクリートを打設
して地覆20を形成し、高a21を取り付けるとともに
、PS床版A上をアスファルト22等によって舗装する
After completing the erection of the PS deck slab A in the section according to the above-described procedure, the PSS deck slab A is installed on another section using the same procedure as described above to form the road surface of the steel bridge. After the erection of the PB slab A is completed for all sections, concrete is poured on both ends of the PSS slab in the width direction to form the ground cover 20, and the height A21 is attached. Pave the top with asphalt 22 or the like.

このようにして架設される道路橋等の路面においては、
上述した構造のプレストレストコンクリート床版な使用
することによって一層その強度と耐久性が増し、鋼橋に
おける道路維持に対してその威力を十分に発揮できると
ともに、従来の鉄筋コンクリート床版にくらべ版厚もよ
り薄くでき、したがって死荷重を減らすことができる。
For road surfaces such as road bridges constructed in this way,
The use of prestressed concrete deck slabs with the structure described above further increases their strength and durability, making them fully effective for road maintenance on steel bridges, and making the slabs thicker than conventional reinforced concrete deck slabs. It can be made thinner, thus reducing dead weight.

しかも目地コンクリート16にもPSS床版上同悼に橋
軸方向および幅員方向にプレストレスを導入できるので
、目地コンクリート16の弱点をカバーすることができ
る。
Moreover, since prestress can be introduced into the joint concrete 16 in the bridge axis direction and width direction at the same time as above the PSS deck slab, the weak points of the joint concrete 16 can be covered.

また、ps床版A同志の接合が配力筋2の継手端2aに
よるラップ方式であるため、目地の幅をか・η整するこ
とによシ、同一形状のPS床版Aによっても容易にカー
ブ橋に適用することが可能である。
In addition, since the PS floor slabs A are joined together by the lap method using the joint ends 2a of the distribution bars 2, it is possible to easily connect the PS floor slabs A with the same shape by adjusting the width of the joints. It is possible to apply to curved bridges.

さらにまた、本発明においては、ハンチ部5を利用して
この部分にシース6を埋設し、とのシース6にpc鋼材
15を挿入してハンプ部5にプレストレスを導入する構
成であるため、PS床版Aの橋軸方向にも必要に応じて
プレストレスを導入できる。
Furthermore, in the present invention, the sheath 6 is buried in this part using the haunch part 5, and the prestress is introduced into the hump part 5 by inserting the PC steel material 15 into the sheath 6. Prestress can also be introduced in the bridge axis direction of PS deck slab A if necessary.

以上評述したように、本発明にあっては、幅員及び橋軸
方向(二方向)にダクトを有するプレキャストコンクリ
ート床版に於いて幅員方向ダクト内に配置されたPC鋼
材のそのうち両側縁近傍に位置する少なくとも一本づつ
を残して他のpc鋼材を緊張してプレストレストコンク
リート床版を形成し、法プレストレストコンクリート床
版なその幅員方向両縁部を互いに所定目地間隔を設けて
王拍上に架設した後、橋軸方向ダクト内にPCC鋼上挿
入し、上記目地部に目地コンクリートを施して所定の圧
縮強度まで硬化させた後、橋軸方向にプレストレスを導
入し、さらに、上記幅員方向両側縁近傍の緊張を与えて
いないPC鋼材にプレストレスを導入することによって
目地コンクリートにプレストレスを橋軸方向及び幅員方
向に与えることを、特徴とするものであるから、鋼橋の
床版に従来のものにくらべ、より曖れた強度と耐久性を
持たせることができ、しかも目地コンクリートにも縦横
にプレストレスを尋人できる上、11 mにおける道路
維持に対して非常に効果が大きい等の浸れた効果を有す
る。
As described above, in the present invention, in a precast concrete slab having ducts in the width direction and the bridge axis direction (two directions), the PC steel members placed in the width direction duct are located near both side edges. A prestressed concrete slab was formed by tensioning other PC steel materials, leaving at least one of the PC steel slabs, and the prestressed concrete slab was erected on top of the bridge with a predetermined joint spacing between both edges of the slab in the width direction. After that, the PCC steel is inserted into the duct in the axial direction of the bridge, and after applying joint concrete to the joint and hardening it to a predetermined compressive strength, prestress is introduced in the axial direction of the bridge. This method is characterized by applying prestress to the joint concrete in the bridge axis direction and width direction by introducing prestress into the neighboring prestressing steel members that are not under tension. Compared to conventional concrete, it has more strength and durability, and it is also possible to apply prestress vertically and horizontally to concrete joints. It has a great effect.

【図面の簡単な説明】[Brief explanation of drawings]

図は、本発明による工法の一実施例を示したもので、第
1図は本発明の工法を実施する除に用いられるプレスト
レストコンクリート床版の斜視図、第2図は、概略斜視
図、第3図は正面図、第4図は要部拡大斜視図でるる。 A・・・プレストレストコンクリート床版(Ps床版)
、4,4a=・POilll材、ls−・・pam+u
、16・・・目地コンクリート。 出願人 石川島建材工業株式会社
The figures show one embodiment of the construction method according to the present invention. Figure 1 is a perspective view of a prestressed concrete slab used for carrying out the construction method of the present invention, and Figure 2 is a schematic perspective view. Figure 3 is a front view, and Figure 4 is an enlarged perspective view of the main parts. A... Prestressed concrete floor slab (Ps floor slab)
, 4,4a=・POill material, ls−・・pam+u
, 16... Joint concrete. Applicant Ishikawajima Kenzai Kogyo Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 幅員及び橋軸方向(二方向)にダクトを有するプレキャ
ストコンクリート床版に於いて幅員方向ダクト内に配置
されたPC鋼材のそのうち両側線近傍に位抛する少なく
とも一本づつを残して他のPC鋼材を緊張してプレスト
レストコンクリート床版を形成し、該プレストレストコ
ンクリート床版をその幅員方向両縁部を互いに所定目地
間隔を設けて主桁偉に架設した後、橋軸方向ダクト内に
pc鋼材を押入し、上記目地部に目地コンクリートを施
して所定の圧縮強度まで硬化させた後、橋軸方向にプレ
ストレスを尋人し、さらに、上記幅員方向両側線近傍の
緊張を与えていないPC鋼材にプレストレスを尋人する
ことによって目地コンクリートにプレストレスを偏軸方
向及びIIQJL方向に与えることを特徴とする道路橋
等におけるプレストレストコンクリート床版の架設工法
In a precast concrete slab that has ducts in the width and bridge axis directions (two directions), among the PC steel members placed in the width direction duct, at least one of the PC steel members located near both sides of the line is left aside, and other PC steel members are used. After tensioning to form a prestressed concrete deck slab, and installing the prestressed concrete deck slab on the main girder with both edges in the width direction set apart from each other with a predetermined joint spacing, PC steel material is pushed into the duct in the axial direction of the bridge. After applying joint concrete to the above joint and hardening it to a predetermined compressive strength, prestress is applied in the bridge axis direction, and prestress is applied to the unstressed PC steel near both sides of the width direction. A method for constructing prestressed concrete slabs for road bridges, etc., characterized by applying prestress to joint concrete in the off-axis direction and in the IIQJL direction by applying stress.
JP57190506A 1982-10-29 1982-10-29 Construction of prestressed concrete floor panel in road bridge Granted JPS5980809A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190506A JPS5980809A (en) 1982-10-29 1982-10-29 Construction of prestressed concrete floor panel in road bridge

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190506A JPS5980809A (en) 1982-10-29 1982-10-29 Construction of prestressed concrete floor panel in road bridge

Publications (2)

Publication Number Publication Date
JPS5980809A true JPS5980809A (en) 1984-05-10
JPH023843B2 JPH023843B2 (en) 1990-01-25

Family

ID=16259220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190506A Granted JPS5980809A (en) 1982-10-29 1982-10-29 Construction of prestressed concrete floor panel in road bridge

Country Status (1)

Country Link
JP (1) JPS5980809A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176706A (en) * 1985-01-31 1986-08-08 株式会社春本鐵工所 Structure of concrete floor panel and its construction
JP2004019126A (en) * 2002-06-12 2004-01-22 Ps Mitsubishi Construction Co Ltd Incremental launching erection method of composite pc bridge, and composite pc structure
JP2007032212A (en) * 2005-07-29 2007-02-08 Taisei Corp Ribbed floor slab and on-water structure
JP2015086534A (en) * 2013-10-29 2015-05-07 オリエンタル白石株式会社 Repair method of pc structure
JP2017172226A (en) * 2016-03-24 2017-09-28 公益財団法人鉄道総合技術研究所 Joining structure of steel girder and joining method of steel girder
JP2020200729A (en) * 2019-06-13 2020-12-17 三井住友建設株式会社 Concrete floor slabs and repair method for concrete floor slabs

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61176706A (en) * 1985-01-31 1986-08-08 株式会社春本鐵工所 Structure of concrete floor panel and its construction
JPH0475322B2 (en) * 1985-01-31 1992-11-30
JP2004019126A (en) * 2002-06-12 2004-01-22 Ps Mitsubishi Construction Co Ltd Incremental launching erection method of composite pc bridge, and composite pc structure
JP2007032212A (en) * 2005-07-29 2007-02-08 Taisei Corp Ribbed floor slab and on-water structure
JP2015086534A (en) * 2013-10-29 2015-05-07 オリエンタル白石株式会社 Repair method of pc structure
JP2017172226A (en) * 2016-03-24 2017-09-28 公益財団法人鉄道総合技術研究所 Joining structure of steel girder and joining method of steel girder
JP2020200729A (en) * 2019-06-13 2020-12-17 三井住友建設株式会社 Concrete floor slabs and repair method for concrete floor slabs

Also Published As

Publication number Publication date
JPH023843B2 (en) 1990-01-25

Similar Documents

Publication Publication Date Title
US8474080B2 (en) Construction method of steel composition girder bridge
JP5266291B2 (en) Construction method of bridge deck and joint structure of precast deck
CN105544385B (en) A kind of seam construction of prefabricated subsection formula concrete-bridge
US20010037533A1 (en) Composite deck system and method of construction
CN109338866B (en) Ultra-light combined beam structure suitable for large-span bridge and construction method thereof
CN108867310A (en) The short rib T beam bridge of pretensioning prestressed concrete and its construction method
CN108951399A (en) A kind of Single-box multi-chamber box beam bridge and its construction method
JPH0424306A (en) Method of laying floor plate for prefabricated house
CN113638304B (en) Concrete beam type bridge hidden cover beam structure system and construction method thereof
JPS5980809A (en) Construction of prestressed concrete floor panel in road bridge
CN209114299U (en) A kind of Single-box multi-chamber box beam bridge
JP3322637B2 (en) Construction method of cast-in-place concrete slab of bridge
CN114892552B (en) Box girder type bridge reconstruction construction method
JPS6282147A (en) Novel prestressed synthetic beam and its construction
JP7366806B2 (en) connection structure
JP3017662B2 (en) Construction method of joint
JP2000104219A (en) Erection of combined truss bridge
Sims Applications of resins in bridge and structural engineering
KR20020059960A (en) Precasted Concrete using a Fiber Reinforced Concrete and method for construction
JP2004011300A (en) Pc composite structure, pc bridge and prestressing method
CN212388355U (en) Bridge deck structure of steel truss bridge
CN213508053U (en) Assembled bridge floor
SU939625A1 (en) Steel-ferroconcrete bridge span structure
Sun High performance concrete bridge stringer system
CN105862609A (en) Steel belt and bolt interlined hooping method for reinforcing hollow slab bridges and hooping system thereof