JPS5979604A - Driving device of antenna - Google Patents

Driving device of antenna

Info

Publication number
JPS5979604A
JPS5979604A JP18915182A JP18915182A JPS5979604A JP S5979604 A JPS5979604 A JP S5979604A JP 18915182 A JP18915182 A JP 18915182A JP 18915182 A JP18915182 A JP 18915182A JP S5979604 A JPS5979604 A JP S5979604A
Authority
JP
Japan
Prior art keywords
antenna
driving
directivity
circuit
drive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18915182A
Other languages
Japanese (ja)
Inventor
Takaaki Kusakabe
日下部 孝章
Yoichi Kawakami
川上 用一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP18915182A priority Critical patent/JPS5979604A/en
Publication of JPS5979604A publication Critical patent/JPS5979604A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/125Means for positioning

Abstract

PURPOSE:To control highly accurately the directivity of an antenna for an artificial satellite and to improve the reliability of a driving device by driving the antenna by using an elastic body and a piezoelectric element. CONSTITUTION:A directivity sensor circuit 1 receives a sensor signal of an antenna directivity by radio waves from a ground station and sends the received signal to a control circuit 2. The control circuit 2 operates the signal so that the error of the antenna directivity is minimized and then a driving circuit 3 converts the information from the circuit 2 into a driving voltage signal. Driving parts 4-6 consisting of piezoelectric elements expand or contract straightly in accordance with the driving voltage signal. The driving replacement is transmitted to the antenna 9 and directs the antenna 9 in an optional direction around the axis vertical to the body 12 of the satellite through the center of an antenna fitting board 10. Said constitution can attain minute driving of the antenna 9 and controls the directivity of the antenna 9 extremely accurately. The driving parts 4-6 have no frictional part and enabled to have redandant structure, so that high reliability and high life of the driving device can be attained.

Description

【発明の詳細な説明】 本発明は高精度、高信頼度な人工衛星用アンテナ駆動装
置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a highly accurate and highly reliable artificial satellite antenna driving device.

衛星通信は、その広域性、回線設定の容易性などの特徴
によって現在世界各国で広く商用に供されている。そし
て、方式の経済性を目的として伝送容量の増大を図シ、
衛星通信を利用できる簡易小形の地球局の普及をはかる
ため、大形アンテナを複数個搭載し、照射ビームを複数
設けるマルチビーム方式が考えられている。また、この
ように規模が大きくなるにつれ、その長寿命化が要求さ
れる。この場合、個々のアンテナの指向精度を長期間確
保しなければならないため、衛星搭載アンテナを個別に
精度よく、しかも高信頼度の構造によって微小駆動させ
る必要がある。
Satellite communications are currently in widespread commercial use in countries around the world due to their wide area coverage and ease of line setup. In order to make the system more economical, we plan to increase the transmission capacity.
In order to popularize simple and compact earth stations that can use satellite communications, a multi-beam system is being considered in which multiple large antennas are mounted and multiple irradiation beams are provided. Furthermore, as the scale increases, a longer life is required. In this case, since the pointing accuracy of each antenna must be ensured for a long period of time, it is necessary to minutely drive each satellite-mounted antenna individually with high precision and with a highly reliable structure.

従来のこの種の装置は、一般にステップモータを駆動源
とし、駆動トルクの伝達機構としてギヤまたはボールベ
アリングなどの部品を用いてきた。ところがこのような
部品を用いた駆動装置では、ギヤの変形、バックラッシ
ュなどのために精度の向上に限界があり、今後要求され
る高精度駆動にとっては問題がある。また、宇宙の高真
空条件下にあって、頻繁に長期間微小駆動させる装置で
は、駆動摩擦部分の潤滑性を維持することが非常に難し
いと予想されるため、長期信頼性の確保は困難である。
Conventional devices of this type generally use a step motor as a drive source, and use components such as gears or ball bearings as a drive torque transmission mechanism. However, in a drive device using such parts, there is a limit to the improvement in precision due to gear deformation, backlash, etc., and this poses a problem for high-precision drives that will be required in the future. Furthermore, it is expected that it will be extremely difficult to maintain the lubricity of the frictional parts of the drive in devices that are subject to frequent, long-term micro-movement under the high vacuum conditions of space, making it difficult to ensure long-term reliability. be.

したがって、従来の駆動方式は、今後想定される大形衛
星の高精度、高信頼度アンテナ駆動装置としては、基本
的な問題点を含んでいるといえる。
Therefore, it can be said that the conventional drive system has fundamental problems as a high-precision, high-reliability antenna drive device for large-scale satellites expected in the future.

本発明は人工衛星用アンテナを弾性体および圧電素子を
用いて駆動することを特徴とし、その目的はアンテナの
指向方向の高精度制御および駆動装置の高信頼化にある
The present invention is characterized in that an artificial satellite antenna is driven using an elastic body and a piezoelectric element, and its purpose is to control the pointing direction of the antenna with high precision and to improve the reliability of the drive device.

第1図は本発明の一実施例であって、1は指向方向セン
サ回路、2は制御回路、3は駆動回路、4.5.6は圧
電素子を用いた駆動部、8は弾性体、9はアンテナ、1
0はアンテナ取付台、11はアンテナ基礎台、12は衛
星本体、14は給電部である。
FIG. 1 shows an embodiment of the present invention, in which 1 is a pointing direction sensor circuit, 2 is a control circuit, 3 is a drive circuit, 4.5.6 is a drive unit using a piezoelectric element, 8 is an elastic body, 9 is the antenna, 1
0 is an antenna mounting base, 11 is an antenna base, 12 is a satellite main body, and 14 is a power feeding section.

第2図は駆動部4.5.6の構造の詳細を示す図である
。図(a)の15は圧電素子を図(b)の如く積層構造
としたものであって、この積層構造のものを二組重ねて
用い、通常はその一方のみを用い、故障等の時に他方を
用いるというように冗長構成となっている。積層構造と
している理由は変位および駆動力を大きくとるためであ
る。
FIG. 2 shows details of the structure of the drive section 4.5.6. 15 in Figure (a) is a piezoelectric element with a laminated structure as shown in Figure (b). Two sets of this laminated structure are used, and normally only one of them is used, and in case of a failure etc., the other is used. It has a redundant configuration. The reason for the laminated structure is to increase displacement and driving force.

そして圧電素子15は、宇宙空間で充分その機能が発揮
されるよう、耐放射線性、耐宇宙線性を有する断熱材7
によって保護されている。
The piezoelectric element 15 is made of a heat insulating material 7 having radiation resistance and cosmic ray resistance so that its function can be fully demonstrated in outer space.
protected by.

このよう々駆動部4.5.6は取付部13−1によって
アンテナ取付台10に、また取付部13−2によってア
ンテナ基礎台11にそれぞれ取り付けられる。取付部1
3−1及び13−2はアンテナ9の傾きによって生ずる
傾斜に対応可能な弾力性のある材質が用いられている。
In this way, the drive unit 4.5.6 is attached to the antenna mount 10 by the attachment part 13-1 and to the antenna base 11 by the attachment part 13-2. Mounting part 1
3-1 and 13-2 are made of an elastic material that can cope with the inclination caused by the inclination of the antenna 9.

動作原理としては、圧電素子に直流電圧を加えた場合、
圧電効果によシ印加電圧に比例した変形が生ずることを
利用したものであり、駆動回路3からの駆動電圧信号に
応じて駆動部4.5.6が伸縮する。アンテナ9はアン
テナ取付台10に取り付けられておシ、また該取付台1
0は駆動部4.5.6および弾性体8によってアンテナ
基礎台11に設置されさらに核基礎台11は衛星本体1
2に同定されている。
The operating principle is that when a DC voltage is applied to a piezoelectric element,
This utilizes the piezoelectric effect that causes deformation in proportion to the applied voltage, and the drive section 4.5.6 expands and contracts in response to the drive voltage signal from the drive circuit 3. The antenna 9 is attached to an antenna mounting base 10, and the antenna mounting base 1
0 is installed on the antenna base 11 by the drive unit 4.5.6 and the elastic body 8, and the core base 11 is further attached to the satellite main body 1.
It has been identified as 2.

指向方向センサ回路1は、一般には地上局から送られて
くる電波によってアンテナ指向方向のセンサ信号を受け
、その信号は制御回路2へ送られる。制御回路2では、
アンテナ指向方向誤差が最小となるように演算処理を行
った後、その情報は駆動回路3において駆動電圧信号(
直流電圧)に変換される0複数個の駆動部4.5.6は
、この駆動電圧信号に応じて直線状に伸縮する。そして
、その駆動変位は弾性体8および駆動部4.5.6の端
部に設けられた取付部13−1.13−2を介してアン
テナ9に伝達される。
The pointing direction sensor circuit 1 generally receives a sensor signal indicating the antenna pointing direction using radio waves sent from a ground station, and sends the signal to the control circuit 2. In control circuit 2,
After performing arithmetic processing so that the antenna pointing direction error is minimized, the information is converted into a drive voltage signal (
The plurality of drive units 4.5.6, which are converted into direct current voltage (DC voltage), linearly expand and contract in response to this drive voltage signal. The driving displacement is then transmitted to the antenna 9 via the elastic body 8 and the mounting portion 13-1.13-2 provided at the end of the driving portion 4.5.6.

第3図は駆動部4.5.6および弾性体8の位置関係の
一例を示す図である。実施例のように、弾性体8をアン
テナ取付台10の中央に配置し、3個の駆動部4.5.
6をその周囲に配置している。
FIG. 3 is a diagram showing an example of the positional relationship between the drive section 4.5.6 and the elastic body 8. As in the embodiment, the elastic body 8 is arranged at the center of the antenna mounting base 10, and three drive parts 4, 5.
6 are placed around it.

一般に平面は同時には一直線上にない相異なる3点によ
って決定されるから、3個の駆動部4.5.6が駆動電
圧信号に応じて、それぞれ直線状に伸縮することによシ
、駆動範囲内においてアンテナ取付台10を含む平面を
任意の方向に設定し得る。すなわち、アンテナ取付台1
0の中心を過多衛星本体12に垂直な軸まわυの任意の
方向にアンテナ指向方向を定めることができる〇 一方、圧電効果による変形は印加電圧に極めて正確に追
従するため、印加電圧を変化させることにより微小変位
が容易に得られ、アンテナの高精度制御が可能となる。
Generally, a plane is determined by three different points that are not on a straight line at the same time, so the drive range is determined by the three drive units 4.5.6 expanding and contracting linearly in response to drive voltage signals. The plane containing the antenna mount 10 can be set in any direction within the antenna. In other words, the antenna mounting base 1
The antenna pointing direction can be set in any direction around the axis υ perpendicular to the satellite body 12, with the center of 0 being the center of the satellite.On the other hand, the deformation due to the piezoelectric effect follows the applied voltage extremely accurately, so it is possible to change the applied voltage. By doing so, minute displacements can be easily obtained and the antenna can be controlled with high accuracy.

実際には、デジタル的に変化する印加電圧が用いられる
。また、駆動部4.5.6の取付位置によって駆動範囲
の設定も自由にできる。
In practice, a digitally varying applied voltage is used. Furthermore, the driving range can be freely set depending on the mounting position of the driving section 4,5,6.

さらに、このような構造のアンテナ駆動装置においては
、駆動部は摩擦部分がないため、摩擦部分の潤滑性を維
持するという困難な問題は発生しないし、駆動部を2段
構造とすることにより、一方が故障した場合でも運用に
支障を与えない。また、圧電変形を用いているため駆動
力が大きく、かつ応答性も良い0なお、圧電素子として
は、通常のPZTのうち圧電定数の大きいものを用い、
周囲に放射線や宇宙線の影響を受けないよう考慮した被
覆を施す。
Furthermore, in an antenna drive device having such a structure, since the drive section has no frictional parts, the difficult problem of maintaining the lubricity of the frictional parts does not occur, and by making the drive section have a two-stage structure, Even if one of them breaks down, it will not affect operation. In addition, since piezoelectric deformation is used, the driving force is large and the response is good.As the piezoelectric element, one of ordinary PZT with a large piezoelectric constant is used.
Cover the surrounding area to prevent it from being affected by radiation or cosmic rays.

以上説明したように、駆動部に圧電素子を用いているだ
め、駆動電圧を制御することによシ微小駆動が可能とな
シ、極めて高精度にアンテナの指向方向制御を行うこと
ができる。また駆動部は摩擦部分がなくかつ、駆動部の
冗長構造も可能であるため装置自体の信頼性の向上がは
かれ、衛星用として高信頼、高寿命のアンテナ駆動装置
の実現が期待できる。
As explained above, since a piezoelectric element is used in the drive section, minute drive is possible by controlling the drive voltage, and the directivity direction of the antenna can be controlled with extremely high precision. Furthermore, since the drive section has no frictional parts and a redundant structure is possible for the drive section, the reliability of the device itself is improved, and it is expected that a highly reliable and long-life antenna drive device for satellite use will be realized.

さらに、駆動力および応答性もステップモータなどと比
較すると優れているので、アンテナの駆動量および駆動
速度の範囲の拡大も可能であり、駆動装置としての汎用
性も高い。
Furthermore, since the driving force and responsiveness are superior compared to step motors, etc., it is possible to expand the range of the antenna driving amount and driving speed, and the antenna is highly versatile as a driving device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明による一実施例の構成図、第2図(a)
は駆動部の拡大図、第2図(b)は圧電素子の積層構造
を示す図。第3図は駆動部および弾性体の位置関係の一
例を示す図である。 1・・・・・・・・・指向方向センサ回路、2・・・・
・・・・・制御回路、3・・・・・・・・・駆動回路、
4.5.6・・・・・・・・・駆動部、7・・・・・・
・・・断熱材被覆、8・・・・・・・・・弾性体、9・
・・・・・・・・アンテナ、10・・・・・・・・・ア
ンテナ取付台、11・・・・・・・・・アンテナ基礎台
、12・・・・・・・・・衛星本体、13−1 、13
−2・・・・・・・・・取付部、14・・・・・・・・
・給電部、15・・・・・・・・・圧電素子 代理人 弁理士  本  間     崇第7図 19 第 2 図
Fig. 1 is a configuration diagram of an embodiment according to the present invention, Fig. 2(a)
2(b) is an enlarged view of the driving section, and FIG. 2(b) is a diagram showing the laminated structure of the piezoelectric element. FIG. 3 is a diagram showing an example of the positional relationship between the drive section and the elastic body. 1... Directional direction sensor circuit, 2...
...Control circuit, 3... Drive circuit,
4.5.6... Drive section, 7...
...Insulating material coating, 8...Elastic body, 9.
......Antenna, 10...Antenna mounting base, 11...Antenna base, 12...Satellite body , 13-1 , 13
-2...Mounting part, 14...
・Power supply section, 15...Piezoelectric element agent Patent attorney Takashi Honma Fig. 7 19 Fig. 2

Claims (1)

【特許請求の範囲】[Claims] 圧電素子の印加電圧を変化させることによシ、該圧電素
子の特定方向の寸法を変化させて機械的にアンテナビー
ムの指向方向を変化させるアンテナ駆動部を有すること
を特徴とするアンテナ駆動装置。
An antenna driving device comprising: an antenna driving section that mechanically changes the pointing direction of an antenna beam by changing the dimensions of the piezoelectric element in a specific direction by changing the voltage applied to the piezoelectric element.
JP18915182A 1982-10-29 1982-10-29 Driving device of antenna Pending JPS5979604A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18915182A JPS5979604A (en) 1982-10-29 1982-10-29 Driving device of antenna

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18915182A JPS5979604A (en) 1982-10-29 1982-10-29 Driving device of antenna

Publications (1)

Publication Number Publication Date
JPS5979604A true JPS5979604A (en) 1984-05-08

Family

ID=16236280

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18915182A Pending JPS5979604A (en) 1982-10-29 1982-10-29 Driving device of antenna

Country Status (1)

Country Link
JP (1) JPS5979604A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647410U (en) * 1987-06-30 1989-01-17
JPH03153106A (en) * 1989-11-09 1991-07-01 Nec Corp On-satellite antenna system
US5537819A (en) * 1993-07-30 1996-07-23 Kabushiki Kaisha Kobe Seiko Sho Hydraulic device for working machine

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS647410U (en) * 1987-06-30 1989-01-17
JPH03153106A (en) * 1989-11-09 1991-07-01 Nec Corp On-satellite antenna system
US5537819A (en) * 1993-07-30 1996-07-23 Kabushiki Kaisha Kobe Seiko Sho Hydraulic device for working machine

Similar Documents

Publication Publication Date Title
US5025262A (en) Airborne antenna and a system for mechanically steering an airborne antenna
US7298342B2 (en) Antenna positioner system
US4786912A (en) Antenna stabilization and enhancement by rotation of antenna feed
JPS5977703A (en) System for insulating antenna from flexible structure
EP1190272A2 (en) Dual stage deformable mirror
US6492955B1 (en) Steerable antenna system with fixed feed source
US5579018A (en) Redundant differential linear actuator
JPS5979604A (en) Driving device of antenna
US3852765A (en) Spherical double reflector antenna
EP1099274B1 (en) Device for antenna systems
JP2000341013A (en) Spherical support type antenna mechanism
JP2007235564A (en) Dual grid antenna device and antenna mirror axis adjustment method
JP3737700B2 (en) Multi-beam antenna device
CA1294703C (en) System for mechanically steering an airborne antenna
EP1414110A1 (en) Steerable antenna system with fixed feed source
JP3183908B2 (en) Antenna drive
US4821045A (en) Antenna pointing device capable of scanning in two orthogonal directions
JP2543974B2 (en) Antenna tracking device for spacecraft
JPH0119448Y2 (en)
Brunnen et al. Development of a high stability pointing mechanism for wide application
JPH0119449Y2 (en)
IWASAKI An active alignment scheme for the MPTS array(contour sensors)
Smith et al. An innovative mobile satcom antenna
JP2000228604A (en) Antenna mechanism
JPS59109497A (en) Method of operating spare satellite of artificial satellite