JPS5979821A - Detection of maximum temperature - Google Patents

Detection of maximum temperature

Info

Publication number
JPS5979821A
JPS5979821A JP19020682A JP19020682A JPS5979821A JP S5979821 A JPS5979821 A JP S5979821A JP 19020682 A JP19020682 A JP 19020682A JP 19020682 A JP19020682 A JP 19020682A JP S5979821 A JPS5979821 A JP S5979821A
Authority
JP
Japan
Prior art keywords
temperature
vacuum
substrate
resistance
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19020682A
Other languages
Japanese (ja)
Inventor
Michihiko Tominaga
冨永 道彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP19020682A priority Critical patent/JPS5979821A/en
Publication of JPS5979821A publication Critical patent/JPS5979821A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer
    • G01K7/183Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer characterised by the use of the resistive element

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To enable a handy measurement of temperature from a low to the maximum level without contamination of vacuum atmosphere or the like by forming a vacuum evaporated film of a metal such as Au and Ni on an insulating substrate at a temperature lower than the temperature to be measured to be used particularly for measuring the temperature of parts in or inside of a vacuum container. CONSTITUTION:A single metal 3 such as Au, Pt, Ni, Fe, Pd, Cu and Ag is evaporated, for example, on an insulating substrate or a conductor 1 with an insulated surface at the thickness of 50-500Angstrom at the substrate temperature lower than the temperature to be measured in order to measure the inside of an electron tube or the like and parts in and walls of a vacuum vessel unable to use a thermocouple or the like. For example, an Ag paste is sintered on a substrate 1 to form an electrode 2 and an Au film 3 evaporated at 50 deg.C. The electric resistance of the film 3 remains unchanged upto the substrate temperature of 50 deg.C, increases as the crystallinity gains with the rise in the temperature beyond 50 deg.C and becomes constant at the temperature (270 deg.C or so for Au) at the temperature of maximizing the crystallinity. The ratio is predetermined between the minimum resistance value R0 (at the maximum temperature) and the differences of the resistance DELTAR at temperature T during the rise in the temperature from the resistance R0 and from the resistance R50 at 50 deg.C and then, the ratio between the results and the DELTAR/R50 is obtained to enable the detection of the temperature upto the maximum level continuously.

Description

【発明の詳細な説明】 本発明は、特に真空容器内の部品又は器壁の最高温度を
検出する方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention particularly relates to a method for detecting the maximum temperature of a component or wall of a vacuum vessel.

従来熱電対などが使用でき力い、例えば電子管のガラス
パルプ内壁温度の測定には純金属あるいは合金の融点を
利用した温度検出素子によって素子の形体変化あるいけ
変色によってその最高温度を検出していた。しかしなが
ら、この検出方法では電子管の真空度を劣下させると、
検出できる温度値が不連続でさる仁となどの大きな欠点
を有し、実用できるものは少なかった。
Conventionally, thermocouples and the like could not be used; for example, to measure the temperature of the inner wall of glass pulp in an electron tube, the highest temperature was detected by a temperature detection element that utilized the melting point of a pure metal or alloy, and by detecting a change in the shape or color of the element. . However, with this detection method, if the vacuum level of the electron tube is reduced,
They had major drawbacks, such as the temperature values that could be detected were discontinuous and unreliable, and there were few that could be put to practical use.

本発明の目的は、真空などの雰囲気を汚損することなく
、かつ連続値で被測定温度の最高値を検出する簡便な方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a simple method for continuously detecting the maximum value of a temperature to be measured without contaminating an atmosphere such as a vacuum.

本発明の最高温度を検出する方法はAu、 Pt。The method of detecting the maximum temperature of the present invention is Au, Pt.

Ni、 Fe、 Pd、 Cu、 Ag  などの金属
元素(Dいずれか単体の真空蒸着膜の電気抵抗が焼鈍効
果によって、その経験した最高の温度に対応した値に不
可逆に変化することを利用した方法にして、所望の基体
(被試験部位そのものも含む)[通常の真空蒸着法によ
って形成せる真空蒸着膜を被測定温度のもとに配した後
、その温度よりも低い所定の温度(例えば常温)でその
電気抵抗を測定し、例えば予め校正せる電気抵抗−最高
温度曲線から最高温度を求める方法である。ここで基体
はガラス。
A method that utilizes the fact that the electrical resistance of a vacuum-deposited film of a single metal element (D) such as Ni, Fe, Pd, Cu, or Ag irreversibly changes to a value corresponding to the highest temperature experienced by the annealing effect. Then, the desired substrate (including the part to be tested) [a vacuum-deposited film formed by a normal vacuum deposition method is placed under the temperature to be measured, and then a predetermined temperature lower than that temperature (e.g. room temperature) In this method, the electrical resistance is measured and the maximum temperature is determined from, for example, an electrical resistance-maximum temperature curve that can be calibrated in advance.Here, the substrate is glass.

セラミ、り1石英など絶縁体基体、又は表面を絶縁処理
した導体基体であれば良く、真空蒸着膜の厚さは抵抗測
定の容易さから50〜500Aが適当であるがいずれも
限定されるものではない。またこの金属真空蒸着膜を形
成するときの基体温度は被測定温度より低い値に、蒸着
速度と膜厚は一定の値に、それぞれ測定精度に応じて抑
制、または選択することが望ましい。
Any insulating substrate such as ceramic or quartz, or a conductive substrate with an insulated surface may be used.The thickness of the vacuum-deposited film is preferably 50 to 500 A for ease of resistance measurement, but there are limitations on both. isn't it. Further, when forming this metal vacuum-deposited film, it is desirable to suppress or select the substrate temperature to a value lower than the temperature to be measured, and the evaporation rate and film thickness to constant values, respectively, depending on the measurement accuracy.

本発明によれば、比較的低温の基体上に形成した金属の
真空蒸着膜の内部には格子不整など結晶の欠陥を有して
いるため、その基体温度以上の被測定温度にさらされる
と、その結晶の欠陥の消滅が促進され、被測定温度の最
高値に応じた低い電気抵抗値に変化して、求める最高温
度が簡単に得られる。また従来の検出方法と異なり被測
定雰囲気全汚染することもない。
According to the present invention, since the interior of a vacuum-deposited metal film formed on a relatively low-temperature substrate has crystal defects such as lattice misalignment, when exposed to a temperature to be measured higher than the substrate temperature, Elimination of defects in the crystal is promoted, and the electrical resistance value changes to a low value corresponding to the maximum temperature to be measured, so that the desired maximum temperature can be easily obtained. Also, unlike conventional detection methods, the entire atmosphere to be measured is not contaminated.

次に、本発明について図面を参照してAu真空蒸着膜の
実施例を中心に詳細に説明する。第1図は真空蒸着装置
内で誘電体蒸着時の被蒸着用基体の最高温度を測定する
に際して、本発明の方法を実施するための温度検出素子
の一例である。この図に於て、温度検出素子は被蒸着用
基体と同じ20mfrI×20mmのガラス基体1にA
gペースト焼付軍極2を設け、第1表の条件で有効面が
5 mm X 14 mmのAu蒸着膜3を黒革用マス
クを介して形成されている。
Next, the present invention will be described in detail with reference to the drawings, focusing on examples of Au vacuum-deposited films. FIG. 1 shows an example of a temperature detection element for implementing the method of the present invention when measuring the maximum temperature of a substrate to be evaporated during dielectric deposition in a vacuum evaporation apparatus. In this figure, the temperature detection element is placed on a glass substrate 1 of 20 mfrI x 20 mm, which is the same as the substrate to be evaporated.
A g-paste baking pole 2 was provided, and an Au vapor-deposited film 3 having an effective surface of 5 mm x 14 mm was formed through a black leather mask under the conditions shown in Table 1.

第 1表 実施例の蒸着条件 第2図の実線4,5は第1表の試料Na4,5’を用い
た最高温度検出素子に於て、被蒸着用基体の最高温度T
(”O)  と25℃に於ける検出素子の電気抵抗R/
几0との関係の一例?、横軸に温度T(”O)を、縦軸
に電気抵抗比R,/ROをとって示したものである。こ
こでRは最高温度T C’O) ?経験した検出素子の
25℃で空気中の電気抵抗値、几0は凡の最小電気抵抗
値を示す。電気抵抗の測定は25℃で空気中で行なった
ため繰返し実験の結果である。この第2図を参照すれば
、被蒸着用基体温度Tが50°Cの時まで電気抵抗V几
0は変化せず、温度検出素子の基体1はAu真空蒸着膜
3の形成時に温度が50℃であったこと、50℃以上の
温度では、その温度に応じて電気抵抗が低下し、いずれ
も約270°Cで最小値比0になっていることがわかる
Table 1 Vapor deposition conditions of Examples Solid lines 4 and 5 in FIG.
(”O) and the electrical resistance of the detection element at 25°C R/
An example of the relationship with 几0? , the horizontal axis shows the temperature T(''O) and the vertical axis shows the electrical resistance ratio R,/RO.Here, R is the maximum temperature TC'O)?25℃ of the sensing element experienced. The electrical resistance value in air is 0, which indicates the minimum electrical resistance value.The measurement of electrical resistance was carried out in air at 25°C, so it is the result of repeated experiments. The electrical resistance V 0 does not change until the deposition substrate temperature T reaches 50°C, and the temperature of the substrate 1 of the temperature detection element was 50°C when the Au vacuum-deposited film 3 was formed. It can be seen that the electrical resistance decreases depending on the temperature, and the minimum value ratio is 0 at about 270°C.

従って、Au真空蒸着膜3の電気抵抗比RZR0を測定
することで誘電体蒸着用基体の経験した最高の温度を求
めることができる。一方、電気抵抗比R/l(、oの代
覗にAu真空蒸着膜の常温での初期電気抵抗島。に対す
る抵抗の変化分ΔRの比を検知することでも求める最高
温度を得ることができる。第3図を参照すると、横軸を
求める最高温度T(”0)、縦軸を初期電気抵抗R1+
6に対する最高温度T’r経験した時の電気抵抗変化△
Rの百分率ΔR/RIIO(%)として前記の表−1の
試料風5の校正曲線例が示されており、電気抵抗比△R
/R,,’i検知することでも最高温度Tが求められる
ことがわかる。
Therefore, by measuring the electrical resistance ratio RZR0 of the Au vacuum-deposited film 3, the highest temperature experienced by the dielectric deposition substrate can be determined. On the other hand, the desired maximum temperature can also be obtained by detecting the ratio of the change in resistance ΔR to the electrical resistance ratio R/l (, where the initial electrical resistance of the vacuum-deposited Au film at room temperature is expressed as o). Referring to Figure 3, the horizontal axis is the maximum temperature T ("0), and the vertical axis is the initial electrical resistance R1+
Electrical resistance change when experiencing maximum temperature T'r for 6
An example of the calibration curve for sample wind 5 in Table 1 above is shown as the percentage of R ΔR/RIIO (%), and the electrical resistance ratio ΔR
It can be seen that the maximum temperature T can also be obtained by detecting /R,,'i.

これらの実施例に於て、Au真空蒸着膜3全常温、常圧
下で放置した場合の電気抵抗比、0の経時変化について
は、周知の如(Au蒸着直後は大きな変化が認められる
が、膜厚が50〜500A、蒸着速度が2QA/sec
以下では、蒸着後1日以降100日の間では、高々2%
程度の変化が観察されたのみで、極く小さかった。しか
し最高温度に対する感度はAuの蒸着速度と膜厚によっ
て変るので、経時変化はやや大きくなるが、蒸着速度を
太きくし、膜厚全薄くすることで、高感度化が可能であ
る。さらに本実施例かられかるようIC測定可能な温度
範囲は、下限が検出素子のAu真空蒸着膜3を形成する
ときの基体温度、上限が電気抵抗比が最低のRoとなる
温度、つまり電気抵抗特性上から見たAu真空蒸着膜の
再結晶温度によって決定される。Au以外の他の実施例
について、この測定可能な温度範囲について本発明者の
研究結果を、第2表に示す。なお、これらの金属元素の
合金膜についても調査したが、合金の促進、偏析などの
問題があって、温度検出素子としては実用できなかった
In these examples, the electrical resistance ratio of the Au vacuum-deposited film 3 when left at room temperature and normal pressure, the change over time of 0 is as well known (a large change is observed immediately after Au vapor deposition, but the film Thickness: 50-500A, deposition rate: 2QA/sec
Below, for 100 days after the first day of vapor deposition, at most 2%
Only slight changes were observed, and they were very small. However, since the sensitivity to the maximum temperature varies depending on the Au deposition rate and film thickness, the change over time becomes somewhat large, but high sensitivity can be achieved by increasing the deposition rate and reducing the total film thickness. Furthermore, as can be seen from this example, the temperature range in which IC measurement is possible is such that the lower limit is the substrate temperature when forming the Au vacuum-deposited film 3 of the detection element, and the upper limit is the temperature at which the electrical resistance ratio is Ro, which is the lowest, that is, the electrical resistance It is determined by the recrystallization temperature of the Au vacuum-deposited film from the viewpoint of characteristics. Table 2 shows the inventor's research results regarding this measurable temperature range for other Examples other than Au. Although alloy films of these metal elements were investigated, they could not be put to practical use as temperature sensing elements due to problems such as alloy promotion and segregation.

第   2   表 本実施例は低温真空処理炉の過熱検出素子、電子管のガ
ラスパルプの温度素子としても有効であった0 以上、本発明の方法を実施するに際して用途、使用され
る真空蒸着膜、検出素子の形状、基本などを限定して説
明したが、これらの説明は単彦る例で、あってこれが本
願の発明の目的意図ならびに特許請求の範囲の制約とな
らないものであることは明らかである。
Table 2 This example was effective as an overheat detection element for a low-temperature vacuum processing furnace and a temperature element for glass pulp in an electron tube. Although the description has been given with limitations on the shape and basics of the element, it is clear that these explanations are mere examples and do not limit the intended purpose of the invention of the present application or the scope of the claims. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の検出方法に用いられる検出素子の一実
施例を示す斜視図、第2図は第1図の検出素子に於て測
定すべき最高温度と検出素子の電気抵抗比の関係の一例
金示すグラフ、第3図は第1図の検出素子に於て測定す
べき最高温度と検出素子の電気抵抗変化率を示すグラフ
である。 1・・・・・・基体、2・・・・・・電極、3・・・・
・・Au真空蒸着膜、4,5.5’・・・・・・実施例
の検出特性、l(、/l(@・・・・・・電気抵抗比、
T(”O)・・・・・・最高温度、△R・/Rh。 ・・・・・・電気抵抗変化率。 第1 凹 第2日 −3、 −2を 第3目
FIG. 1 is a perspective view showing an embodiment of the detection element used in the detection method of the present invention, and FIG. 2 shows the relationship between the maximum temperature to be measured and the electrical resistance ratio of the detection element in FIG. 1. As an example, FIG. 3 is a graph showing the maximum temperature to be measured in the detection element of FIG. 1 and the rate of change in electrical resistance of the detection element. 1...Base, 2...Electrode, 3...
...Au vacuum-deposited film, 4,5.5'...detection characteristics of the example, l(, /l(@...electric resistance ratio,
T(”O)...Maximum temperature, △R/Rh....Electric resistance change rate. 1st concave 2nd day -3, -2 on 3rd day

Claims (1)

【特許請求の範囲】 基体上に形成せるALII、 Pt、 Ni、 F’e
、 Pd、 Cu。 Agなどの金属元素のいずれか1つから成る真空蒸着膜
を被測定温度のもとに配し、前記真空蒸着膜の電気抵抗
の不可逆な変化を検出することにより前記被測定温度の
最高温度を検出する方法。
[Claims] ALII, Pt, Ni, F'e formed on a substrate
, Pd, Cu. A vacuum-deposited film made of any one of metal elements such as Ag is placed under a temperature to be measured, and the maximum temperature of the temperature to be measured is determined by detecting an irreversible change in the electrical resistance of the vacuum-deposited film. How to detect.
JP19020682A 1982-10-29 1982-10-29 Detection of maximum temperature Pending JPS5979821A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19020682A JPS5979821A (en) 1982-10-29 1982-10-29 Detection of maximum temperature

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19020682A JPS5979821A (en) 1982-10-29 1982-10-29 Detection of maximum temperature

Publications (1)

Publication Number Publication Date
JPS5979821A true JPS5979821A (en) 1984-05-09

Family

ID=16254223

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19020682A Pending JPS5979821A (en) 1982-10-29 1982-10-29 Detection of maximum temperature

Country Status (1)

Country Link
JP (1) JPS5979821A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114601A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Manufacture of electronic component
US20150114280A1 (en) * 2013-10-25 2015-04-30 Rolls-Royce Plc Temperature indicator
WO2018043346A1 (en) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 Functional element and temperature sensor

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02114601A (en) * 1988-10-25 1990-04-26 Matsushita Electric Ind Co Ltd Manufacture of electronic component
US20150114280A1 (en) * 2013-10-25 2015-04-30 Rolls-Royce Plc Temperature indicator
US9506812B2 (en) * 2013-10-25 2016-11-29 Rolls-Royce Plc Temperature indicator
WO2018043346A1 (en) * 2016-09-01 2018-03-08 パナソニックIpマネジメント株式会社 Functional element and temperature sensor
CN109642830A (en) * 2016-09-01 2019-04-16 松下知识产权经营株式会社 Functional element and temperature sensor
JPWO2018043346A1 (en) * 2016-09-01 2019-06-24 パナソニックIpマネジメント株式会社 Temperature sensor
CN109642830B (en) * 2016-09-01 2022-04-08 松下知识产权经营株式会社 Functional element and temperature sensor
US11332381B2 (en) 2016-09-01 2022-05-17 Panasonic Intellectual Property Management Co., Ltd. Functional element and temperature sensor of crystal grain trititanium pentoxide

Similar Documents

Publication Publication Date Title
US3987676A (en) Relative humidity detector
GB2181298A (en) Platinum resistance thermometer and manufacture thereof
JPS6122676A (en) Thermoelectric sensor
US20030037590A1 (en) Method of self-testing a semiconductor chemical gas sensor including an embedded temperature sensor
Fryburg Enhanced oxidation of platinum in activated oxygen
CN105784183B (en) A kind of patch type temperature sensor and its preparation process
JPS5979821A (en) Detection of maximum temperature
Roess et al. The Design and Construction of Rapid‐Response Thermocouples for Use as Radiation Detectors in Infra‐Red Spectrographs
JPS61181104A (en) Platinum temperature measuring resistor
US3657016A (en) Solid state battery having a rare earth fluoride electrolyte
JP2014178137A (en) Humidity sensor
KR20220075310A (en) Method of Producing Microbolometers Containing Vanadium Oxide-Based Sensitive Materials
Varićak et al. Principle of a Semiconductor Manometer in the Pressure Range of 1 to 10− 6 mm Hg
JP3175022B2 (en) pH measuring device and its calibration method
JPS5888645A (en) Measuring sensor for content of oxygen in gas
Rodebush et al. The atomic heat capacities of iron and nickel at low temperatures
US4140989A (en) Temperature sensors
Westcott et al. Humidity sensitive MIS structure
Horvatic et al. An assessment of a new type of capacitance dilatometer for measurement of the thermal expansion of solids between 273 and 620 K
JPH07104333B2 (en) Method for measuring oxygen concentration in silicon
JPH0129062B2 (en)
JPH06167470A (en) Oxygen gas detector
Featherstone et al. Water bath temperature control and temperature measurement devices for calorimetry
Kane Bismuth-Antimony Thermojunctions
JP2644887B2 (en) Adiabatic calorimeter