JPS5980637A - Preparation of p-nitrobenzoic acid - Google Patents

Preparation of p-nitrobenzoic acid

Info

Publication number
JPS5980637A
JPS5980637A JP57190807A JP19080782A JPS5980637A JP S5980637 A JPS5980637 A JP S5980637A JP 57190807 A JP57190807 A JP 57190807A JP 19080782 A JP19080782 A JP 19080782A JP S5980637 A JPS5980637 A JP S5980637A
Authority
JP
Japan
Prior art keywords
compound
catalyst
cobalt
cerium
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57190807A
Other languages
Japanese (ja)
Other versions
JPS6217990B2 (en
Inventor
Masaaki Suematsu
政明 末松
Tatsuo Ueda
上田 辰夫
Kenji Nakaoka
憲治 中岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57190807A priority Critical patent/JPS5980637A/en
Publication of JPS5980637A publication Critical patent/JPS5980637A/en
Publication of JPS6217990B2 publication Critical patent/JPS6217990B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

PURPOSE:To obtain the titled compound in good hue, by oxidizing p-nitrotoluene with molecular oxygen in acetic acid solvent in the presence of a catalyst constituted of metallic compounds of cobalt, manganese and cerium and a bromine compound. CONSTITUTION:p-Nitrotoluene is oxidized with a gas containing molecular oxygen in acetic acid solvent in the presence of a catalyst constituted of a cobalt compound and a bromine compound as main constituent components and further a manganese compound and/or cerium compound to give the aimed p-nitrobenzoic acid. In the process, a zirconium compound, e.g. zirconium bromide, is further present as the catalyst. The amount of the zirconium compound is preferably 0.5-50wt% based on the cobalt metal used as the catalyst constituent component. The aimed compound in good hue is obtained at a high reaction rate with a small amount of the catalyst with prevented formation of coloring impurities by the above-mentioned oxidative reaction.

Description

【発明の詳細な説明】 本発明はp−ニトロトルエンを分子状酸素含有ガスで酸
化して、p−ニトロ安息香酸を製造する方法に関するも
のである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing p-nitrobenzoic acid by oxidizing p-nitrotoluene with a molecular oxygen-containing gas.

p−二)口安息香酸は農薬、医薬、染料、樹脂などの原
料として有用な化合物であり、純度の良好なp−二)口
安息香酸を生成する経済的な製造法の開発が望まれてい
る。
p-2) Oral benzoic acid is a compound useful as a raw material for agricultural chemicals, medicines, dyes, resins, etc., and it is desired to develop an economical manufacturing method to produce p-2) oral benzoic acid with good purity. There is.

これまでにp−二トロトルエンを酢酸中で分子状酸素含
有ガスによりp−ニトロ安息香酸に酸化する方法として
、臭素、コバルト、マンガンおよび/またはセリウムか
らなる触媒を用い、全金属シこ対してマンガンおよび/
またはセリウムのグラム原子比を0.05〜15チとし
て、50〜150℃で酸化する方法(特開昭52−91
837号公報)が知られている。
Until now, as a method for oxidizing p-nitrotoluene to p-nitrobenzoic acid in acetic acid with a molecular oxygen-containing gas, a catalyst consisting of bromine, cobalt, manganese and/or cerium has been used, and an all-metal silicone method has been used. manganese and/or
Alternatively, a method of oxidizing cerium at 50 to 150°C with a gram atomic ratio of 0.05 to 15
No. 837) is known.

しかしながら、この方法では触媒活性を高めるべくコバ
ルトとともにマンガン、セリウムを併用するために、着
色性不純物が副生t7て、色調の良好な目的物を得るの
が困難であった。
However, in this method, since manganese and cerium are used together with cobalt to increase the catalytic activity, coloring impurities are produced as by-products, making it difficult to obtain a target product with good color tone.

そこで本発明者らは、分子状酸素含有ガスによるp−ニ
トロトルエンのp−ニトロ安息香酸へのは化において、
少ない触媒の使用によって高い反応速度で色調の良好な
目的物を収率よく得る方法を開発することを目的として
鋭意検討し、触媒として従来使用されてきたコバルト、
マンガン、セリウムなどの可変原子価金属化合物と臭素
化合物に加えて、ジルコニウム化合物を反応系に存在さ
せることによって目的が達成されることを見い出し、本
発明に到達した。
Therefore, the present inventors conducted the following steps in converting p-nitrotoluene to p-nitrobenzoic acid using a molecular oxygen-containing gas.
We conducted extensive research with the aim of developing a method for obtaining a target product with a good color tone in high yield at a high reaction rate using a small amount of catalyst.
The inventors have discovered that the object can be achieved by making a zirconium compound present in the reaction system in addition to a variable valence metal compound such as manganese or cerium and a bromine compound, and have thus arrived at the present invention.

すなわち本発明は、p−二トロ)/レニンを酢酸溶媒中
でコバルト化合物と臭素化合物とを主たる構成成分とし
、これらにマンガン化合物および/またはセリウム化合
物を加えて構成される触媒の存在下で分子状酸素含有ガ
スにより酸化してp−ニトロ安息香酸を製造する方法ケ
こおいて、反応系にさらにジルコニウム化合物を存在さ
せることを特徴とするI)−二)口安息香酸の製造法で
ある。
That is, the present invention provides a method for preparing molecules of p-nitro)/renin in an acetic acid solvent in the presence of a catalyst consisting of a cobalt compound and a bromine compound as main components and a manganese compound and/or a cerium compound added thereto. I)-2) A method for producing p-nitrobenzoic acid, which is characterized in that a zirconium compound is further present in the reaction system.

以下に本発明方法を具体的に説明する。The method of the present invention will be specifically explained below.

本発明方法では、p−二トロ) tVレニン酢酸溶媒中
で触媒の存在下に分子状酸素含有ガスと接触させる。
In the method of the invention, p-nitro)tV renin is contacted with a molecular oxygen-containing gas in the presence of a catalyst in an acetic acid solvent.

酢酸の使用量は反応器に供給するp−二トロトルエンの
1〜7重量倍の範囲が適当である。酢酸の使用量が1重
量倍以下の場合は、酸化速度が小さい上に、反応生成物
が高濃度のスラリ状もしくは固状物となって取扱いがむ
すがしく、満足しうるレベルの品質の目的物を安定して
取得することが困難である。一方酢酸の使用量が7重量
倍以上の場合は、酢酸の埴“、火九分解による経済的負
担が増加するとともに、反応器の容積効率がいたずらに
低下して不利である。なお酢酸中に5重量%程度以下の
水が存在しても特に支障はないが、酢酸中の水分は少な
い方が好ましい。
The appropriate amount of acetic acid to be used is 1 to 7 times the weight of p-nitrotoluene supplied to the reactor. If the amount of acetic acid used is less than 1 times the weight, the oxidation rate is low and the reaction product becomes a highly concentrated slurry or solid that is difficult to handle, making it impossible to achieve a satisfactory level of quality. It is difficult to obtain things stably. On the other hand, if the amount of acetic acid used is 7 times or more by weight, the economic burden due to acetic acid decomposition increases, and the volumetric efficiency of the reactor unnecessarily decreases, which is disadvantageous. Although there is no particular problem if water is present in an amount of about 5% by weight or less, it is preferable that the amount of water in acetic acid is small.

触媒としては、主たる構成成分としてコバルト化合物と
臭素化合物とを使用し、これらに触媒活性を高めるため
にマンガン化合物およびまたはセリウム化合物を併用す
る。この場合にコバルト化合物、マンガン化合物、セリ
ウム化合物としテハ、臭化物、水酸化物、炭酸塩、酢酸
などの低級脂肪族カルボン酸の塩、ニトロ安息香酸など
の芳香族カルボン酸の塩、ナフテン酸の塩、アセチルア
セトナートなどの反応物に可溶性でかつ反応を妨害する
対イオンを含まない化合物が適当である。
As the catalyst, a cobalt compound and a bromine compound are used as main components, and a manganese compound and/or a cerium compound are used in combination with these to enhance the catalytic activity. In this case, cobalt compounds, manganese compounds, cerium compounds, bromides, hydroxides, carbonates, salts of lower aliphatic carboxylic acids such as acetic acid, salts of aromatic carboxylic acids such as nitrobenzoic acid, and salts of naphthenic acids are used. Compounds that are soluble in the reactants, such as acetylacetonate and do not contain counterions that would interfere with the reaction, are suitable.

また臭素化合物としては、臭素、臭化水素、臭化コバル
ト、臭化マンガン、臭化アンモニウム、アルカリ金属臭
化物などの無機臭素化合物およびテトラブロムエタン、
ブロム酢酸、臭化ベンジルなどの有機臭素化合物が使用
可能である。
Examples of bromine compounds include inorganic bromine compounds such as bromine, hydrogen bromide, cobalt bromide, manganese bromide, ammonium bromide, alkali metal bromides, and tetrabromoethane.
Organic bromine compounds such as bromoacetic acid and benzyl bromide can be used.

コバルト化合物の使用量は、コバlシト金属としての使
用量が溶媒酢酸に対して0.08〜0.4重量%の範囲
になるようにするのが適当である。コバルト触媒の使用
量が0608重量%未満では十分な反応速度が得られず
、また0、4重量%を越えると目的生成物からコバルト
触媒を分離する手間が増加するとともに、着色性不純物
の副生が増加して不利である。
The appropriate amount of the cobalt compound to be used is such that the amount of cobalt metal used is in the range of 0.08 to 0.4% by weight based on the acetic acid solvent. If the amount of cobalt catalyst used is less than 0.608% by weight, a sufficient reaction rate will not be obtained, and if it exceeds 0.4% by weight, the time and effort required to separate the cobalt catalyst from the target product will increase, and coloring impurity by-products will be produced. increases, which is disadvantageous.

本発明では、コバ/l/ )化合物tこ加えてマンガン
化合物およびまたはセリウム化合物を併用するが、マン
ガン金属およびまたはセリウム金属としての使用量がコ
バルト金属に対して0.1〜20重量%の範囲になるよ
うにマンガン化合物およびまたはセリウム化合物を使用
するのが望ましい。マンガン化合物およびまたはセリウ
ム化合物の使用量が前記範囲以下の場合は触媒活性が低
下し、前記範囲以下の場合は着色性不純物の副生が増加
するので好ましくない。
In the present invention, a manganese compound and/or a cerium compound are used in addition to the cobalt metal (cobalt metal), and the amount of manganese metal and/or cerium metal used is in the range of 0.1 to 20% by weight based on the cobalt metal. It is desirable to use a manganese compound and/or a cerium compound such that If the amount of the manganese compound and/or cerium compound used is less than the above range, the catalytic activity will decrease, and if it is less than the above range, the by-product of coloring impurities will increase, which is not preferable.

臭素す合物の使用量は、臭素原子としての使用量がコバ
ルト金属に対して0.2〜6重量倍の範囲、特に0.5
〜6重量倍の範囲が適当である。臭素触媒の使用量が0
.2重量倍未満の場合は十分な触媒活性が得られず、ま
た6重量倍を越えると触媒活性が低下傾向になるととも
に臭素による生成物の汚染や触媒費の負担が著しくなり
好ましくない。
The amount of bromine compound to be used is in the range of 0.2 to 6 times the weight of cobalt metal, especially 0.5
A range of 6 to 6 times the weight is appropriate. No amount of bromine catalyst used
.. When the amount is less than 2 times by weight, sufficient catalytic activity cannot be obtained, and when it exceeds 6 times by weight, the catalyst activity tends to decrease, and contamination of the product by bromine and the burden on the catalyst cost become significant, which is not preferable.

本発明tこおいては、前記したコバ/L/ )化合物、
臭素化合物、マンガン化合物および/またはセリウム化
合物に加えて、さらにジルコニウム化合物を反応系に存
在させる。ジルコニウム化合物を併用することにより、
触媒活性が高まり、しかも着色性不純物の副生量が減少
することを、本発明者らは見い出したのである。
In the present invention, the above-mentioned Coba/L/) compound,
In addition to the bromine compound, manganese compound and/or cerium compound, a zirconium compound is also present in the reaction system. By using zirconium compounds together,
The present inventors have discovered that the catalytic activity is increased and the amount of colored impurity by-products is reduced.

ジルコニウム化合物としては、臭化ジルコニウム、酢酸
ジルコニル、酢酸ジルコニウムナトの酢酸に可溶で反応
を妨害する対イオンを含まない十4価の−))レコニウ
ム化合物が適当である。ジルコニウム化合物の使用量は
、ジルコニウム金属としての使用量が触媒構成成分とし
て用いたコパルト金属に対して0.5〜50重量%eこ
相当する量、好ましくは1〜15重量%に相当する量が
適当である。ジルコニウム化合物の使用量がこの範囲よ
りも少なければ添加効果が微弱になり、またこの範囲よ
り多くてもコスト負担や分離の手間が増すのに対して格
別の効果が得られず、不利である。
As the zirconium compound, tetratetravalent -)) rheconium compounds, such as zirconium bromide, zirconyl acetate, and zirconium acetate, which are soluble in acetic acid and do not contain counterions that interfere with the reaction, are suitable. The amount of the zirconium compound to be used is such that the amount of zirconium metal used is equivalent to 0.5 to 50% by weight, preferably 1 to 15% by weight, based on the amount of zirconium metal used as a catalyst component. Appropriate. If the amount of the zirconium compound used is less than this range, the effect of addition will be weak, and if it is more than this range, the cost burden and separation effort will increase, but no particular effect will be obtained, which is disadvantageous.

反応温度は130〜180℃の範囲が適当である。13
0℃よりも低い反し温度では反応速度が遅くなる上に着
色性不純物の副生が増加し、〜方180℃を越える反応
温度では触媒の活性が低下傾向になるとともに、反応物
の二酸化炭素への分解、ニトロ基の脱離、さらには着色
性不純物の副生が増加し、好ましくない。
The reaction temperature is suitably in the range of 130 to 180°C. 13
If the reaction temperature is lower than 0℃, the reaction rate will be slow and the by-product of colored impurities will increase, while if the reaction temperature exceeds 180℃, the activity of the catalyst will tend to decrease and the reaction product will be converted to carbon dioxide. decomposition, elimination of nitro groups, and further production of colored impurities as by-products, which are undesirable.

酸化剤として用いる分子状酸素含有ガスとしては、純酸
素や工業排ガスも使用可能であるが、工業的には通常の
空気または空気と工業排ガスとの混合ガスが適しでいる
Although pure oxygen or industrial exhaust gas can be used as the molecular oxygen-containing gas used as the oxidizing agent, from an industrial perspective, ordinary air or a mixed gas of air and industrial exhaust gas is suitable.

反応系の酸素分圧については、全反応圧力が5〜40気
圧の範囲、特に8〜60気圧の範囲で、かつ反応器から
の排ガスの酸素濃度が1〜8容量チの範囲になるように
操作するのが好ましい。反応圧力が40気圧を越えると
、設備費と分子状酸素含有ガスを圧縮するための動力費
が増加するにもかかわらず格別の利点が得られず、逆に
反応物の二酸化炭素への分解が増加傾向となって不利で
ある。また排ガスの酸素濃度が8容量チを越えると、反
応器気相部が爆発性混合気体を形成する可能性が強(な
り、安全対策面から排ガスの酸素濃度は8容量チ以下に
する必要がある。
Regarding the oxygen partial pressure in the reaction system, the total reaction pressure is in the range of 5 to 40 atm, especially in the range of 8 to 60 atm, and the oxygen concentration of the exhaust gas from the reactor is in the range of 1 to 8 by volume. It is preferable to operate. If the reaction pressure exceeds 40 atm, no particular advantage will be obtained, although the equipment cost and the power cost for compressing the molecular oxygen-containing gas will increase, and on the contrary, the decomposition of the reactant into carbon dioxide will decrease. This is a disadvantage as it tends to increase. Furthermore, if the oxygen concentration in the exhaust gas exceeds 8 volumes, there is a strong possibility that the reactor gas phase will form an explosive gas mixture. be.

本発明に用いる反応器としては、単なる気泡塔型式のも
のよりも強制混合される型式のものが好ましい。すなわ
ち分子状酸素含有ガスと反応液との良好な気液混合を行
ない、分子状酸素の反応液への溶解を促進し、反応器内
での反応物質相互の接触を円滑に行なわせるために、反
応器下部に多数の細孔からなるガス吹込口を備え、回転
攪拌羽根による強制攪拌もしくは反応器外の循環ポンプ
による強制循環などが行なわれる反応器を使用すること
が好ましい。
The reactor used in the present invention is preferably of a forced mixing type rather than a simple bubble column type. That is, in order to achieve good gas-liquid mixing of the molecular oxygen-containing gas and the reaction liquid, to promote dissolution of molecular oxygen into the reaction liquid, and to ensure smooth contact between the reactants in the reactor, It is preferable to use a reactor equipped with a gas inlet consisting of a large number of pores in the lower part of the reactor, and in which forced stirring is performed using a rotating stirring blade or forced circulation is performed using a circulation pump outside the reactor.

反応器上部には還流冷却器を設けて、排ガスはこの還流
冷却器を通って排出されるようにして、排ガスに含まれ
る溶媒酢酸や未反応ニトロ)/レニンなどを凝縮させて
反応器に循環させる。
A reflux condenser is installed at the top of the reactor, and the exhaust gas is discharged through this reflux condenser, and the solvent acetic acid and unreacted nitro)/renin contained in the exhaust gas are condensed and circulated to the reactor. let

反応方式としては、回分式、半連続式、連続式のいずれ
をも採用することができるが、半連続式または連続式の
場合により良好な品質の目的物質が得られる。
As the reaction method, any of a batch method, a semi-continuous method, and a continuous method can be employed, but the target substance of better quality can be obtained in the case of a semi-continuous method or a continuous method.

なお本発明方法により得られた反応生成混合物から目的
物質であるp−ニトロ安息香酸を単離する方法としては
、反応生成物を冷却し、場合によりさらに濃縮してI)
−=)口安息香酸を晶析し、母液と固液分離する方法が
適当である。かくして単離したp−ニトロ安息香酸は、
必要に応じて溶媒による洗浄や場合により再結晶などを
行なって所望する純度にまで精製し、乾燥して製品とす
る。
Note that the method for isolating the target substance p-nitrobenzoic acid from the reaction product mixture obtained by the method of the present invention is to cool the reaction product and optionally further concentrate it.I)
-=) A suitable method is to crystallize benzoic acid and separate it from the mother liquor into solid and liquid. The thus isolated p-nitrobenzoic acid is
If necessary, the product is purified to the desired purity by washing with a solvent and recrystallization if necessary, and then dried to produce a product.

一方p−ニトロ安息香酸を分離した母液は、溶解度分の
p−ニトロ安息香酸、反応中間体、未反応原料、触媒な
どの有機物を含有しており、副生水を蒸留分離してから
、そのままもしくは適当な精製処理を施して反応系に循
環させ、くり返し使用することができる。
On the other hand, the mother liquor from which p-nitrobenzoic acid is separated contains p-nitrobenzoic acid corresponding to the solubility, reaction intermediates, unreacted raw materials, catalysts, and other organic substances. Alternatively, it can be subjected to appropriate purification treatment and recycled to the reaction system for repeated use.

以上詳述した本発明方法により、品質の良好なp−二ト
ロ安息香酸を経済的に製造することが可能になった。
By the method of the present invention detailed above, it has become possible to economically produce p-nitrobenzoic acid of good quality.

以下、実施例を挙げて本発明を具体的に説明する。The present invention will be specifically described below with reference to Examples.

実施例1 還流冷却5器と回転羽根攬坪機を備えたチタン製耐圧反
応器に、酢酸200部(p−二トロトルエンに対して1
.54重量倍)、水5部、臭化コバルト・六水塩1,3
31部、酢酸コバルト・四水塩1015部、酢酸セリウ
ム・−水塩1]、[+1[38部、酢酸ジルコニル0.
0237部(酢酸に対してコパル)0.24重量%、コ
バルトに対して臭素1.65重量倍、コバルトに対して
セリウム1重量%、コバルトに対してジルコニウム2重
量%)を仕込み、反応圧力14気圧ゲージ、反応温度1
55℃において、酸素7チと窒素93%の混合ガスを吹
き込みながら、浴融したp−ニトロトルエン130部を
4時間で導入が完了する速度で連続的に導入しはじめた
Example 1 200 parts of acetic acid (1 part to p-nitrotoluene) was placed in a pressure-resistant titanium reactor equipped with 5 reflux coolers and a rotary vane pump.
.. 54 times the weight), 5 parts of water, 1.3 parts of cobalt bromide hexahydrate
31 parts, cobalt acetate tetrahydrate 1015 parts, cerium acetate -hydrate 1], [+1[38 parts, zirconyl acetate 0.
0237 parts (0.24% by weight of copal to acetic acid, 1.65 times the weight of bromine to cobalt, 1% by weight of cerium to cobalt, 2% by weight of zirconium to cobalt), and the reaction pressure was 14%. Air pressure gauge, reaction temperature 1
At 55°C, while blowing a mixed gas of 7 g of oxygen and 93% of nitrogen, 130 parts of p-nitrotoluene melted in the bath was started to be continuously introduced at a rate that completed the introduction in 4 hours.

導入開始5分後に酸素吸収が始まったので、吹き込むガ
スを空気に切換え、排ガス中の酸素濃度が8係以下にな
るような流速で空気の吹き込みを続けて、4時間後にp
−ニトロトルエンの導入全停止し、5時1川後に空気の
吹き込みを停止した。
Oxygen absorption started 5 minutes after the start of introduction, so the gas to be blown was changed to air, and air was continued to be blown at a flow rate such that the oxygen concentration in the exhaust gas was below 8%, and 4 hours later, p
- The introduction of nitrotoluene was completely stopped, and air blowing was stopped one minute after 5:00.

反応終了後、生成物を室温に冷却し、固液分離して、5
0%含水酢酸400部で洗浄し、乾燥すると、純度99
%以上のp−ニトロ安息香酸124部(収率78モル%
)が得られた。
After the reaction is completed, the product is cooled to room temperature and separated into solid and liquid.
After washing with 400 parts of 0% aqueous acetic acid and drying, the purity is 99.
124 parts of p-nitrobenzoic acid (yield 78 mol%)
)was gotten.

このp−ニトロ安息香酸2gをIN−KOH水溶液20
 、lに溶解し、1cmのセルで460部mの光透過率
を測定したところ82チであった。
2 g of this p-nitrobenzoic acid was added to 20 g of IN-KOH aqueous solution.
When the light transmittance of 460 parts m was measured in a 1 cm cell, it was 82 cm.

比較例1 実施例1で、酢酸ジルコニルを加えなかったところ、p
−ニトロ安息香酸の収量は111部(収率70モルチ)
に低下し、460 nmでの光透過率も76チに低下し
た。
Comparative Example 1 In Example 1, when zirconyl acetate was not added, p
- Yield of nitrobenzoic acid is 111 parts (yield 70 molti)
The light transmittance at 460 nm also decreased to 76 cm.

実施例2 実施例1で触媒を臭化コバルト・大水塩0.887部、
酢酸コバルト・四本塩Q、676部、酢酸マノしてコバ
ル) 0.16重量%、コバルトに対して臭素1.35
重量倍、コバルトに対してマンガン1重量%、コバルト
に対してジルコニウム2重量%)に変えると、p−ニト
ロ安息香酸の収量は130部(収率82モルチ)、46
0 nmでの光透過率は65チであった。
Example 2 The catalyst used in Example 1 was 0.887 parts of cobalt bromide and large aqueous salt,
Cobalt acetate/shibonsalt Q, 676 parts, cobalt acetate) 0.16% by weight, bromine 1.35 to cobalt
The yield of p-nitrobenzoic acid is 130 parts (yield 82 molti), 46
The light transmittance at 0 nm was 65 cm.

比較例2 実施例2で、酢酸ジルコニルを加えなかったところ、p
−ニトロ安息香酸は130部生成したが、460 nm
での光透過率が50%に低下した。
Comparative Example 2 In Example 2, when zirconyl acetate was not added, p
- 130 parts of nitrobenzoic acid was produced, but at 460 nm
The light transmittance decreased to 50%.

実施例乙 実施例2の触媒に、さらに酢酸セリウム・−水塩Q、Q
O57部(コバルトに対し″co75重量係)を加える
と、p−ニトロ安息香酸の収量は135部(収率85モ
ルチ)、460 nmでの光透過率は70チであった。
Example B In addition to the catalyst of Example 2, cerium acetate-water salt Q, Q
When 57 parts of O (co75 parts by weight relative to cobalt) was added, the yield of p-nitrobenzoic acid was 135 parts (yield: 85 moles), and the light transmittance at 460 nm was 70 moles.

比較例3 実施例3で酢酸ジμコニpを加えなかったとこでJ)つ
た、。
Comparative Example 3 In Example 3, when diμconyl acetate was not added, J) was obtained.

Claims (1)

【特許請求の範囲】[Claims] p−ニトロトルエンを酢酸溶媒中でコバルト化合物と臭
素化合物とを主たる構成成分とし、これにマンガン化合
物および/またはセリウム化合物を加えて構成される触
媒の存在下で分子状酸素含有ガスにより酸化してp−ニ
トロ安息香酸を製造する方法において、反応系にさらに
ジルコニウム化合物を存在させることを特徴とするp−
ニトロ安息香酸の製造法。
p-Nitrotoluene is oxidized in an acetic acid solvent with a molecular oxygen-containing gas in the presence of a catalyst consisting of a cobalt compound and a bromine compound as main components, to which a manganese compound and/or a cerium compound is added. - A method for producing nitrobenzoic acid, characterized in that a zirconium compound is further present in the reaction system.
Method for producing nitrobenzoic acid.
JP57190807A 1982-11-01 1982-11-01 Preparation of p-nitrobenzoic acid Granted JPS5980637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57190807A JPS5980637A (en) 1982-11-01 1982-11-01 Preparation of p-nitrobenzoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190807A JPS5980637A (en) 1982-11-01 1982-11-01 Preparation of p-nitrobenzoic acid

Publications (2)

Publication Number Publication Date
JPS5980637A true JPS5980637A (en) 1984-05-10
JPS6217990B2 JPS6217990B2 (en) 1987-04-21

Family

ID=16264069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190807A Granted JPS5980637A (en) 1982-11-01 1982-11-01 Preparation of p-nitrobenzoic acid

Country Status (1)

Country Link
JP (1) JPS5980637A (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096539A (en) * 1973-12-29 1975-07-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5096539A (en) * 1973-12-29 1975-07-31

Also Published As

Publication number Publication date
JPS6217990B2 (en) 1987-04-21

Similar Documents

Publication Publication Date Title
SU791221A3 (en) Method of preparing terephthalic acid
US4051178A (en) Process for producing terephthalic acid
US2723994A (en) Oxidation of xylene and toluic acid mixtures to phthalic acids
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
JPS6228940B2 (en)
US4007223A (en) Method of preparing p-nitrobenzoic acid
JPS5980637A (en) Preparation of p-nitrobenzoic acid
JPS6217989B2 (en)
GB1577019A (en) Process for producing high quality terephthalic acid
US4214100A (en) Process for preventing blackening of phthalic acid
JPS6228946B2 (en)
JPH07155617A (en) Catalyst for oxidizing p-nitrotoluene and production of p-nitrobenzoate
JPS5832843A (en) Preparation of p-chlorobenzoic acid
JPS58188844A (en) Preparation of m-nitrobenzoic acid
JPH01287054A (en) Production of benzoic acid derivative
JP3232796B2 (en) Method for producing p-acetoxybenzoic acid
JPS5821650A (en) Preparation of m-nitrobenzoic acid
JPS6019736A (en) Simultaneous production of p-t-butylbenzaldehyde and p-t-butylbenzoic acid
US4097492A (en) Process for the preparation of naphthalene-1,4,5,8-tetracarboxylic acid
JPS58183645A (en) Preparation of m-nitrobenzoic acid
JPS61148139A (en) Production of pyromellitic acid
JPH09169696A (en) Production of acetoxybenzene dicarboxylic acid
JPS6115863A (en) Production of 2-chloro-4-nitrobenzoic acid
KR880000741B1 (en) Prepration method of saccharin
SU521834A3 (en) Method for preparing naphthalene-1, 4,5,8-tetracarboxylic acid or its dianhydride