JPS597959B2 - Reactor pressure vessel cooling method and reactor pressure vessel cooling device - Google Patents

Reactor pressure vessel cooling method and reactor pressure vessel cooling device

Info

Publication number
JPS597959B2
JPS597959B2 JP53103313A JP10331378A JPS597959B2 JP S597959 B2 JPS597959 B2 JP S597959B2 JP 53103313 A JP53103313 A JP 53103313A JP 10331378 A JP10331378 A JP 10331378A JP S597959 B2 JPS597959 B2 JP S597959B2
Authority
JP
Japan
Prior art keywords
pressure vessel
reactor
cooling
top cover
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53103313A
Other languages
Japanese (ja)
Other versions
JPS5529772A (en
Inventor
高宥 真田
廣 後藤
孝夫 久保庭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP53103313A priority Critical patent/JPS597959B2/en
Publication of JPS5529772A publication Critical patent/JPS5529772A/en
Publication of JPS597959B2 publication Critical patent/JPS597959B2/en
Expired legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Description

【発明の詳細な説明】 本発明は、原子炉圧力容器に係り、特に原子炉の定期的
点検、異常時の点検のために原子炉圧力容器を冷却する
ための原子炉圧力容器の冷却方法及び原子炉圧力容器冷
却装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a nuclear reactor pressure vessel, and in particular to a method and method for cooling the reactor pressure vessel for periodic inspection of the reactor and inspection in the event of an abnormality. This relates to a nuclear reactor pressure vessel cooling system.

原子炉においては定期的点検、異常時の点検の際には、
原子炉の稼動を停止させた後原子炉圧力容器を冷却する
必要がある。
At nuclear reactors, during periodic inspections and inspections in the event of an abnormality,
After shutting down the reactor, it is necessary to cool the reactor pressure vessel.

このため、従来の原子炉には原子炉内の炉水を冷却して
原子炉圧力容器を内側から冷却する原子炉圧力容器冷却
装置が設けられている。
For this reason, conventional nuclear reactors are provided with a reactor pressure vessel cooling device that cools reactor water within the reactor to cool the reactor pressure vessel from the inside.

第1図は従来の原子炉圧力容器冷却装置の説明図で、1
1は圧力容器本体、12は圧力容器上蓋、21および2
2はそれぞれ圧力容器本体11および圧力容器上蓋12
0カバーであり、圧力容器本体11には主蒸気隔離弁3
2および安全弁33が設けられている在蒸気配管31が
取り付けられ、炉水吸引配管41、炉水循環ボンプ42
、炉水冷却熱交換器43および炉水戻り配管44を有す
る原子炉圧力容器冷却装置が設けられている。
Figure 1 is an explanatory diagram of a conventional reactor pressure vessel cooling system.
1 is the pressure vessel main body, 12 is the pressure vessel upper cover, 21 and 2
2 are a pressure vessel main body 11 and a pressure vessel upper lid 12, respectively.
0 cover, and the main steam isolation valve 3 is installed in the pressure vessel body 11.
2 and a safety valve 33 are installed, and a reactor water suction pipe 41 and a reactor water circulation pump 42 are installed.
, a reactor pressure vessel cooling system having a reactor water cooling heat exchanger 43 and a reactor water return pipe 44 is provided.

なお、45は冷媒循環ポンプ46を有する冷媒循環配管
で、47は戻り炉水温度計、4Bは炉水冷却熱交換器バ
イパス管、49はバイパス流量制御弁である。
Note that 45 is a refrigerant circulation pipe having a refrigerant circulation pump 46, 47 is a return reactor water temperature gauge, 4B is a reactor water cooling heat exchanger bypass pipe, and 49 is a bypass flow rate control valve.

このような冷却装置を有する原子炉圧力容器を冷却する
には、通常水位Aにある圧力容器本体11内の炉水の水
位を、まず圧力容器上蓋12内の水位Bまで満水して上
げた後、炉水を圧力容器本体11から炉水吸引配管41
を通して炉水循環ボンプ42で取り出し、炉水冷却熱交
換器43に導き冷却した後、炉水戻り配管44を通して
原子炉圧力容器に戻して、炉水を冷却することにより圧
力容器本体11と圧力容器上蓋12を冷却していた。
In order to cool a reactor pressure vessel having such a cooling device, the water level of the reactor water in the pressure vessel body 11, which is normally at water level A, is first raised to the water level B in the pressure vessel upper lid 12, and then , reactor water is transferred from the pressure vessel main body 11 to the reactor water suction piping 41
The reactor water is taken out through the reactor water circulation pump 42, guided to the reactor water cooling heat exchanger 43 for cooling, and then returned to the reactor pressure vessel through the reactor water return piping 44 to cool the reactor water, thereby removing the pressure vessel main body 11 and the pressure vessel upper cover. 12 was being cooled.

この原子炉圧力容器冷却装置を用いた冷却方法は、炉水
の水位を水位Aから圧力容器上蓋12内水位Bまで上げ
、原子炉圧力容器内を炉水で満水させる必要があり、こ
のため、炉水は蒸気をタービンに導く主蒸気配管31内
に流入し、主蒸気配管31はこの炉水により内側管壁が
濡れるため管内が腐食する。
The cooling method using this reactor pressure vessel cooling system requires raising the water level of the reactor water from the water level A to the water level B in the pressure vessel upper lid 12 and filling the inside of the reactor pressure vessel with reactor water. Reactor water flows into the main steam pipe 31 that guides steam to the turbine, and the inside of the main steam pipe 31 corrodes because the inner pipe wall of the main steam pipe 31 is wetted by this reactor water.

また、炉水け放射性異物を含んでいるため主蒸気配管3
1全体を放射能汚染する欠点があった。
In addition, the main steam pipe 3
1 had the disadvantage of radioactive contamination.

本発明は、主蒸気配管内への炉水流人を生ぜず原子炉圧
力容器全体を冷却し得る原子炉圧力容器の冷却方法を提
供することを目的とするもので、その目的とするところ
は、第一の発明である原子炉圧力容器の冷却方法におい
ては、圧力容器本体および圧力容器上蓋をそれぞれ圧力
容器本体力バーおよび圧力容器上蓋カバーで覆ってなり
、前記圧力容器本体内の炉水を冷却する流路を有する原
子炉圧力容器を冷却する方法において、前記圧力容器本
体及び前記圧力容器上蓋を外周から通風により外部冷却
すると同時に、前記原子炉圧力容器頂部内の気相部に冷
却された炉水をスプレイして内部冷却することを特徴と
し、第二の発明である原子炉圧力容器冷却装置は、圧力
容器本体および圧力容器上蓋をそれぞれ圧力容器本体力
バーおよび圧力容器上蓋カバーで覆ってなり、前記圧力
容器本体内の炉水を冷却する流路を有する原子炉圧力容
器冷却装置において、前記圧力容器本体および前記圧力
容器上蓋の外側を通風冷却させる流路と、前記原子炉圧
力容器頂部内の気相部に冷却された炉水をスプレイする
流路とが設けられていることを特徴とするものである。
An object of the present invention is to provide a method for cooling a reactor pressure vessel that can cool the entire reactor pressure vessel without causing reactor water to flow into the main steam piping. In the method for cooling a reactor pressure vessel, which is the first invention, the pressure vessel main body and the pressure vessel top cover are respectively covered with a pressure vessel body force bar and a pressure vessel top cover, and the reactor water in the pressure vessel main body is cooled. In a method for cooling a reactor pressure vessel having a flow path, the pressure vessel main body and the pressure vessel top cover are externally cooled by ventilation from the outer periphery, and at the same time, the reactor is cooled in a gas phase part within the top of the reactor pressure vessel. The reactor pressure vessel cooling device, which is the second invention, is characterized in that internal cooling is performed by spraying water. , a reactor pressure vessel cooling device having a flow path for cooling reactor water in the pressure vessel body, a flow path for ventilation cooling the outside of the pressure vessel body and the pressure vessel top cover; and a flow path for cooling the outside of the pressure vessel body and the pressure vessel top cover; The reactor is characterized by being provided with a flow path through which cooled reactor water is sprayed into the gas phase of the reactor.

すなわち、本発明はこのように原子炉圧力容器の外部お
よび内部を冷却して原子炉圧力容器の冷却を可能とする
ことにより、炉水の水位を通常時の水位に保持したまま
で原子炉圧力容器の冷却を可能としたものである。
In other words, the present invention enables the reactor pressure vessel to be cooled by cooling the outside and inside of the reactor pressure vessel in this manner, thereby reducing the reactor pressure while maintaining the reactor water level at the normal water level. This allows the container to be cooled.

以下、実施例について説明する。Examples will be described below.

第2図は一実施例の構成を示すもので、第1図と同一部
分には同一符号が符してある。
FIG. 2 shows the configuration of one embodiment, and the same parts as in FIG. 1 are designated by the same reference numerals.

この装置では、圧力容器本体11と圧力容器本体力バー
21との間、圧力容器上蓋12と圧力容器上蓋カバー2
2との間に冷却材流路が形成され、圧力容器冷却器によ
って冷却された冷却材、例えば空気によって圧力容器本
体11および圧力容器上蓋12が外側から冷却される。
In this device, between the pressure vessel body 11 and the pressure vessel body force bar 21, the pressure vessel top cover 12 and the pressure vessel top cover 2
A coolant flow path is formed between the pressure vessel body 11 and the pressure vessel upper cover 12 from the outside by a coolant such as air cooled by the pressure vessel cooler.

第2図で511および512は冷却材吸引配管で冷却材
は冷却材循環機52によって圧力容器冷却器53に導か
れ、ここで冷却された冷却材は冷却材戻り配管541お
よび542を通して圧力容器本体力バー21および圧力
容器上蓋カバー22内に戻される。
In Fig. 2, 511 and 512 are coolant suction pipes, and the coolant is guided to the pressure vessel cooler 53 by a coolant circulation machine 52, and the coolant cooled here is passed through coolant return pipes 541 and 542 to the pressure vessel main body. It is returned to the physical strength bar 21 and the pressure vessel top cover 22.

冷却材戻り配管541および542にはそれぞれ冷却材
流量計55、冷却材温度計56、冷却材流量制御弁57
が設けられ、圧力容器冷却器54には冷却器バイパス管
58とバイパス流量制御弁59が設けられており、これ
らによって、原子炉圧力容器冷却速度および原子炉圧力
容器の内側、外側の温度差の制御が行なわれる。
The coolant return pipes 541 and 542 are provided with a coolant flow meter 55, a coolant thermometer 56, and a coolant flow control valve 57, respectively.
The pressure vessel cooler 54 is provided with a cooler bypass pipe 58 and a bypass flow control valve 59, which control the reactor pressure vessel cooling rate and the temperature difference between the inside and outside of the reactor pressure vessel. Control takes place.

圧力容器冷却器53には冷媒循環配管60を通して冷媒
が導かれ、冷媒循環ポンプ61により冷媒を循環させ、
圧力容器冷却器53の熱交換手段により冷却材を冷却す
る。
Refrigerant is introduced to the pressure vessel cooler 53 through a refrigerant circulation pipe 60, and is circulated by a refrigerant circulation pump 61.
The coolant is cooled by the heat exchange means of the pressure vessel cooler 53.

また、この装置には、炉水冷却材を圧力容器上蓋12か
ら圧力容器頂部の気相部にスプレイする流路が設けられ
ており、圧力容器本体11内の炉水は炉水吸引配管41
より炉水循環ポンプ42によって炉水熱交換器43に導
かね、冷却された後、頂部スプレイ冷却配管71を通じ
て、圧力容器上蓋12頂部からスプレイ注入して気相部
を原子炉圧力容器内側から冷却する。
Additionally, this device is provided with a flow path for spraying reactor water coolant from the pressure vessel upper cover 12 to the gas phase at the top of the pressure vessel, and the reactor water in the pressure vessel main body 11 is transferred to the reactor water suction piping 41.
After being guided to the reactor water heat exchanger 43 by the reactor water circulation pump 42 and cooled, spray is injected from the top of the pressure vessel upper cover 12 through the top spray cooling piping 71 to cool the gas phase from inside the reactor pressure vessel. .

頂部スプレイ冷却配管11には頂部スプレイ制御弁12
、スプレイ流量計13、スプレイ水温度計74が設けら
わ、炉水熱交換器43には炉水熱交換器バイパス管48
とバイパス流量制御弁49が設けられており、これらに
よって圧力容器上蓋12頂部の気相部の冷却速度および
内側、外側温度差の制御が行なわれる。
The top spray cooling pipe 11 has a top spray control valve 12.
, a spray flow meter 13, and a spray water temperature gauge 74 are provided, and the reactor water heat exchanger 43 is provided with a reactor water heat exchanger bypass pipe 48.
and a bypass flow rate control valve 49 are provided, and these control the cooling rate of the gas phase portion at the top of the pressure vessel upper lid 12 and the temperature difference between the inside and outside.

このように本実施例の冷却装置は構成されているので、
原子炉圧力容器を冷却するときに、炉氷水位を上げずに
、圧力容器本体の6ならず、特に高温となる圧力容器上
蓋部分の全域、特に圧力容器本体と圧力容器上蓋との結
合部の肉厚部分の冷却を内外両方から冷却することがで
きるため、冷却効率は高く、迅速な冷却ができ、さらに
原子炉圧力容器の内側、外側の温度差を少く制御するこ
とができる。
Since the cooling device of this embodiment is configured in this way,
When cooling the reactor pressure vessel, without raising the reactor ice water level, it is necessary to cool down not only the pressure vessel main body but also the entire area of the pressure vessel upper cover, which is particularly hot, especially the joint area between the pressure vessel main body and the pressure vessel upper cover. Since the thick portion can be cooled from both the inside and outside, the cooling efficiency is high, rapid cooling is possible, and the temperature difference between the inside and outside of the reactor pressure vessel can be controlled to a small level.

なお、圧力容器本体および圧力容器上蓋の外側を通風冷
却さセる流路は既設の圧力容器本体力バー、圧力容器上
蓋カバーあるいは圧力容器冷却器を利用して構成するこ
とができろ。
Note that the flow path for ventilation cooling the outside of the pressure vessel body and the pressure vessel top cover can be constructed using an existing pressure vessel body force bar, pressure vessel top cover, or pressure vessel cooler.

第3図はさらに他の実施例を示すもので、第1図および
第2図と同一部分には同一符号が付してあり、第2図の
装置と異なるところは、圧力容器本体内の炉水を炉水熱
交換器によって冷却した炉水によって冷却する流路を有
する点である。
FIG. 3 shows still another embodiment, in which the same parts as in FIGS. 1 and 2 are given the same reference numerals, and the difference from the device in FIG. It has a flow path in which water is cooled by reactor water cooled by a reactor water heat exchanger.

この装置では、頂部スプレイ冷却配管71から炉水戻り
配管44を分岐して構成されており、この炉水戻り配管
44には戻り炉水流量制御弁81、戻り炉水温度計41
戻り炉水流量計82が設置されている。
In this device, a reactor water return pipe 44 is branched from a top spray cooling pipe 71, and this reactor water return pipe 44 includes a return reactor water flow rate control valve 81, a return reactor water thermometer 41, and a reactor water return pipe 44.
A return reactor water flow meter 82 is installed.

本実施例の冷却装置は、圧力容器本体および圧力容器上
蓋の何れも内外両方から冷却できるため、冷却効率は最
も高くなる。
The cooling device of this embodiment can cool both the pressure vessel main body and the pressure vessel top cover both from the inside and outside, and therefore has the highest cooling efficiency.

第4図は第3図の実施例の冷却装置によって冷却した原
子炉圧力容器の温度変化を示すもので、横軸には原子炉
冷却時間(hr)、縦軸には圧力容器上蓋温度(’C)
(ToJがとってあり、Cは縦来の水位を上げる場合、
Dは従来の冷却装置で水位を上げないで冷却した場合で
、比較のために示してあり、Eは炉氷水位を通常水位の
ままで炉水を冷却するとともに、圧力容器頂部気相部に
冷却水をプレイして原子炉圧力容器を内側から冷却し、
さらに圧力容器本体および圧力容器上蓋の外側を冷却材
で冷却した実施例の場合の圧力容器上蓋の温度変化を示
す。
Figure 4 shows the temperature change in the reactor pressure vessel cooled by the cooling system of the embodiment shown in Figure 3, where the horizontal axis represents reactor cooling time (hr) and the vertical axis represents pressure vessel upper cover temperature ( C)
(If ToJ is set and C raises the vertical water level,
D is a case in which cooling is performed using a conventional cooling system without raising the water level, and is shown for comparison. E is a case in which the reactor ice water level is kept at the normal water level and the reactor water is cooled, and at the same time the reactor water is cooled in the gas phase at the top of the pressure vessel. Play cooling water to cool the reactor pressure vessel from the inside,
Furthermore, temperature changes in the pressure vessel top cover in the case of an example in which the outside of the pressure vessel main body and the pressure vessel top cover are cooled with a coolant are shown.

この図の曲線C,D(!:Eとの比較より明らかなよう
に、温度が点検作業可能な温度50℃になる時間はそれ
ぞれ100時間、40時間短縮でき、原子炉点検のため
の炉停止期間が縮少でき稼動率向上のために大きな効果
がある。
As is clear from the comparison with curves C and D(!:E) in this figure, the time required for the temperature to reach 50°C, the temperature at which inspection work can be carried out, can be shortened by 100 hours and 40 hours, respectively, and the reactor is shut down for inspection. This has a great effect on shortening the period and improving the operating rate.

第5図は原子炉圧力容器内外の温度差の変化を示したも
ので、横軸には原子炉冷却時間(hr)、縦軸には圧力
容器上蓋内外温度(’C)(To−T1)(To ,T
1はそれぞれ第3図00,I点の温度)がとってあり、
Fが水位を上げる従来の方法の場合、Gが従来の装置で
水位を上げないで冷却した場合で、比較のために示して
あり、Hが炉氷水位を通常水位のままで炉水を冷却する
とともに圧力容器頂部気相部をスプレイして原子炉圧力
容器内側から冷却し、さらに圧力容器本体および圧力容
器上蓋の外側を冷却材によって冷却した実施例の場合を
示している。
Figure 5 shows the change in the temperature difference inside and outside the reactor pressure vessel, with the horizontal axis representing the reactor cooling time (hr) and the vertical axis representing the temperature inside and outside the upper lid of the pressure vessel ('C) (To-T1). (To, T
1 is the temperature of point 00 and point I in Figure 3, respectively.
F is the conventional method of raising the water level, G is the case of cooling with a conventional device without raising the water level, which are shown for comparison, and H is the case of cooling the reactor water while keeping the reactor ice water level at the normal water level. At the same time, the figure shows an example in which the gas phase at the top of the pressure vessel is sprayed to cool it from the inside of the reactor pressure vessel, and the outside of the pressure vessel main body and the pressure vessel top cover are further cooled with a coolant.

同図の曲線FとHとの比較より明らかなように炉水の水
位を上げ内側から原子炉圧力容器を冷却する場合には圧
力容器上蓋の内側と外側の温度差が50〜100℃以上
となり熱応力が大きくなるのに対して、Hで示すこの実
施例の場合は温度差は50℃以下となり原子炉圧力容器
の熱応力を低減でき安全性向上に大きな効果がある。
As is clear from a comparison of curves F and H in the figure, when the reactor water level is raised and the reactor pressure vessel is cooled from the inside, the temperature difference between the inside and outside of the pressure vessel upper cover becomes 50 to 100°C or more. In contrast, in this embodiment indicated by H, the temperature difference is 50° C. or less, which reduces the thermal stress in the reactor pressure vessel and has a great effect on improving safety.

なお、従来の冷却装置で主蒸気配管内に炉水が流入する
場合には、主蒸気配管31には第6図に示すように主蒸
気隔離弁32が八個設置されており、これらに炉水が急
激に接触して温度が急激に変化し熱ひずみを起し、弁シ
一ト321と弁体322の間に永久間隙ができ、原子炉
事故時にこの間隙から放射能漏洩を起したり、あるいは
、主蒸気配管31には第1図に示すように安全弁33が
士数個設置されており、炉水に接触してひずみを起し、
弁シート331と弁体332との間に永久間隙ができ原
子炉の通常運転中に蒸気漏洩を起したり、さらに炉水中
には微小な固形金属異物が多数浮遊しており、これが、
主蒸気隔離弁32および安全弁33の弁シー}321
,331と弁体322 ,332との間に噛み込み、弁
シート321,331を傷つけるとともに漏洩を起した
りするが、これらはすべて炉氷水位の上昇により炉水が
主蒸気配管へ流入することに起因しているため、実施例
の冷却装置においてはこのような問題点はすべて除去さ
れる。
In addition, when reactor water flows into the main steam piping in a conventional cooling system, eight main steam isolation valves 32 are installed in the main steam piping 31 as shown in FIG. Rapid contact with water causes a sudden change in temperature, causing thermal strain, creating a permanent gap between the valve seat 321 and the valve body 322, which may cause radioactivity leakage from this gap in the event of a nuclear reactor accident. Alternatively, as shown in Fig. 1, several safety valves 33 are installed in the main steam piping 31, which may come into contact with reactor water and cause strain.
A permanent gap is created between the valve seat 331 and the valve body 332, causing steam leakage during normal operation of the reactor.Furthermore, many minute solid metal foreign objects are floating in the reactor water, which causes
Valve sea of main steam isolation valve 32 and safety valve 33} 321
, 331 and the valve bodies 322, 332, damaging the valve seats 321, 331 and causing leakage, all of which are caused by reactor water flowing into the main steam piping due to a rise in the reactor ice water level. Therefore, in the cooling device of the embodiment, all such problems are eliminated.

これらの効果は、以上の実施例の冷却装置のいずれの場
合においても、それぞれの条件に応じて達成可能である
These effects can be achieved in any of the cooling devices of the above embodiments depending on the respective conditions.

すなわち、原子炉水位が主蒸気配管より下の通常水位の
ままで原子炉圧力容器の冷却が可能で、炉水の主蒸気配
管内への流入を防止できるため、主蒸気隔離弁、安全弁
のシート漏洩を防止できるとともに、主蒸気配管の腐食
を防止でき、また放射能の拡大を防止することができ、
さらに、冷却効率が高く、迅速な冷却が可能で、原子炉
圧力容器の内側、゛外側の温度差を少く制御することが
できるため、原子炉停止期間が短縮され、原子炉圧力容
器の熱応力を低減できる。
In other words, the reactor pressure vessel can be cooled while the reactor water level remains at the normal water level below the main steam piping, and reactor water can be prevented from flowing into the main steam piping. It can prevent leakage, prevent corrosion of main steam piping, and prevent the spread of radioactivity.
Furthermore, the cooling efficiency is high, rapid cooling is possible, and the temperature difference between the inside and outside of the reactor pressure vessel can be controlled to a small extent, which shortens the reactor shutdown period and reduces thermal stress in the reactor pressure vessel. can be reduced.

従って、発電プラントとしての安全性ならび稼動率を向
上させることができる。
Therefore, the safety and operation rate of the power generation plant can be improved.

以上の如く、本発明の原子炉圧力容器冷却装置は、主蒸
気配管内への炉水注入を生ぜず、原子炉圧力容器全体を
冷却可能とするもので、工業的効果の大なるものである
As described above, the reactor pressure vessel cooling device of the present invention is capable of cooling the entire reactor pressure vessel without injecting reactor water into the main steam piping, and has great industrial effects. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の原子炉圧力容器冷却装置の構成説明図、
第2図および第3図は本発明の原子炉圧力容器冷却装置
のそれぞれ異なる実施例の構成説明図、第4図および第
5図は同じく効果を従来装置との比較において示す特性
線図、第6図は原子炉圧力容器の主蒸気隔離弁の部分断
面図、第7図は同じく安全弁の部分断面図である。 11・・・圧力容器本体、12・・・圧力容器上蓋、2
1・・・圧力容器本体力バー、22・・・圧力容器上蓋
カバー、31・・・主蒸気配管、41・・・炉水吸引配
管、43・・・炉水冷却熱交換器、44・・・炉水戻り
配管、511,512・・・冷却材吸引配管、53・・
・圧力容器冷却器、54L542・・・冷却材戻り配管
、11・・・頂部スプレイ冷却配管。
Figure 1 is an explanatory diagram of the configuration of a conventional reactor pressure vessel cooling system;
2 and 3 are configuration explanatory diagrams of different embodiments of the reactor pressure vessel cooling system of the present invention, and FIGS. 4 and 5 are characteristic diagrams showing the effects in comparison with conventional equipment. FIG. 6 is a partial sectional view of the main steam isolation valve of the reactor pressure vessel, and FIG. 7 is a partial sectional view of the safety valve. 11...Pressure vessel main body, 12...Pressure vessel upper lid, 2
DESCRIPTION OF SYMBOLS 1... Pressure vessel body force bar, 22... Pressure vessel top cover, 31... Main steam piping, 41... Reactor water suction piping, 43... Reactor water cooling heat exchanger, 44...・Reactor water return piping, 511, 512... Coolant suction piping, 53...
- Pressure vessel cooler, 54L542... Coolant return piping, 11... Top spray cooling piping.

Claims (1)

【特許請求の範囲】 1 圧力容器本体および圧力容器上蓋をそれぞれ圧力容
器本体力バーおよび圧力容器上蓋カバーで覆ってなり、
前記圧力容器本体内の炉水を冷却する流路を有する原子
炉圧力容器を冷却する方法において、前記圧力容器本体
及び前記圧力容器上蓋を外周から通風κより外部冷却す
ると同時に、前記原子炉圧力容器頂部内の気相部に冷却
された炉水をスプレイして内部冷却することを特徴とす
る原子炉圧力容器の冷却方法。 2 圧力容器本体および圧力容器上蓋をそれぞれ圧力容
器本体力バーおよび圧力容器上蓋カバーで覆ってなり、
前記圧力容器本体内の炉水を冷却する流路を有する原子
炉圧力容器冷却装置において、前記圧力容器本体および
前記圧力容器上蓋の外側を通風冷却させる流路と、前記
原子炉圧力容器頂部内の気相部に冷却された炉水をスプ
レイする流路とが設けられていることを特徴とする原子
炉圧力容器冷却装置。 3 前記圧力容器本体および前記圧力容器上蓋の外側を
通風冷却さセる流路が、前記圧力容器本体と前記圧力容
器本体力バーとの間および前記圧力容器上蓋と前記圧力
容器上蓋カバーとの間の空間に形成されている特許請求
の範囲第2項記載の原子炉圧力容器冷却装置。 4 前記圧力容器本体および前記圧力容器上蓋の外側を
通風冷却させる流路、前記冷却された炉水をスプレイす
る流路、および前記圧力容器本体内の炉水を冷却する流
路が、それぞれ冷却対象部分の冷却速度、および内側、
外側温度差を制御する手段を有する特許請求の範囲第2
項または第3項記載の原子炉圧力容器冷却装置。
[Claims] 1. A pressure vessel body and a pressure vessel top cover are respectively covered by a pressure vessel body force bar and a pressure vessel top cover,
In the method for cooling a reactor pressure vessel having a flow path for cooling reactor water in the pressure vessel body, the pressure vessel body and the pressure vessel top cover are externally cooled from the outer periphery by ventilation κ, and at the same time, the reactor pressure vessel A method for cooling a nuclear reactor pressure vessel, characterized in that internal cooling is performed by spraying cooled reactor water onto a gas phase within the top. 2 The pressure vessel main body and the pressure vessel top cover are covered with a pressure vessel body force bar and a pressure vessel top cover, respectively,
In the reactor pressure vessel cooling device having a flow path for cooling reactor water in the pressure vessel body, a flow path for ventilation cooling the outside of the pressure vessel body and the pressure vessel top cover, and a flow path inside the top of the reactor pressure vessel. A nuclear reactor pressure vessel cooling device characterized in that a flow path for spraying cooled reactor water is provided in a gas phase part. 3. A flow path for ventilating and cooling the outside of the pressure vessel main body and the pressure vessel top cover is provided between the pressure vessel main body and the pressure vessel body force bar and between the pressure vessel top cover and the pressure vessel top cover. A nuclear reactor pressure vessel cooling system according to claim 2, which is formed in a space of. 4. A flow path for ventilation cooling the outside of the pressure vessel main body and the pressure vessel top cover, a flow path for spraying the cooled reactor water, and a flow path for cooling the reactor water inside the pressure vessel main body are each to be cooled. Cooling rate of parts, and inside,
Claim 2 comprising means for controlling the outside temperature difference
The nuclear reactor pressure vessel cooling system according to item 1 or 3.
JP53103313A 1978-08-23 1978-08-23 Reactor pressure vessel cooling method and reactor pressure vessel cooling device Expired JPS597959B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP53103313A JPS597959B2 (en) 1978-08-23 1978-08-23 Reactor pressure vessel cooling method and reactor pressure vessel cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP53103313A JPS597959B2 (en) 1978-08-23 1978-08-23 Reactor pressure vessel cooling method and reactor pressure vessel cooling device

Publications (2)

Publication Number Publication Date
JPS5529772A JPS5529772A (en) 1980-03-03
JPS597959B2 true JPS597959B2 (en) 1984-02-21

Family

ID=14350707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP53103313A Expired JPS597959B2 (en) 1978-08-23 1978-08-23 Reactor pressure vessel cooling method and reactor pressure vessel cooling device

Country Status (1)

Country Link
JP (1) JPS597959B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5333102A (en) * 1993-11-17 1994-07-26 Obie S Lighting Prod Inc Theatrical search lighting system

Also Published As

Publication number Publication date
JPS5529772A (en) 1980-03-03

Similar Documents

Publication Publication Date Title
JPH0715507B2 (en) Passive safety equipment for nuclear reactors
US5828714A (en) Enhanced passive safety system for a nuclear pressurized water reactor
JPS597959B2 (en) Reactor pressure vessel cooling method and reactor pressure vessel cooling device
KR20210118626A (en) Passive residual heat removal system
JP2899979B2 (en) High temperature gas furnace
US5517539A (en) Method of decontaminating a PWR primary loop
US5289511A (en) Liquid-metal cooled nuclear reactor
US4118278A (en) Nuclear reactor insulation and preheat system
US4737338A (en) Nuclear reactor containing connecting means for connecting a reactor vessel and at least one receiver vessel
JPS5819415A (en) Cooling method for stave of blast furnace body
KR100385838B1 (en) Nozzle configuration in S/G for Mid-loop operation enhancement
US5087410A (en) Method of avoiding localized hydrogen build-ups in safety tanks of reactors
JPH0633966B2 (en) Flow control mechanism of heat exchanger
JPH023159B2 (en)
JPS6111395B2 (en)
JPS63315989A (en) Cooler for reactor container
Kennedy et al. * SCK CEN, Mol, Belgium,† Experimental Engineering Division, Department for Fusion and Technologies for Nuclear Safety and Security, ENEA, Brasimone (Bo), Italy
JPS63222295A (en) Nuclear reactor
JPH0511236B2 (en)
JPH0340357B2 (en)
Bodnar et al. An in-pile gas-cooled loop installed at the Battelle Research Reactor
JPS6361633B2 (en)
JPS62298797A (en) Method of operating fast breeder reactor plant
Holmes et al. Paper 9: Boilers for Nuclear Plant
JPS5929840B2 (en) Nuclear reactor core cooling system