JPH07104333B2 - Method for measuring oxygen concentration in silicon - Google Patents

Method for measuring oxygen concentration in silicon

Info

Publication number
JPH07104333B2
JPH07104333B2 JP40673890A JP40673890A JPH07104333B2 JP H07104333 B2 JPH07104333 B2 JP H07104333B2 JP 40673890 A JP40673890 A JP 40673890A JP 40673890 A JP40673890 A JP 40673890A JP H07104333 B2 JPH07104333 B2 JP H07104333B2
Authority
JP
Japan
Prior art keywords
silicon
oxygen concentration
sample piece
sample
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP40673890A
Other languages
Japanese (ja)
Other versions
JPH04223264A (en
Inventor
豊志 岩切
辰浩 藤山
正則 橋本
Original Assignee
コマツ電子金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コマツ電子金属株式会社 filed Critical コマツ電子金属株式会社
Priority to JP40673890A priority Critical patent/JPH07104333B2/en
Publication of JPH04223264A publication Critical patent/JPH04223264A/en
Publication of JPH07104333B2 publication Critical patent/JPH07104333B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N31/00Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods
    • G01N31/005Investigating or analysing non-biological materials by the use of the chemical methods specified in the subgroup; Apparatus specially adapted for such methods investigating the presence of an element by oxidation

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、シリコン中の酸素濃度
測定方法に係り、特に不活性ガス溶解分析法および真空
溶解法による酸素濃度測定に用いられる試料の調整方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring oxygen concentration in silicon, and more particularly to a method for preparing a sample used for oxygen concentration measurement by an inert gas dissolution analysis method and a vacuum dissolution method.

【0002】[0002]

【従来の技術】近年、半導体技術の進歩、特に微細加工
技術の進歩により、素子の高集積化、微細化は進む一方
である。
2. Description of the Related Art In recent years, due to advances in semiconductor technology, particularly advances in microfabrication technology, high integration and miniaturization of devices have been progressing.

【0003】このようななかで、基板として用いられる
シリコンの純度は素子特性を大きく左右し、極めて大き
な問題となる。
Under such circumstances, the purity of silicon used as a substrate has a great influence on the device characteristics and becomes a very serious problem.

【0004】シリコンの純度を測定するためにいろいろ
な面での測定がなされているが、なかでもシリコン中の
酸素濃度はデバイスの設計に大きな影響を与えるため、
精度を得るために種々の方法が研究されている。
Although various aspects have been measured to measure the purity of silicon, the oxygen concentration in silicon has a great influence on device design.
Various methods have been investigated to obtain accuracy.

【0005】シリコン中の酸素濃度の測定には、放射化
分析法、二次イオン質量分析法、亜赤外吸収法、不活性
ガス溶解分析法あるいは真空溶解法が用いられている。
To measure the oxygen concentration in silicon, activation analysis, secondary ion mass spectrometry, sub-infrared absorption method, inert gas dissolution analysis method or vacuum dissolution method is used.

【0006】これらのうち不活性ガス溶解分析法および
真空溶解法は、所定の大きさのシリコンを不活性ガスあ
るいは真空中で加熱溶融せしめ、溶融時に発生する酸素
を測定するものである。
Of these, the inert gas dissolution analysis method and the vacuum dissolution method are methods in which silicon of a predetermined size is heated and melted in an inert gas or in a vacuum, and oxygen generated during melting is measured.

【0007】この方法を採用するにあたって、従来はシ
リコンをウエハ状にスライスしたものを所定の大きさに
ダイシングしこれを数枚程度重ねたものを試料として用
いている。
In adopting this method, conventionally, a sliced piece of silicon in a wafer is diced into a predetermined size, and several pieces of the sliced pieces are used as a sample.

【0008】この場合、試料の重量あたりの表面積が大
きくなり、表面の汚染および酸化の可能性が大きくなる
うえ、溶融のしかたにばらつきが生じるため、酸素濃度
の定量値が大きくばらつき、高精度の内部酸素濃度を測
定することができないという問題があった。
In this case, the surface area per weight of the sample is increased, the possibility of contamination and oxidation of the surface is increased, and the melting method is varied. There is a problem that the internal oxygen concentration cannot be measured.

【0009】[0009]

【発明が解決しようとする課題】このように従来のシリ
コンの酸素濃度の測定に際しては、シリコンをウエハ状
にスライスしたものを所定の大きさにダイシングしこれ
を数枚程度重ねたものを試料として用いているため、表
面の汚染および酸化が生じやすく、高精度の内部酸素濃
度測定を行うことができないという問題があった。
As described above, in the conventional measurement of the oxygen concentration of silicon, a sliced piece of silicon in a wafer is diced into a predetermined size, and several pieces are piled up as a sample. Since it is used, there is a problem that surface contamination and oxidation are likely to occur, and highly accurate internal oxygen concentration measurement cannot be performed.

【0010】本発明は、前記実情に鑑みてなされたもの
で、高精度の内部酸素濃度測定を行うことのできる方法
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a method capable of highly accurately measuring the internal oxygen concentration.

【0011】[0011]

【課題を解決するための手段】そこで本発明では、測定
しようとするシリコンを所望の大きさのバルク状に切断
し、これを試料片として、不活性ガスまたは真空中で加
熱溶解させて発生する酸素濃度を測定するようにしてい
る。
Therefore, in the present invention, the silicon to be measured is cut into a bulk of a desired size, and this is used as a sample piece by heating and melting it in an inert gas or vacuum to generate it. I try to measure the oxygen concentration.

【0012】また望ましくは、この試料片を直方体とす
る。
Further, preferably, the sample piece is a rectangular parallelepiped.

【0013】また望ましくは、この試料片を立方体とす
る。
It is also desirable that the sample piece be a cube.

【0014】さらに望ましくは、この試料片を球形とす
る。
More preferably, the sample piece is spherical.

【0015】[0015]

【作用】上記方法によれば、測定しようとするシリコン
を所望の大きさのバルク状に切断して用いるようにして
いるため、溶解状態が一定でばらつきが少ない上、試料
の重量あたりの表面積を小さくすることができ、表面の
汚染および酸化を防止し、測定精度の向上をはかること
が可能となる。
According to the above method, since the silicon to be measured is cut into a bulk of a desired size and used, the dissolution state is constant and there is little variation, and the surface area per weight of the sample is reduced. It is possible to reduce the size, prevent contamination and oxidation of the surface, and improve the measurement accuracy.

【0016】また、この試料片の形状を直方体とするこ
とにより、より表面積を小さくすることができ、試料片
の作成および表面積の算出が容易となり、表面酸化によ
る酸素濃度を考慮した換算を容易に行うことができ、測
定精度をさらに向上することができる。なお、望ましく
は縦:横:高さ=1±0.2:1±0.2:1±0.2
となるようにする。また、化学研磨等により、エッジを
丸めるようにすれば、試料の取扱い時におけるエッジの
損傷を防止することができる。
Further, by making the shape of the sample piece into a rectangular parallelepiped, the surface area can be further reduced, the preparation of the sample piece and the calculation of the surface area are facilitated, and the conversion considering the oxygen concentration due to surface oxidation is facilitated. It can be performed, and the measurement accuracy can be further improved. Desirably, length: width: height = 1 ± 0.2: 1 ± 0.2: 1 ± 0.2
So that If the edge is rounded by chemical polishing or the like, damage to the edge when handling the sample can be prevented.

【0017】さらにまた、この試料片の形状を立方体と
することにより、さらに表面積を小さくすることがで
き、測定精度をさらに向上することができる。
Furthermore, by making the shape of the sample piece a cube, the surface area can be further reduced, and the measurement accuracy can be further improved.

【0018】また、この試料片の形状を球形とすること
により、表面積を最小限に抑えることができ、測定精度
をさらに向上することができる。
Further, by making the shape of the sample piece spherical, the surface area can be minimized and the measurement accuracy can be further improved.

【0019】[0019]

【実施例】以下、本発明の実施例について図面を参照し
つつ詳細に説明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0020】実施例1 まず、図1に示すように、ダイシングによりバルク状の
シリコン1を得た後、化学研磨を行い表面を平滑化した
後フッ酸処理により表面酸化膜を除去する。
Example 1 First, as shown in FIG. 1, after bulk silicon 1 is obtained by dicing, chemical polishing is performed to smooth the surface, and then the surface oxide film is removed by hydrofluoric acid treatment.

【0021】この様にして得られた縦5mm横5mm高さ5
mmのバルク状のシリコン1をカーボン製のるつぼ2に入
れ、キャリアガスとしてHeガスを流しながら、300
0℃(シリコンの融点以上の温度)に加熱し、シリコン
中の酸素とるつぼのカーボンとの反応によって生成され
る一酸化炭素COの濃度を赤外線検出器3で検出する。
この測定結果を、図2および図3に示すようにこの方
法によれば極めてバラツキの少ない測定値を得ることが
できることがわかる。
5 mm in length and 5 mm in height obtained in this way
Bulk silicon 1 mm is put in a crucible 2 made of carbon, and while flowing He gas as a carrier gas, 300
The infrared detector 3 detects the concentration of carbon monoxide CO generated by the reaction of oxygen in silicon with the carbon in the crucible by heating to 0 ° C. (a temperature above the melting point of silicon).
As shown in FIG. 2 and FIG. 3, the measurement results show that the measurement value can be obtained with very little variation according to this method.

【0022】比較のために、縦4mm横4mm厚さ0.5mm
のシリコンウェハを4枚重ねたものを試料とし、全く同
様の測定を行った、その結果を図4および図5に示す。
For comparison, length 4 mm width 4 mm thickness 0.5 mm
As a sample, four silicon wafers were stacked and the same measurement was performed. The results are shown in FIGS. 4 and 5.

【0023】これらの結果の比較から、本発明の方法に
よれば測定値のばらつきを大幅に低減することができる
ことがわかる。
From a comparison of these results, it can be seen that the method of the present invention can significantly reduce variations in measured values.

【0024】なお、前記実施例では赤外線検出器を用い
て酸素濃度を測定したが、熱伝導度検出器を用いて測定
する場合にも有効であることはいうまでもない。
Although the oxygen concentration is measured by using the infrared detector in the above-mentioned embodiment, it is needless to say that it is also effective when the oxygen concentration is measured by using the thermal conductivity detector.

【0025】実施例2 まず、図6に示すように、ダイシング後化学研磨および
表面酸化膜除去工程を経て得られた1辺4mmの立方体形
状のシリコン1をカーボン製のるつぼに入れ、実施例1
と同様にしてキャリアガスとしてHeガスを流しなが
ら、シリコンの融点以上(例えば3000℃)に加熱
し、シリコン中の酸素とるつぼのカーボンとの反応によ
って生成される一酸化炭素COの濃度を赤外線検出器で
検出する。
Example 2 First, as shown in FIG. 6, a cube-shaped silicon 1 having a side of 4 mm obtained through a chemical polishing and a surface oxide film removing process after dicing was put in a carbon crucible, and Example 1 was used.
In the same manner as above, while flowing He gas as a carrier gas, it is heated to a temperature higher than the melting point of silicon (for example, 3000 ° C.), and the concentration of carbon monoxide CO generated by the reaction between oxygen in silicon and carbon in the crucible is detected by infrared ray To detect with a vessel.

【0026】この場合も、実施例1と同様極めてばらつ
きのすくない測定値を得ることができた。
Also in this case, it was possible to obtain measured values with very little variation, as in Example 1.

【0027】実施例3 まず、図7に示すように、ダイシング後化学研磨および
表面酸化膜除去工程を経て得られた半径2.7mmの球形
のシリコン1をカーボン製のるつぼに入れ、実施例1お
よび2と同様にしてキャリアガスとしてHeガスを流し
ながら、シリコンの融点以上(例えば3000℃)に加
熱し、シリコン中の酸素とるつぼのカーボンとの反応に
よって生成される一酸化炭素COの濃度を赤外線検出器
で検出する。
Example 3 First, as shown in FIG. 7, spherical silicon 1 having a radius of 2.7 mm obtained through a chemical polishing and a surface oxide film removing process after dicing was put in a crucible made of carbon, and Example 1 was used. In the same manner as 2 and 2, while flowing He gas as a carrier gas, heating to a temperature equal to or higher than the melting point of silicon (for example, 3000 ° C.), the concentration of carbon monoxide CO generated by the reaction between oxygen in silicon and carbon in the crucible Detect with infrared detector.

【0028】この場合も、実施例1および2よりもさら
にばらつきのすくない測定値を得ることができた。
Also in this case, it was possible to obtain measured values with less variation than in Examples 1 and 2.

【0029】[0029]

【発明の効果】以上説明してきたように、本発明の方法
によれば、測定しようとするシリコンを所望の大きさの
バルク状に切断して用いるようにしているため、溶解状
態が一定でばらつきが少ない上、試料の重量あたりの表
面積を小さくすることができ、表面の汚染および酸化を
防止し、測定精度の向上をはかることが可能となる。
As described above, according to the method of the present invention, the silicon to be measured is cut into a bulk of a desired size for use, so that the melting state is constant and varies. In addition, the surface area per weight of the sample can be reduced, contamination and oxidation of the surface can be prevented, and the measurement accuracy can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の第1の実施例の方法を示す説明図。FIG. 1 is an explanatory diagram showing a method according to a first embodiment of the present invention.

【図2】本発明の第1の実施例の方法で得られた酸素濃
度の測定結果を示す図である。
FIG. 2 is a diagram showing measurement results of oxygen concentration obtained by the method of the first embodiment of the present invention.

【図3】同測定結果から得られた変動係数を示す図表で
ある。
FIG. 3 is a chart showing coefficient of variation obtained from the measurement results.

【図4】従来例の方法で得られた酸素濃度の測定結果を
示す図である。
FIG. 4 is a diagram showing measurement results of oxygen concentration obtained by a method of a conventional example.

【図5】同測定結果から得られた変動係数を示す図表で
ある。
FIG. 5 is a chart showing the coefficient of variation obtained from the measurement results.

【図6】本発明の第2の実施例の方法で用いられる試料
を示す図である。
FIG. 6 is a diagram showing a sample used in the method of the second example of the present invention.

【図7】本発明の第3の実施例の方法で用いられる試料
を示す図である。
FIG. 7 is a diagram showing a sample used in the method of the third example of the present invention.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】測定しようとするシリコンを所望の大きさ
のバルク状に切断する試料片作成工程と、 前記試料片を不活性ガスまたは真空中で加熱溶解させ、
発生する酸素濃度を測定する酸素濃度測定工程とを含む
ことを特徴とするシリコン中の酸素濃度測定方法。
1. A sample piece preparation step of cutting silicon to be measured into a bulk of a desired size , and heating and melting the sample piece in an inert gas or vacuum ,
And an oxygen concentration measuring step of measuring the generated oxygen concentration.
【請求項2】前記試料片は直方体であることを特徴とす
る請求項1に記載のシリコン中の酸素濃度測定方法。
2. The method for measuring the oxygen concentration in silicon according to claim 1, wherein the sample piece is a rectangular parallelepiped.
【請求項3】前記試料片は立方体であることを特徴とす
る請求項1に記載のシリコン中の酸素濃度測定方法。
3. The method for measuring oxygen concentration in silicon according to claim 1, wherein the sample piece is a cube.
【請求項4】前記試料片は球形であることを特徴とする
請求項1に記載のシリコン中の酸素濃度測定方法。
4. The method for measuring the oxygen concentration in silicon according to claim 1, wherein the sample piece is spherical.
JP40673890A 1990-12-26 1990-12-26 Method for measuring oxygen concentration in silicon Expired - Lifetime JPH07104333B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP40673890A JPH07104333B2 (en) 1990-12-26 1990-12-26 Method for measuring oxygen concentration in silicon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP40673890A JPH07104333B2 (en) 1990-12-26 1990-12-26 Method for measuring oxygen concentration in silicon

Publications (2)

Publication Number Publication Date
JPH04223264A JPH04223264A (en) 1992-08-13
JPH07104333B2 true JPH07104333B2 (en) 1995-11-13

Family

ID=18516359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP40673890A Expired - Lifetime JPH07104333B2 (en) 1990-12-26 1990-12-26 Method for measuring oxygen concentration in silicon

Country Status (1)

Country Link
JP (1) JPH07104333B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5973177A (en) * 1998-07-29 1999-10-26 Dow Corning Corporation Method for selecting silicon metalloid having improved performance in the direct process for making organohalosilanes
KR20010061277A (en) * 1999-12-28 2001-07-07 이 창 세 Method and apparatus for determining oxygen concentration in silicon wafer by conductivity detection using gas permeable membrane
CN111579340A (en) * 2020-05-26 2020-08-25 宁波江丰电子材料股份有限公司 Pretreatment method and oxygen content detection method for ultra-high purity aluminum/aluminum alloy sample
CN111965129A (en) * 2020-08-05 2020-11-20 西安奕斯伟硅片技术有限公司 Method and device for measuring interstitial oxygen content of monocrystalline silicon

Also Published As

Publication number Publication date
JPH04223264A (en) 1992-08-13

Similar Documents

Publication Publication Date Title
US5916824A (en) Etching method of silicon wafer surface and etching apparatus of the same
JPH07104333B2 (en) Method for measuring oxygen concentration in silicon
Nagasima Structure analysis of thermal oxide films of silicon by electron diffraction and infrared absorption
Rohan et al. Diffusion of Radioactive Antimony in Silicon
JPH0964133A (en) Detecting method of cu concentration in semiconductor substrate
JP2000031227A (en) Wafer for heavy metal monitor and manufacture thereof
JP2959352B2 (en) Method of manufacturing semiconductor wafer and analysis method by SIMS
JP2754823B2 (en) Film thickness measurement method
EP0339561B1 (en) Impurity measuring method
JPS6047981B2 (en) Jig for detecting internal temperature of horizontal heat treatment furnace
JPH0820433B2 (en) Method for measuring oxygen concentration in silicon
US6247842B1 (en) Method of wafer temperature measurement
JPS63174322A (en) Dry etching method
JP2000321124A (en) Formation of vanadium oxide thin film and bolometer type infrared sensor employing vanadium oxide thin film
JP3198713B2 (en) Atmospheric boron content measurement method
JP2847228B2 (en) Evaluation method of semiconductor jig material
Twu A process monitor of residual films by ellipsometry
Gregor et al. Vapor-Phase Polishing of Silicon with H 2-HBr Gas Mixtures
JP2772035B2 (en) Method for measuring the amount of impurities on the wafer surface
JPS59169183A (en) Strain gauge type semiconductor pressure sensor
JPH0198944A (en) Surface analysis of silicon semiconductor substrate
JP3635936B2 (en) Method for measuring oxygen concentration in low resistivity silicon substrate
JP2844939B2 (en) Collection and detection method of metal impurities
Hillel et al. Thermodynamics and Kinetics of Iodine Chemical Vapor Transport of GeAs
JP2882419B2 (en) Metal impurity measurement method and semiconductor device manufacturing method using the same