JPS5980509A - Operation circuit for plural fluid pressure actuator - Google Patents

Operation circuit for plural fluid pressure actuator

Info

Publication number
JPS5980509A
JPS5980509A JP58168259A JP16825983A JPS5980509A JP S5980509 A JPS5980509 A JP S5980509A JP 58168259 A JP58168259 A JP 58168259A JP 16825983 A JP16825983 A JP 16825983A JP S5980509 A JPS5980509 A JP S5980509A
Authority
JP
Japan
Prior art keywords
pilot
pressure
switching valve
fluid pressure
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58168259A
Other languages
Japanese (ja)
Other versions
JPS6232296B2 (en
Inventor
Yoshihide Shibano
柴野 義秀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobelco Construction Machinery Co Ltd
Original Assignee
Yutani Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yutani Heavy Industries Ltd filed Critical Yutani Heavy Industries Ltd
Priority to JP58168259A priority Critical patent/JPS5980509A/en
Publication of JPS5980509A publication Critical patent/JPS5980509A/en
Publication of JPS6232296B2 publication Critical patent/JPS6232296B2/ja
Granted legal-status Critical Current

Links

Abstract

PURPOSE:To smoothly conduct turning and boom operation in parallel with each other by introducing the first pilot pressure and the second pilot pressure into a pilot switching valve so that the initial turning is conducted without delay, and after the start of turning, a boom is quickly operated. CONSTITUTION:In a pilot switching valve 9, the first pilot pressure introduced from the first fluid pressure actuator circuit 4 exerts upon the spring 16 side, and a fluid fed with pressure by a switching valve 19 adapted to open interlocking with the opening of a switching valve 7 for a boom cylinder exerts upon the pressure spring 15 side as the second pilot pressure. If the working fluid has high pressure for producing large turning torque required for the initial turning, a hydraulic motor for turning is separately operated by the total output of the first hydraulic pump. When the first pilot pressure becomes lower than the second pilot pressure, the pilot switching valve 9 is opened to let a part of the working fluid in the first hydraulic pump system in the second hydraulic pump system, thereby operating the boom cylinder.

Description

【発明の詳細な説明】 本発明は夫々異なる圧力源を有する複数の流体圧アクチ
ュエータの初動負荷が異なる場合に、初動負荷の大なる
アクチュエータの作動流体圧が一定値以下に低減するま
で該作動流体を他の流体圧アクチュエータの作動流体回
路中に合流させない圧力流体作動回路に関するものであ
って、複数の流体圧アクチュエータを同時に作動させる
際に初動負荷の大なる機材の作動を遅延させることなく
円滑に行わせると共に他の流体圧アクチュエータの作動
をも迅速に行わせる作動回路に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention provides, when a plurality of fluid pressure actuators each having a different pressure source have different initial loads, the working fluid pressure of the actuator with a large initial load is reduced to a certain value or less. This relates to a pressure fluid operation circuit that does not allow fluids to merge into the operating fluid circuits of other fluid pressure actuators, and allows smooth operation of equipment with a large initial load without delaying the operation of multiple fluid pressure actuators at the same time. The present invention relates to an actuation circuit that allows quick operation of other hydraulic actuators.

以下、油圧作動パワーショベルについて従来例を説明す
ると、 パワーショベルは走行車体上の旋回機体を旋回させる油
圧モータと旋回機体に基端を枢着したブームを俯仰させ
るブームシリンダと、ブ−ムに取付けられ先端部にバケ
ットを有するアームを操作するアームシリンダと、バケ
ットヲ操作するバケットシリンダと、を具備し、機体に
搭載したエンジン出力を有効に利用するために前記油圧
モータは第1の油圧ポンプより作動流体が供給される第
1の流体圧アクチュエータ回路を、またブームシリンダ
、アームシリンダ及びバケットシリンダは第2の油圧ポ
ンプより作動流体が供給される第2の流体圧アクチュエ
ータ回路を、夫々有しており、ブームシリンダ、アーム
シリンダ及びバケットシリンダの如く多量の作動流体を
必要とするアクチュエータに必要に応じ第1の流体圧ア
クチュエータ回路から第2の流体圧アクチュエータ回路
に作動流体を補給するため、第1の流体圧アクチュエー
タ回路と第2の流体圧アクチュエーク回路との間を接続
する連通回路が形成されている。
Below, we will explain a conventional example of a hydraulically operated power shovel.A power shovel has a hydraulic motor that turns a swinging machine on a traveling vehicle body, a boom cylinder that lifts up and down a boom whose base end is pivoted to the swinging machine, and a boom cylinder that is attached to the boom. The hydraulic motor is operated by a first hydraulic pump in order to effectively utilize the output of the engine mounted on the aircraft. The boom cylinder, the arm cylinder, and the bucket cylinder each have a first hydraulic actuator circuit supplied with fluid, and each of the boom cylinder, arm cylinder, and bucket cylinder has a second hydraulic actuator circuit supplied with working fluid from a second hydraulic pump. , the first hydraulic actuator circuit supplies working fluid from the first hydraulic actuator circuit to the second hydraulic actuator circuit as necessary for actuators that require a large amount of working fluid, such as boom cylinders, arm cylinders, and bucket cylinders. A communication circuit is formed that connects the fluid pressure actuator circuit and the second fluid pressure actuator circuit.

このような作動回路においては、例えば初動負荷の大な
る旋回用油圧モータのみを単独6ど作動させる場合は、
第1の流体圧アクチュエータ回路からの作動流体のすべ
てを油圧モータに供給し、油圧モータが第1図の実線へ
で示す如く始動時から旋回運動慣性が与えられるしばら
くの間、即ち、大きな旋回トルクを必要とする間は第1
の油圧ポンプから油圧モータに供給される作動流体圧は
高く、油圧モータの発生トルクが大きくなるので、遅滞
なく機体の旋回を開始することができ、機体に旋回運動
慣性がイζj与されると旋回トルクが小さくなり作動流
体圧も漸減する。
In such an operating circuit, for example, when operating only the swing hydraulic motor with a large initial load,
All of the working fluid from the first fluid pressure actuator circuit is supplied to the hydraulic motor, and the hydraulic motor is operated for a period of time from the time of startup to the point where swing motion inertia is applied, that is, a large swing torque, as shown by the solid line in FIG. The first time you need
The working fluid pressure supplied from the hydraulic pump to the hydraulic motor is high, and the torque generated by the hydraulic motor is large, so the aircraft can start turning without delay, and when turning motion inertia is applied to the aircraft, As the turning torque becomes smaller, the working fluid pressure also gradually decreases.

しかし、例えば旋回用油圧モータとブームシリンダとを
同時に作動するような場合は、第1の流体圧アクチュエ
ータ回路中の作動流体が旋回開始時に大きな旋回トルク
を必要とするためブームシリンダの第2の流体圧アクチ
ュエータ回路中の作動流体圧より高い圧力を有している
から第1の流体圧アクチュエーク回路の作動流体は圧力
の低い第2の流体圧アクチュエータ回路中に流入し、第
1図の破線Bで示すように旋回モータに供給される流体
圧が低下して旋回初動時のトルクが不足し機体の旋回が
敏速に行われず、機体の旋回初期作動の遅滞を来す欠点
を有し、運転操作に円滑を欠き作業能率の向上に著しい
支障となっていた。
However, for example, when operating the swing hydraulic motor and the boom cylinder at the same time, the working fluid in the first hydraulic actuator circuit requires a large swing torque at the start of the swing, so the second fluid in the boom cylinder Since the working fluid in the first hydraulic actuator circuit has a higher pressure than the working fluid pressure in the hydraulic actuator circuit, the working fluid in the first hydraulic actuator circuit flows into the second hydraulic actuator circuit which has a lower pressure, and as shown by the broken line B in FIG. As shown in the figure, the fluid pressure supplied to the swing motor decreases and the torque at the initial turn is insufficient, making it difficult for the aircraft to turn quickly, resulting in a delay in the initial movement of the aircraft. This lacked smoothness and was a significant hindrance to improving work efficiency.

本発明は上記嘩来の欠点を除去したもので、旋回用油圧
モータに作動流体を供給する第1の油圧ポンプ系統とブ
ームシリンダ、アームシリンダ、バケットシリンダに作
動流体を供給する第2の油圧ポンプ系統との間に連通回
路を構成し、該連通回路中に設けたパイロット切換弁に
前記第1の油圧ポンプ系統からの作動流体による第1の
バイロフト圧と第2の油圧ポンプ系統に属する他の油圧
系統からの圧力流体による第2のパイロット圧とを導入
し、前記第1の油圧ポンプ系統からのパイロット圧が一
定値以上のとき、即ち機体の旋回初動時において作動流
体が旋回初動に必要な大きい旋回トルクを生ぜしめる高
い圧力を有するときは、前記他の油圧系統から−のパイ
ロット圧がパイロット切換弁を開弁作動させず、旋回用
油圧モータは第1の油圧ポンプの全出力により単独で作
動され、機体に旋回運動慣性が生じたのちは、第1の油
圧ポンプの吐出圧が第1図実線への如く一定値以下に降
下するから、前記パイロット切換弁に作用する第1の油
圧ポンプ系統からのパイロット圧が第2の油圧ポンプ系
統に属する他のポンプ系統からのパイロンI・圧より低
くなってバイロフト切換弁は開弁作動し、第1の油圧ポ
ンプ系統の作動流体の一部が第2の油圧ポンプ系統に流
れてブームシリンダ等を作動し、従って機体の初動旋回
を遅滞なく行い11機体の旋回開始後はブーム等の作動
が敏速に行われ、機体旋回とブーム操作とを同時並行し
て円滑に作動させうるものである。
The present invention eliminates the above-mentioned drawbacks, and includes a first hydraulic pump system that supplies working fluid to the swing hydraulic motor, and a second hydraulic pump that supplies working fluid to the boom cylinder, arm cylinder, and bucket cylinder. A communication circuit is configured between the communication circuit and the pilot switching valve provided in the communication circuit, and a first biloft pressure caused by the working fluid from the first hydraulic pump system and another biloft pressure belonging to the second hydraulic pump system are applied to the pilot switching valve provided in the communication circuit. A second pilot pressure by pressure fluid from the hydraulic system is introduced, and when the pilot pressure from the first hydraulic pump system is above a certain value, that is, at the time of the initial movement of the aircraft, the working fluid is required for the initial movement of the turn. When there is a high pressure that produces a large swing torque, the pilot pressure from the other hydraulic system does not open the pilot switching valve, and the swing hydraulic motor is operated independently by the full output of the first hydraulic pump. After the first hydraulic pump is activated and a turning movement inertia is generated in the aircraft, the discharge pressure of the first hydraulic pump drops below a certain value as shown by the solid line in FIG. When the pilot pressure from the system becomes lower than the pylon I pressure from other pump systems belonging to the second hydraulic pump system, the viroft switching valve opens and a part of the working fluid of the first hydraulic pump system is released. The flow goes to the second hydraulic pump system and operates the boom cylinder, etc., so the initial turning of the aircraft is carried out without delay, and after the 11 aircraft start turning, the boom etc. are operated quickly, allowing the aircraft to turn and boom operation at the same time. They can be operated smoothly in parallel.

以下、本発明の実施例を図面第2〜4図について説明す
ると、 第1油圧ポンプlと第1の流体圧アクチュエータである
旋回モータ2との間には旋回モーフ月切換弁3を有する
第1の流体圧アクチュエータ回路4が構成され、また第
2油圧ポンプ5と第2の流体圧アクチュエータであるブ
ームシリンダ6との間にはブームシリンダ用切換弁7を
有する第2の流体圧アクヂュエータ回路8が構成されて
いる。そして、第1の流体圧アクチュエータ回路4と第
2の流体圧アクチュエータ回路8との間は、パイロット
切換弁9を有する連通回路10で接続されている。
Hereinafter, an embodiment of the present invention will be described with reference to FIGS. 2 to 4. A first hydraulic pump l having a swing morph monthly switching valve 3 between a first hydraulic pump l and a swing motor 2 which is a first fluid pressure actuator. A fluid pressure actuator circuit 4 is configured, and a second fluid pressure actuator circuit 8 having a boom cylinder switching valve 7 is arranged between the second hydraulic pump 5 and the boom cylinder 6, which is the second fluid pressure actuator. It is configured. The first fluid pressure actuator circuit 4 and the second fluid pressure actuator circuit 8 are connected by a communication circuit 10 having a pilot switching valve 9.

前記パイロット切換弁9は第3〜4図に示す如くスプー
ル弁体11の両端の弁筺12に形成されたパイロット室
内を摺動する作動子13のロンド13′が嵌入する凹部
14を形成し、作動子13の外側面にば押圧バネ15が
、内側面には復帰バネ16が介装され、バイロフト室の
前記復帰バネ16側にはシャトル弁17を介して第1の
パイロット圧流路18により第1の流体圧アクチュエー
タ回路4から導入される第1のパイロット圧が作用し、
またパイロット室の押圧バネ15側にはブームシリンダ
用切換弁7の開弁に連動して開弁する切換弁19により
パイロット圧ポンプ20で圧送される流体が第2のパイ
ロット圧流路21を経て第2のパイロット圧として作用
している。
As shown in FIGS. 3 and 4, the pilot switching valve 9 forms a recess 14 into which the rond 13' of the actuator 13 that slides in the pilot chamber formed in the valve housing 12 at both ends of the spool valve body 11 is fitted. A pressure spring 15 is interposed on the outer surface of the actuator 13, and a return spring 16 is interposed on the inner surface. The first pilot pressure introduced from the first fluid pressure actuator circuit 4 acts,
Further, on the pressure spring 15 side of the pilot chamber, a switching valve 19 that opens in conjunction with the opening of the boom cylinder switching valve 7 allows fluid to be pumped by a pilot pressure pump 20 through a second pilot pressure flow path 21. Acts as pilot pressure for 2.

そこで、旋回モータ2のゐを単独で作動する場合には切
換弁3を操作して第1油圧ポンプ1の作動流体を第1の
流体圧アクチュエータ回路4により旋回モータ2に供給
すると共に連通回路IOを経てパイロット切換弁9に供
給する。
Therefore, when operating the swing motor 2 independently, the switching valve 3 is operated to supply the working fluid of the first hydraulic pump 1 to the swing motor 2 through the first fluid pressure actuator circuit 4, and the communication circuit IO It is supplied to the pilot switching valve 9 through the.

しかるときは、旋回モータ2は作動するが、第1の流体
圧アクチュエータ回路4内の作動流体の一部がシャトル
弁17より第1のパイロット圧流路18を経て第3図に
示す如くパイロット切換弁9両端のバイロソ!・室の復
帰ハネ16側に導入され、作動子13を押圧ハネ15の
イ1勢力に抗して外側方に押動するからスプール弁体1
1は移動せず閉弁状態に保持されるから、連通回路10
の作動流体は第2の流体圧アクチュエータ回路8内に合
流せず、第1油圧ポンプ1より圧送される作動流体は第
1図の実線で示す圧力変化を画いて第1の流体圧アクデ
ユーエータである油圧モータ2の旋回作動のみに消費さ
れる。
In this case, the swing motor 2 operates, but a portion of the working fluid in the first fluid pressure actuator circuit 4 passes from the shuttle valve 17 to the first pilot pressure passage 18 to the pilot switching valve as shown in FIG. 9 Biroso on both ends! - The spool valve body 1 is introduced into the return spring 16 side of the chamber and pushes the actuator 13 outward against the force of the pressure spring 15.
Since valve 1 does not move and is held in the closed state, communication circuit 10
The working fluid does not flow into the second fluid pressure actuator circuit 8, and the working fluid pumped by the first hydraulic pump 1 is supplied to the first fluid pressure actuator with the pressure change shown by the solid line in FIG. It is consumed only for the swing operation of the hydraulic motor 2.

次に、第1の流体圧アクチュエータである旋回モータ2
と第2の流体圧アクチュエータであるブームシリンダ6
とを同時に作動する場合は、第1油圧ポンプlと第2油
圧ポンプ5とを駆動し、旋回モータ用切換弁3とブーム
シリンダ用切換弁7とを開弁操作し、切換弁3の操作に
より前述の如く旋回モータ2が作動すると共にパイロッ
ト切換弁9のスプール弁体11の両端側パイロット室の
復帰バネ16側に第1の流体圧アクチュエータ回路4よ
りの第1のパイロット圧が第1のパイロット圧流路18
を経て作用し、スプール弁体11を中立位置、即ち閉弁
位置に保持するが、一方ブームシリンダ用切換弁7の開
弁操作に連動して開弁する切換弁19によりパイロット
圧ポンプ20から圧送される流体は第2のパイ日ソ1−
圧流路21を経てパイロット切換弁9のスプール弁体1
1のパイロット室の押圧バネ15例のいずれか一方に第
2のパイロット圧として作用する。
Next, the swing motor 2, which is the first fluid pressure actuator,
and a boom cylinder 6 which is a second hydraulic actuator.
When operating both at the same time, drive the first hydraulic pump l and the second hydraulic pump 5, open the swing motor switching valve 3 and the boom cylinder switching valve 7, and operate the switching valve 3. As described above, when the swing motor 2 operates, the first pilot pressure from the first fluid pressure actuator circuit 4 is applied to the return spring 16 side of the pilot chamber on both ends of the spool valve body 11 of the pilot switching valve 9. Pressure channel 18
The spool valve body 11 is held in the neutral position, that is, in the closed position.On the other hand, the switching valve 19, which opens in conjunction with the opening operation of the boom cylinder switching valve 7, allows pressure to be supplied from the pilot pressure pump 20. The fluid to be used is the second pi-so1-
The spool valve body 1 of the pilot switching valve 9 via the pressure flow path 21
The second pilot pressure acts on one of the 15 pressure springs in the first pilot chamber.

従って、作動子13の両側面には第1のパイロット圧と
第2のパイロット圧とが作用し第1のパイロット圧が第
2のパイし1ノド圧よりも高いとき、即ち、旋回機体の
初動トルクがブームの初動トルクよりも大であるときは
、スプール弁体11が開弁状態の中立位置を保持するが
ら、紹1油圧ポンプ1より旋回モータ2に供給される第
1の流体圧アクチュエーク回路4中の作動流体の一部が
第2の流体圧アクチュエータ回路8に流入せず、連通回
路1oを経て第1油圧ポンプ1より圧送される作動流体
のすべては旋回モータ2に供給されて旋回機体の初動ト
ルクとして作用し、旋回初動動作の遅延化を防止し、一
方、第2の油圧ポンプ5から圧送される作動流体は第2
の流体圧アクチュエータ回路8を経てブームシリンダ6
に導入され、ブームは旋回機体の旋回動作に関係なく動
作する。
Therefore, the first pilot pressure and the second pilot pressure act on both sides of the actuator 13, and when the first pilot pressure is higher than the second nod pressure, that is, the initial movement of the rotating aircraft When the torque is greater than the initial torque of the boom, the spool valve body 11 maintains the open neutral position, and the first fluid pressure actuator circuit is supplied from the first hydraulic pump 1 to the swing motor 2. 4 does not flow into the second hydraulic actuator circuit 8, and all of the working fluid pumped from the first hydraulic pump 1 through the communication circuit 1o is supplied to the swing motor 2 and the swing machine act as the initial torque of the second hydraulic pump 5 to prevent delay in the initial swing operation, while the working fluid pumped from the second hydraulic pump 5 is
boom cylinder 6 via hydraulic actuator circuit 8 of
The boom operates regardless of the swinging motion of the swinging aircraft.

そして、旋回機体の初動開始後、旋回機体の運動慣性に
より旋回トルクが漸減し第1のパイロット圧が第2のパ
イロット圧より小になる−定植以下に降下すると、作動
子13の一方は第4図に示す如く内側方に移動してスプ
ール弁体t 、1を開弁方向に移動させるから、第1の
流体圧アクチュエータ回路4の作動流体の一部は連通回
路1 (lよりパイロット切換弁9を経て第2の流体圧
アクチュエータ回路8に合流してブーツ・シリンダ6に
供給され、旋回機体は遅滞することなく初動旋回すると
共に機体の旋回開始後はブームが第1の流体圧アクチュ
エータ回路4よりの作動流体の一部の合流により迅速な
作動を促進することが可能となる。
Then, after the initial motion of the swinging aircraft starts, the swinging torque gradually decreases due to the kinetic inertia of the swinging aircraft, and the first pilot pressure becomes smaller than the second pilot pressure. As shown in the figure, since the spool valve bodies t and 1 are moved inward in the valve opening direction, a part of the working fluid of the first fluid pressure actuator circuit 4 is transferred to the communication circuit 1 (from the pilot switching valve 9 through the second fluid pressure actuator circuit 8 and is supplied to the boot cylinder 6, the swinging aircraft makes an initial turn without delay, and after the aircraft starts turning, the boom is connected to the first fluid pressure actuator circuit 4. By merging some of the working fluids of the two, it is possible to promote rapid operation.

なお、上記実施例において第2の流体圧アクチュエータ
としてブームシリンダに代えてアームシリンダ又はバゲ
ソト用シリンダを用い′ζも差支えないことは勿論であ
る。
It goes without saying that in the above embodiment, an arm cylinder or a baggage sorting cylinder may be used instead of the boom cylinder as the second fluid pressure actuator.

上述の如(、本発明は初動負荷の異なる複数の流体圧ア
クチュエータの夫々に作動流体を供給する流体回路を連
通回路により接続し、夫々の流体圧アクチュエータを単
独で作動させることが可能であるばかりでなく、複数の
流体圧アクチュエータを同時駆動した際に、初動負荷の
大なる流体圧アクチュエータに供給される作動流体が初
動負荷の小なる流体圧アクチュエータの作動流体に連通
回路を経て直ちに逃げることなく、初動負荷の大なる流
体圧アクチュエータのみに供給され°ζζ原流体圧アク
チュエータ遅滞なく初動作動させ、初動負荷の大なる流
体圧アクチュエータが初動開始後、機体の旋回運動慣性
により旋回トルクが低減して作動流体化が一定値以下に
なると第2の流体圧アクチュエータ回路に第1の流体圧
アクチュエータ回路中の作動流体の一部が合流して該第
2の流体圧アクチュエータの作動を促進し、該第2の流
体圧アクチュエータの作動速度を上げることができるの
で、複数の流体圧アクチュエータ間に初動トルクの差異
があっても複数の流体圧7クチユエータは同時に遅延さ
せることなく作動せしめて運転操作を容易にするととも
に、PJ ?h且つ迅速な作業を遂行することができる
ものである。
As described above, the present invention connects fluid circuits that supply working fluid to each of a plurality of fluid pressure actuators with different initial loads through a communication circuit, and it is possible to operate each fluid pressure actuator independently. Instead, when multiple fluid pressure actuators are driven simultaneously, the working fluid supplied to the fluid pressure actuator with a large initial load does not immediately escape through the communication circuit to the working fluid of the fluid pressure actuator with a small initial load. , the fluid pressure actuator with a large initial load is supplied only to the fluid pressure actuator, so that the original fluid pressure actuator operates for the first time without delay, and after the fluid pressure actuator with a large initial load starts the initial operation, the turning torque is reduced due to the inertia of the turning motion of the aircraft. When the working fluid becomes below a certain value, part of the working fluid in the first fluid pressure actuator circuit joins the second fluid pressure actuator circuit to promote the operation of the second fluid pressure actuator. Since the operating speed of the 2 fluid pressure actuators can be increased, even if there is a difference in initial torque between multiple fluid pressure actuators, multiple fluid pressure 7 actuators can be operated simultaneously without delay, making operation easier. At the same time, it is possible to perform project work quickly and efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は初動トルク大なる第1流体圧アクチュエータの
作動圧力線図、第2図もよ本発明の1乍動流体回路図、
第3図は本発明の〕々イロy)切換弁の閉弁状態を示す
要部断面図、第4図Gよ本発明のパイロット切換弁の開
弁作動時の1大態を示す要部断面図である。 2・・・第1の流体圧アクチュエータ 4・・・第1の流体圧アクチュエータ回路5・・・第2
の流体圧アクチュエータ 6・・・パイロット切換弁 7・・・分岐回路 9・・・第2の流体圧アクチュエータ回路の切換弁10
・・・第2の流体圧アクチュエータ回路18・・・第1
のパイロ・ノド圧流路 21・・・第2のパイ1コツト圧流路 代理人 弁理士 祐用尉−外1名
FIG. 1 is an operating pressure diagram of the first fluid pressure actuator with a large initial torque, and FIG.
Fig. 3 is a sectional view of the main part showing the closed state of the pilot switching valve of the present invention, and Fig. 4 G is a sectional view of the main part showing the main state of the pilot switching valve of the invention when the valve is opened. It is a diagram. 2...First fluid pressure actuator 4...First fluid pressure actuator circuit 5...Second
Fluid pressure actuator 6...Pilot switching valve 7...Branch circuit 9...Switching valve 10 of the second fluid pressure actuator circuit
...Second fluid pressure actuator circuit 18...First
Pyro/nod pressure flow path 21...Second pie pressure flow path Agent Patent attorney Yuyosuke - 1 other person

Claims (1)

【特許請求の範囲】[Claims] 夫々異なる圧力源を有する初動負荷の大なる第1の流体
圧アクチュエータの回路と第1の流体圧アクチュエータ
より初動負荷の小なる第2の流体圧アクチュエータの回
路とを接続する連通回路にパイロット切換弁を設け、該
パイロット切換弁の両端部に第1の流体圧アクチュエー
タの回路の流体圧蕃第1のパイロット圧として作用させ
る第1のパイロット圧流路と第2の流体圧アクチュエー
タの回路の切換弁の開弁操作に連動して開路しパイロッ
ト圧ポンプによる第2のパイロット圧を作用させる第2
のパイロット圧流路とを接続し、前記第1のパイロット
圧が第2のパイロット圧より低下したときに前記バイロ
ンI・切換弁を開弁作動して第1の流体圧アクチュエー
タの回路の作動流体の一部を第2の流体圧アクチュエー
タの回路に合流させるパイロット作動子を前記パイロッ
ト切換弁の両端部に設けた複数の流体圧アクチュエータ
の作動回路。
A pilot switching valve is provided in a communication circuit connecting a first fluid pressure actuator circuit with a large initial load and a second fluid pressure actuator circuit with a smaller initial load than the first fluid pressure actuator, each having a different pressure source. A switching valve for a first pilot pressure flow path and a second fluid pressure actuator circuit, which act as a first pilot pressure at both ends of the pilot switching valve. A second valve that opens in conjunction with the valve opening operation and applies a second pilot pressure from the pilot pressure pump.
When the first pilot pressure is lower than the second pilot pressure, the Byron I switching valve is opened and the working fluid in the circuit of the first fluid pressure actuator is connected. An operating circuit for a plurality of fluid pressure actuators, wherein a pilot operating element is provided at both ends of the pilot switching valve, a part of which merges into the circuit of a second fluid pressure actuator.
JP58168259A 1983-09-14 1983-09-14 Operation circuit for plural fluid pressure actuator Granted JPS5980509A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58168259A JPS5980509A (en) 1983-09-14 1983-09-14 Operation circuit for plural fluid pressure actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58168259A JPS5980509A (en) 1983-09-14 1983-09-14 Operation circuit for plural fluid pressure actuator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP7239480A Division JPS57243A (en) 1980-05-29 1980-05-29 Independent circuit for slewing of oil-pressure shovel

Publications (2)

Publication Number Publication Date
JPS5980509A true JPS5980509A (en) 1984-05-10
JPS6232296B2 JPS6232296B2 (en) 1987-07-14

Family

ID=15864689

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58168259A Granted JPS5980509A (en) 1983-09-14 1983-09-14 Operation circuit for plural fluid pressure actuator

Country Status (1)

Country Link
JP (1) JPS5980509A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198644U (en) * 1987-06-10 1988-12-21

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63198644U (en) * 1987-06-10 1988-12-21

Also Published As

Publication number Publication date
JPS6232296B2 (en) 1987-07-14

Similar Documents

Publication Publication Date Title
US20120291873A1 (en) Hydraulic circuit
JPS5844133A (en) Oil-pressure circuit for oil-pressure shovel
JP2005061477A (en) Hydraulic driving device
JPS6225882B2 (en)
JP2001295803A (en) Hydraulic driving device for work machine
JPH0216416B2 (en)
JPS5980509A (en) Operation circuit for plural fluid pressure actuator
CN110249141A (en) Fluid pressure circuit
JP2583127B2 (en) Hydraulic excavator traveling / work equipment operating device
JP2871112B2 (en) Swivel circuit of construction machinery
JPH02494B2 (en)
JPS5980508A (en) Operation circuit for plural fluid-pressure actuator
JPS6232295B2 (en)
JP2001355603A (en) Hydraulic driving device for working machinery
JPH0217722B2 (en)
JPH0860710A (en) Hydraulic circuit of hydraulic construction equipment
JP2675066B2 (en) Hydraulic circuits for civil engineering and construction machinery
JPS6078022A (en) Oil-pressure circuit of oil-pressure shovel
JP2711702B2 (en) Method and apparatus for switching shovel operating pressure in power shovel
JPH07317707A (en) Hydraulic circuit for construction machine
KR890007173Y1 (en) Remote control-type excavator having sequence valve
JPS6119205Y2 (en)
JPH0339601Y2 (en)
JPH0118693Y2 (en)
JPS6195131A (en) Liquid pressure circuit for construction machine