JPS58188844A - Preparation of m-nitrobenzoic acid - Google Patents

Preparation of m-nitrobenzoic acid

Info

Publication number
JPS58188844A
JPS58188844A JP57071330A JP7133082A JPS58188844A JP S58188844 A JPS58188844 A JP S58188844A JP 57071330 A JP57071330 A JP 57071330A JP 7133082 A JP7133082 A JP 7133082A JP S58188844 A JPS58188844 A JP S58188844A
Authority
JP
Japan
Prior art keywords
compound
catalyst
zirconium
cobalt
bromine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57071330A
Other languages
Japanese (ja)
Inventor
Kenji Nakaoka
憲治 中岡
Hiroshi Sonoyama
園山 洋
Masaaki Suematsu
政明 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP57071330A priority Critical patent/JPS58188844A/en
Publication of JPS58188844A publication Critical patent/JPS58188844A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE:To obtain the titled compound useful as a raw material of agricultural chemicals, pharmaceuticals, dyes, etc. economically, in high purity, by reacting m-nitrotoluene with a gas containing molecular oxygen in the presence of a catalyst, an alkali metal compound and a zirconium compound. CONSTITUTION:The objective compound can be prepared by oxidizing m-nitrotoluene with an O2-containing gas in acetic acid solvent in the presence of a catalyst composed of a cobalt compound and a bromine compound (e.g. cobalt bromide), an alkali metal compound (e.g. bromide, acetate, etc.) and a zirconium compound (e.g. zirconium bromide, zirconium acetate, etc.) at 100-140 deg.C and 1-50atm under the condition to give an exhaust gas having an oxygen concentration of 1-8vol%. The amount of the alkali metal compound is 0.1-2g per 1g of bromine used as the catalyst, and that of the zirconium compound is 0.01-2g per 1g of cobalt used as the catalyst.

Description

【発明の詳細な説明】 本発明はm−ニトロトルエンを分子状酸素含有ガスによ
り酸化して、m−二トロ安息香酸を製造する方法に関す
るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing m-nitrobenzoic acid by oxidizing m-nitrotoluene with a molecular oxygen-containing gas.

m−ニトロ安息香酸は農薬、医薬、染料などの原料とし
て有用な化合物であり、品質の良好なm−ニトロ安息香
酸を生成する経済的な製造法の開発が望まれている。
m-Nitrobenzoic acid is a compound useful as a raw material for agricultural chemicals, medicines, dyes, etc., and it is desired to develop an economical production method for producing m-nitrobenzoic acid of good quality.

これまでにm−ニトロトルエンを分子状酸素含有ガスに
よりm−ニトロ安息香酸に酸化する方法として、米国特
許第3.030.414号明細書、特開昭54−929
31号公報などが知られているが、いずれも酢酸などを
溶媒として、コバルト、マンガンなどの重金属触媒と臭
素全含有する促進剤とを用い、140〜230℃程度の
高温下で酸化する方法であり、生成するニトロ安息香酸
の色調、特にアルカリ水溶液に溶解した場合の溶液色が
良好でないという欠点を有していた。
Up to now, methods for oxidizing m-nitrotoluene to m-nitrobenzoic acid using molecular oxygen-containing gas have been disclosed in U.S. Pat.
Publication No. 31 is known, but all of them involve oxidation at a high temperature of about 140 to 230°C using acetic acid as a solvent, a heavy metal catalyst such as cobalt or manganese, and an accelerator containing all bromine. However, the color tone of the produced nitrobenzoic acid, especially when dissolved in an alkaline aqueous solution, had the disadvantage that the color tone of the solution was not good.

そこで本発明者らは、分子状酸素含有ガスによるm−ニ
トロトルエンのm−二トロ安息香酸への酸化において、
アルカリ水溶液に溶解した場合の溶液色が良好なm−二
トロ安息香酸を得る方法を見い出すことを目的として鋭
意検討し、公知の触媒とともに反応系にアルカリ金属化
合物とジルコニウム化合物とを共存させて、140℃以
下の低温域で反応させることによって目的が達成される
ことを見い出し、本発明に到達しtこ。
Therefore, the present inventors conducted the following steps in the oxidation of m-nitrotoluene to m-nitrobenzoic acid using a molecular oxygen-containing gas.
With the aim of finding a method for obtaining m-nitrobenzoic acid with a good solution color when dissolved in an alkaline aqueous solution, we carried out extensive studies, and made an alkali metal compound and a zirconium compound coexist in the reaction system together with a known catalyst. It has been discovered that the object can be achieved by carrying out the reaction in a low temperature range of 140° C. or lower, and the present invention has been achieved.

すなわち本発明は、m−ニトロトルエンを酢酸溶媒中で
コバルト化合物と臭素化合物を主成分とする触媒の存在
下で分子状酸素含有ガスにより酸化してm−ニトロ安息
香酸を製造する方法において、アルカリ金属化合物とジ
ルコニウム化合物とを反応系に存在させ、100〜14
0℃で酸化することを特徴とするm−ニトロ安息香酸の
製造法である。
That is, the present invention provides a method for producing m-nitrobenzoic acid by oxidizing m-nitrotoluene in an acetic acid solvent with a molecular oxygen-containing gas in the presence of a catalyst containing a cobalt compound and a bromine compound as main components. The compound and the zirconium compound are present in the reaction system, and 100 to 14
This is a method for producing m-nitrobenzoic acid, which is characterized by oxidizing at 0°C.

以下に本発明方法を具体的に説明する。The method of the present invention will be specifically explained below.

本発明方法では、m−ニトロトルエンを酢酸溶媒中でコ
バルトと臭素から構成されろ触媒ならびにアルカリ金属
化合物とジルコニウム化合物の存在下で分子状酸素含有
ガスと接触させる。
In the process of the invention, m-nitrotoluene is contacted with a molecular oxygen-containing gas in an acetic acid solvent in the presence of a filter catalyst consisting of cobalt and bromine and an alkali metal compound and a zirconium compound.

酢酸の使用量はm−ニトロトルエンの0.8〜3重量倍
の範囲が適当である。酢酸の使用量力50.8重量倍未
満の場合は、酸化速度が小さL)上1     に、反
応生成物を冷却すると高濃度のスラI)状もしくは固状
物となって取扱いがむずかしく、満足しうるレベルの品
質の目的物を安定して取得することが困難である。一方
酢酸の使用量が3重量倍を越える場合は、酢酸の燃焼分
解による経済的負担が増加する、反応器の容積効率がい
t:ずらに低下する、反応後酢酸に溶解したままで固液
分離によって単離できない目的物が増加して目的物のワ
ンパス収率が低下する、などの不利が生じる。なお酢酸
中に5重量%程度以下の水が存在しても特に支障はない
が、酢酸中の水分は少ない方が好ましい。
The appropriate amount of acetic acid to be used is 0.8 to 3 times the weight of m-nitrotoluene. If the amount of acetic acid used is less than 50.8 times the weight, the oxidation rate will be low (L).1) When the reaction product is cooled, it will become a highly concentrated sludge or solid substance that is difficult to handle and is not satisfactory. It is difficult to stably obtain a target product of high quality. On the other hand, if the amount of acetic acid used exceeds 3 times by weight, the economic burden due to combustion decomposition of acetic acid increases, the volumetric efficiency of the reactor decreases by t, and solid-liquid separation remains dissolved in acetic acid after the reaction. Disadvantages arise, such as an increase in the number of target products that cannot be isolated and a decrease in the one-pass yield of the target product. Although there is no particular problem even if water is present in the acetic acid in an amount of about 5% by weight or less, it is preferable that the water content in the acetic acid is small.

触媒としては、コバルト化合物と臭素化合物から構成さ
れる触媒系を使用し、これらの触媒構成成分を次に示す
ような化合物の形で加える。
As the catalyst, a catalyst system consisting of a cobalt compound and a bromine compound is used, and these catalyst components are added in the form of the following compounds.

すなわちコバルト化合物は、臭化物、水酸化物、炭酸塩
、酢酸などの低級脂肪族カルボッ酸の塩、ニトロ安息香
酸などの芳香族カルボッ酸の塩、ナフテン酸の塩、アセ
チルアセトナートなどの反応物に可溶性でかつ反応を妨
害する対     1イオノを含まない化合物が適当で
ある。
In other words, cobalt compounds can be converted into reactants such as bromide, hydroxide, carbonate, salts of lower aliphatic carboxylic acids such as acetic acid, salts of aromatic carboxylic acids such as nitrobenzoic acid, salts of naphthenic acid, and acetylacetonate. Compounds that are soluble and do not contain counter-1 ions that would interfere with the reaction are suitable.

臭素化合物としては、分子状臭素、臭化水素、臭化コバ
ルト、臭化アンモニウム、アルカリ金属臭化物などの無
機臭素化合物およびテトラブロムエタノ、ブロム酢酸、
臭化ベンジルなどの有機臭素化合物が使用可能であるが
、臭化コバルトがもつとも好ましい。まtこ臭素化合物
の少なくとも一部を分子状臭素として添加した場合には
誘導期間が短縮される利点がある。
Examples of bromine compounds include inorganic bromine compounds such as molecular bromine, hydrogen bromide, cobalt bromide, ammonium bromide, and alkali metal bromides, as well as tetrabromoethano, bromoacetic acid,
Organic bromine compounds such as benzyl bromide can be used, but cobalt bromide is also preferred. Adding at least a portion of the bromine compound as molecular bromine has the advantage of shortening the induction period.

コバルト化合物の使用量は、コバルト金属としての使用
量が溶媒酢酸に対して0.05〜1.0重量%の範囲に
なるようにすることが好ましい。
The amount of cobalt compound used is preferably such that the amount of cobalt metal used is in the range of 0.05 to 1.0% by weight based on the acetic acid solvent.

コバルト触媒の使用量が0.05重量%未満では十分な
反応速度が得られず、また1、0重量%を越えると目的
生成物から金属触媒を分離する手間や触媒費の負担が増
加して不利である。
If the amount of cobalt catalyst used is less than 0.05% by weight, a sufficient reaction rate cannot be obtained, and if it exceeds 1.0% by weight, the burden of separating the metal catalyst from the target product and the catalyst cost will increase. It is disadvantageous.

なお金属触媒としてはコバルトがマンガンよりも触媒活
性が高く、両者を併用した場合に触媒活性がさらに高く
なることもあるが、生成するm−ニトロ安息香酸の色調
はコ)<ルトのみを使用した場合がもつとも良好である
。したがって金属触媒としてはコバルトのみを使用する
のがよい。
As a metal catalyst, cobalt has higher catalytic activity than manganese, and the catalytic activity may be even higher when both are used together, but the color tone of the m-nitrobenzoic acid produced In any case, it is good. Therefore, it is preferable to use only cobalt as the metal catalyst.

臭素化合物の使用量は、臭素原子としての使用jlがコ
バルト金属に対して1〜10重量倍の範囲、特に2〜6
重量倍の範囲が適当である。
The amount of the bromine compound used is in the range of 1 to 10 times the weight of cobalt metal, especially 2 to 6 times the weight of the bromine atom.
A range of times the weight is appropriate.

臭素触媒の使用量が1重量倍未満の場合は十分な触媒活
性が得られず、また10重量倍を越えると臭素による生
成物の汚染や触媒費の負担が著しくなり、好ましくない
If the amount of the bromine catalyst used is less than 1 times by weight, sufficient catalytic activity will not be obtained, and if it exceeds 10 times by weight, the contamination of the product by bromine and the burden of catalyst costs will become significant, which is not preferable.

本発明においては、触媒構成成分であるコバルトと臭素
に加えて、アルカリ金属化合物とジルコニウム化合物を
反応系に共存させることにより、目的物質であるm−二
l−ロ安息香酸の色調、特にアルカリ水溶液に溶解した
場合の溶液色を改善する。
In the present invention, by coexisting an alkali metal compound and a zirconium compound in the reaction system in addition to cobalt and bromine, which are catalyst components, it is possible to improve the color tone of m-dil-lobenzoic acid, which is the target substance, especially in an aqueous alkali solution. improves the color of the solution when dissolved in

このために使用するアルカリ金属化合物としては、臭化
物、酢酸塩、水酸化物、炭酸塩などが適当である。アル
カリ金属化合物の使用量は、アルカリ金属としての使用
量が触媒構成成分として用いた臭素1グラム原子につき
0.1〜2グラム原子に相当する量、好ましくは0.5
〜1.5グラム原子1C−相当する量が適当である。ア
フνカリ金属の使用量がこの範囲まりも多い場合は触媒
活性が低下し、またこの範囲よりも少ない場合は目的物
質の色調が悪化する。
Suitable alkali metal compounds used for this purpose include bromides, acetates, hydroxides, carbonates, and the like. The amount of the alkali metal compound to be used is such that the amount of alkali metal used is equivalent to 0.1 to 2 gram atoms per 1 gram atom of bromine used as a catalyst component, preferably 0.5
An amount corresponding to ~1.5 gram atom 1C is suitable. If the amount of afkali metal used is too much within this range, the catalytic activity will decrease, and if it is less than this range, the color tone of the target substance will deteriorate.

もう一方の添加物であるジルコニウム化合物としては、
臭化ジルコニウム、酢酸ジルコニル、酢酸ジルコニウム
などの酢酸に可溶で反応を妨害する対イオンを含まない
+4価のジルコニウム化合物が適当である。ジルコニウ
ム化合物の使用量は、ジルコニウム金属としての使用量
が触媒構成成分として用いたコバルト1グラム原子につ
き0.01〜2グラム原子に相当する量、好ましくは0
.05〜0.3グラム原子に相当する量が適当である。
The other additive, zirconium compound, is
+4-valent zirconium compounds, such as zirconium bromide, zirconyl acetate, and zirconium acetate, that are soluble in acetic acid and do not contain counterions that interfere with the reaction are suitable. The amount of the zirconium compound used is such that the amount of zirconium metal used is equivalent to 0.01 to 2 gram atoms per gram atom of cobalt used as a catalyst component, preferably 0.
.. An amount corresponding to 0.5 to 0.3 gram atoms is suitable.

ジルコニウム金属の使用量がこの範囲よりも多い場合は
触媒活性が低下傾向になり、またこの範囲よりも少ない
場合は色調の改善効果が微弱になるので好ましくない。
If the amount of zirconium metal used is more than this range, the catalytic activity tends to decrease, and if it is less than this range, the effect of improving color tone will be weak, which is not preferable.

反応温度は100〜140℃の範囲が適当である。10
0℃よりも低い反応温度では反応速度が極端に遅くなり
、一方140℃を越える反応温度では着色性不純物の副
生が増加し、好ましくない。
The reaction temperature is suitably in the range of 100 to 140°C. 10
At a reaction temperature lower than 0°C, the reaction rate becomes extremely slow, while at a reaction temperature higher than 140°C, the by-product of colored impurities increases, which is not preferable.

酸化剤として用いる分子状酸素含有ガスとしては、純酸
素や工業排ガスも使用可能であるが、]二業的には通常
の空気または空気と工業排カスとの混合ガスが適してい
る。
As the molecular oxygen-containing gas used as the oxidizing agent, pure oxygen or industrial waste gas can be used, but for secondary purposes, ordinary air or a mixed gas of air and industrial waste gas is suitable.

反応系の酸素分圧については、全反応圧力が1〜50気
圧の範囲、特に2〜40気圧の範囲で、かつ反応器から
の排カスの酸素濃度が1〜8容量%の範囲になるように
操作するのが好ましい。反応圧力が50気圧を越えると
、設備費と分子状酸素含有カスを圧縮するtコめの動力
費が増加するにもかかわらず格別の利点が得られず、逆
に二酸化炭素への分解が増加傾向となって不利である。
Regarding the oxygen partial pressure in the reaction system, the total reaction pressure should be in the range of 1 to 50 atm, especially 2 to 40 atm, and the oxygen concentration in the waste from the reactor should be in the range of 1 to 8% by volume. It is preferable to operate the When the reaction pressure exceeds 50 atm, no particular advantage can be obtained, although the equipment cost and the power cost for compressing the molecular oxygen-containing gas increase, and on the contrary, decomposition into carbon dioxide increases. This trend is disadvantageous.

またυ1カスの酸素濃度が8容量%を越えると、反応器
気相部が爆発性混合気体を形成するiTJ能性が強くな
り、安全対策面からrJlカスの酸素濃度は8 f4 
r辻%以下にする必要がある。
In addition, when the oxygen concentration of υ1 scum exceeds 8% by volume, the iTJ ability of the reactor gas phase to form an explosive gas mixture increases, and from the viewpoint of safety measures, the oxygen concentration of rJl scum exceeds 8 f4.
It is necessary to keep it below r Tsuji%.

本発明に用いる反応器としては、単なる気泡塔型式のも
のよりも強制混合される型式のものが好ましい。すなわ
ち分子状酸素含有カスと反応液との良好な気液混合を行
ない、分子状酸素の反応液への溶解を促進し、反応器内
での反応物質相互の接触を円滑に行なわせるために、反
応器下部に多数の細孔からなるガス吹込口を備え、回転
攪拌羽根による強制攪拌もしくは反応器外の循環ポンプ
による強制循環などが行なわれる反応器を使用すること
が好ましい。
The reactor used in the present invention is preferably of a forced mixing type rather than a simple bubble column type. That is, in order to achieve good gas-liquid mixing of the molecular oxygen-containing scum and the reaction liquid, to promote dissolution of molecular oxygen into the reaction liquid, and to ensure smooth contact between the reactants in the reactor, It is preferable to use a reactor equipped with a gas inlet consisting of a large number of pores in the lower part of the reactor, and in which forced stirring is performed using a rotating stirring blade or forced circulation is performed using a circulation pump outside the reactor.

反応器上部には還流冷却器を設けて、排ガスはこの還流
冷却器を通って排出されるようにし、排ガスに含まれる
溶媒酢酸や未反応m−ニトロトルエンなどを凝縮させて
反応器に循環させる。
A reflux condenser is provided at the top of the reactor, and the exhaust gas is discharged through the reflux condenser, and solvent acetic acid, unreacted m-nitrotoluene, etc. contained in the exhaust gas are condensed and circulated to the reactor.

反応方式としては、回分式、半連続式、連続式のいずれ
をも採用することができるが、半連続式または連続式の
場合により良好な品質の目的物質が得られる。
As the reaction method, any of a batch method, a semi-continuous method, and a continuous method can be employed, but the target substance of better quality can be obtained in the case of a semi-continuous method or a continuous method.

なお本発明方法により得られた反応生成混合物から目的
物質であるm−ニトロ安息香酸をQi離する方法として
は、反応生成物を冷却し、場合によりさらに濃縮してm
−二1・口安息香酸を晶析し、母液と固液分離する方法
が適当である。
Note that the method for separating Qi of the target substance m-nitrobenzoic acid from the reaction product mixture obtained by the method of the present invention is to cool the reaction product and optionally further concentrate it.
A suitable method is to crystallize -21-benzoic acid and separate it from the mother liquor into solid and liquid.

かくして単離したm −−−トo安息香酸は、必要に応
じて溶媒による洗浄や場合により再結晶などを行なって
所望する純度にまで精製し、乾燥して製品とする。
The thus isolated m--to-benzoic acid is purified to a desired purity by washing with a solvent and recrystallization if necessary, and dried to obtain a product.

一方m−二1〜口安息香酸を分離した母液は、溶解変分
のm−二) 0安、け香酸、酸化中間体、未反応原料、
触媒などのf7用物を含有しており、副生水を蒸留分離
してから、そのままもしくは適当な精製処理を施して反
応系に循環させくり返し使用することができる。
On the other hand, the mother liquor from which m-21 to benzoic acid was separated contains m-2) 0-benzoic acid, citric acid, oxidized intermediate, unreacted raw material,
It contains substances for F7 such as a catalyst, and after the by-product water is distilled and separated, it can be recycled to the reaction system as it is or after an appropriate purification treatment and used repeatedly.

以ト詳述した本発明方法により、品質の良好なm−二1
・口安忌香酸を経済的に製造することが可能になった。
By the method of the present invention described in detail below, m-21 of good quality can be obtained.
・It has become possible to economically produce Kuchian-jikoic acid.

以下、実施例を挙げて本究明を具体的に説明する。Hereinafter, the present research will be specifically explained with reference to Examples.

実施例1 還流冷却器と回転羽根攪拌機を備えtニチタノ製耐圧反
応盟に、酢酸100部(m−二トロトルエノに対して1
重量倍)、水4部、四化コバルトー六水塩2,49部、
分子状臭素0.06部(酢酸に対してコバルト0.45
iFt%、コバルトに対して臭素2.85重量倍)、酢
酸ナトリウム・三水塩2.17部(臭素に対してナトリ
ウム1グラム原子倍)、酢酸ンルコニル0.17 部(
コバルトに対してジルコニウム0.1グラム原子倍)を
仕込み、反応圧力14気圧ゲ、−シ、反応温度115℃
において、酸素7%と窒素93%の混合ガスを吹き込み
ながら、m−ニトロトル17100部を2時間で供給が
完了する速度で連続的に供給しはじめた。
Example 1 100 parts of acetic acid (100 parts of m-nitrotolueno
weight times), 4 parts of water, 2.49 parts of cobalt tetrahydride hexahydrate,
0.06 parts of molecular bromine (0.45 parts of cobalt to acetic acid)
iFt%, bromine 2.85 parts by weight relative to cobalt), 2.17 parts sodium acetate trihydrate (1 gram atom times sodium relative to bromine), 0.17 parts luconyl acetate (
Zirconium (0.1 gram atom times as much as cobalt) was charged, the reaction pressure was 14 atm, and the reaction temperature was 115°C.
Then, while blowing a mixed gas of 7% oxygen and 93% nitrogen, 17,100 parts of m-nitrotol was continuously fed at a rate that completed the feeding in 2 hours.

供給開始12分後に酸素吸収が始まりtコので、吹き込
むガスを空気に切換え、排ガス中の酸素濃度が8%以下
になるような流速で空気の吹き込みを続けて、2時間後
にm−ニトロトルエンの導入を停止し、5時間後に空気
の吹き込みを停止した。
Oxygen absorption started 12 minutes after the start of supply, so the gas to be blown was changed to air, and air was continued to be blown at a flow rate such that the oxygen concentration in the exhaust gas was 8% or less, and after 2 hours, m-nitrotoluene was introduced. was stopped, and after 5 hours, air blowing was stopped.

(反応終了後、生成物を室温に冷却し、固液分離して、
水−酢酸混合液(4:1)200部で洗浄し、乾燥する
と、純度99%以トのm−ニ)・ロ安息香酸72部(収
率59モル%)が得られtこ。
(After the reaction, the product is cooled to room temperature, solid-liquid separated,
Washing with 200 parts of a water-acetic acid mixture (4:1) and drying yielded 72 parts (yield: 59 mol %) of m-di)-benzoic acid with a purity of 99% or higher.

コ(7)m−=l−o安息香酸2fをI N−KOH水
溶液20 mlに溶解したところ、溶液は微黄色で、I
cjlのセルでの460 nmにおける光透過率は91
%であった。また生成物を固液分離した後の母液中には
30部、洗卵に用いた水−酢酸混合液には8部のm−二
1・口安息香酸が含まれており、m−ニトロ安り0香酸
の合計収率は90モル%であった。
When 2f of benzoic acid (7)m-=l-o was dissolved in 20 ml of IN-KOH aqueous solution, the solution was slightly yellow and I
The light transmittance at 460 nm in the cjl cell is 91
%Met. Furthermore, the mother liquor after solid-liquid separation of the product contains 30 parts of m-21-benzoic acid, and the water-acetic acid mixture used for egg washing contains 8 parts of m-nitrobenzoic acid. The total yield of aromatic acid was 90 mol%.

比較例1 実施例1において、酢酸ナトリウム・三水塩を加えずに
同様に反応させたところ、固液分離しtこm−二1・0
安り香酸(l1M’$ 61モル%)のアルカリ水溶液
の460 nmにおける光透過率は38%で、In−ニ
トロ安70.香酸の合81収率は92モル%であった。
Comparative Example 1 When the same reaction as in Example 1 was carried out without adding sodium acetate trihydrate, solid-liquid separation occurred and tcom-21.0
The light transmittance of an alkaline aqueous solution of benzoic acid (l1M'$ 61 mol%) at 460 nm is 38%, and the light transmittance of In-nitrobene is 70%. The combined yield of aromatic acid was 92 mol%.

比較例2 実施例1において、酢酸レルコニルを加えずに同様に反
応させたところ、固液分離したrn −ニトロ安息香酸
(収率57モル%)のアルカリ水溶液の460部mにお
ける光透過率は78%で、m−ニトロ安息香酸の合計収
率は88モル%でJ5つtこ。
Comparative Example 2 When a reaction was carried out in the same manner as in Example 1 without adding lerconyl acetate, the light transmittance at 460 parts m of an alkaline aqueous solution of rn-nitrobenzoic acid (yield 57 mol%) separated into solid and liquid was 78. %, the total yield of m-nitrobenzoic acid was 88 mol%.

比較例3 実施例1において、反応温度を145℃にl−ばて同様
に反応させたところ、固液分離したm−ニトロ安息香酸
(収率63モル%)のアルカリ水溶液の460部mにお
ける光透過率は62%で、m−ニトロ安息香酸の合計収
率は93モル%であった。
Comparative Example 3 In Example 1, the reaction temperature was raised to 145°C and the reaction was carried out in the same manner. The transmittance was 62% and the total yield of m-nitrobenzoic acid was 93 mol%.

比較例4 実施例1において、反応温度を95℃に下げて同様に反
応させナコところ、反応生成物を室温に冷却しても、m
−ニトロ安息香酸の結晶(よ析出しなかった。
Comparative Example 4 In Example 1, the reaction temperature was lowered to 95°C and the reaction was carried out in the same manner. However, even when the reaction product was cooled to room temperature, m
-Crystals of nitrobenzoic acid (did not precipitate).

実施例2 実施例1において、酢酸ナトリウ1、・三水塩の代りに
酢酸カリウム1.56部(臭素をこ対してカリウム1グ
ラム原子倍)を用し)で同様をと反応させたところ、固
液分離しt:m−二1・口安息香酸(収率60モル%)
のアルカリ水溶液の460部mにおける光透過率は90
%で、m−ニド0安忠香酸の合計収率は89モル%であ
つtコ。
Example 2 In Example 1, the same reaction was carried out using 1.56 parts of potassium acetate (1 gram atom of potassium over bromine) instead of sodium acetate 1, trihydrate. Solid-liquid separation t:m-21-benzoic acid (yield 60 mol%)
The light transmittance at 460 parts m of an alkaline aqueous solution is 90
%, the total yield of m-nidobenzoic acid was 89 mol% and t.

特許出願人 東 し 株 式 会 社Patent applicant Higashi Shikikai Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] m−ニトロトルエンを酢酸溶a中でコバルト化合物と臭
素化合物を主成分とする触媒の存在下で分子状酸素含有
ガスにより酸化してm−ニトロ安息香酸を製造する方法
において、アルカリ金属化合物とジルコニウム化合物と
を反応系に存在させ、100〜140℃で酸化すること
を特徴とするm−ニトロ安息香酸の製造法。
In a method for producing m-nitrobenzoic acid by oxidizing m-nitrotoluene with a molecular oxygen-containing gas in the presence of a catalyst containing a cobalt compound and a bromine compound as main components in an acetic acid solution a, an alkali metal compound and a zirconium compound are used. A method for producing m-nitrobenzoic acid, which comprises oxidizing at 100 to 140°C in the presence of m-nitrobenzoic acid in a reaction system.
JP57071330A 1982-04-30 1982-04-30 Preparation of m-nitrobenzoic acid Pending JPS58188844A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57071330A JPS58188844A (en) 1982-04-30 1982-04-30 Preparation of m-nitrobenzoic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57071330A JPS58188844A (en) 1982-04-30 1982-04-30 Preparation of m-nitrobenzoic acid

Publications (1)

Publication Number Publication Date
JPS58188844A true JPS58188844A (en) 1983-11-04

Family

ID=13457414

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57071330A Pending JPS58188844A (en) 1982-04-30 1982-04-30 Preparation of m-nitrobenzoic acid

Country Status (1)

Country Link
JP (1) JPS58188844A (en)

Similar Documents

Publication Publication Date Title
SU791221A3 (en) Method of preparing terephthalic acid
US4286101A (en) Process for preparing terephthalic acid
US4051178A (en) Process for producing terephthalic acid
JPS582222B2 (en) Production method of aromatic polycarboxylic acid
JPH0460098B2 (en)
US4007223A (en) Method of preparing p-nitrobenzoic acid
JPS58188844A (en) Preparation of m-nitrobenzoic acid
JPS58183646A (en) Preparation of p-nitrobenzoic acid
JPS6228946B2 (en)
JP3232796B2 (en) Method for producing p-acetoxybenzoic acid
JPS6019736A (en) Simultaneous production of p-t-butylbenzaldehyde and p-t-butylbenzoic acid
JPH07155617A (en) Catalyst for oxidizing p-nitrotoluene and production of p-nitrobenzoate
JPS6217990B2 (en)
JPS58183645A (en) Preparation of m-nitrobenzoic acid
KR880000741B1 (en) Prepration method of saccharin
JPH02147628A (en) Preparation of polycarbonate compound
JPS5821650A (en) Preparation of m-nitrobenzoic acid
JPH09169696A (en) Production of acetoxybenzene dicarboxylic acid
JPS5910549A (en) Preparation of m-chlorobenzoic acid
JPS603057B2 (en) Method for producing P-nitrobenzoic acid
JPS5955877A (en) Preparation of saccharin
JPS5832843A (en) Preparation of p-chlorobenzoic acid
JPS60255745A (en) Production of 2,3,5-trimethylbenzoquinone
JPH0481974B2 (en)
JPS60255746A (en) Production of 2,3,5-trimethylbenzoquinone