JPS5979533A - Liquid phase epitaxial growth method - Google Patents

Liquid phase epitaxial growth method

Info

Publication number
JPS5979533A
JPS5979533A JP19105382A JP19105382A JPS5979533A JP S5979533 A JPS5979533 A JP S5979533A JP 19105382 A JP19105382 A JP 19105382A JP 19105382 A JP19105382 A JP 19105382A JP S5979533 A JPS5979533 A JP S5979533A
Authority
JP
Japan
Prior art keywords
slide member
substrate
sliding member
layer
holes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19105382A
Other languages
Japanese (ja)
Inventor
Kosaku Yamamoto
山本 功作
Yoshito Nishijima
西嶋 由人
Hirokazu Fukuda
福田 広和
Kouji Shinohara
篠原 宏「じ」
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19105382A priority Critical patent/JPS5979533A/en
Publication of JPS5979533A publication Critical patent/JPS5979533A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02625Liquid deposition using melted materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02417Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02568Chalcogenide semiconducting materials not being oxides, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02623Liquid deposition
    • H01L21/02628Liquid deposition using solutions

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable epitaxial growth under a supercooling state by a method wherein first and second sliding members are superposed and disposed on a susceptor, a crystalline layer forming material in the solution reservoir of the second sliding member is brought previously to the state of a saturated solution, the second sliding member is moved to drop the saturated solution into the liquid reservoir of the first sliding member and the first sliding member is moved to bring the solution into contact with a substrate. CONSTITUTION:The first sliding member 26 with through-holes 23-25 encasing a crystal material to be formed and the second sliding member 30 with through- holes 27-29 are superposed and disposed on the susceptor 22 made of carbon, to an end section thereof the PbTe substrate 21 is buried. The PbSnTe materials 32, 34, 36 functioning as a buffer layer, an active layer and a confining layer are each entered in the through-holes 27, 28, 29, and these compositions are changed previously by dissolving dummy thin-boards 31A and 31B, 33A and 33B and 35A and 35B along the materials. These solutions are brought to a supercooling state, the second sliding member 30 is moved, the solutions are dropped into the holes of the first sliding member 26, the member 26 is slid, and the substrate 21 is moistened with these solutions.

Description

【発明の詳細な説明】 ぐl)うd明の技術分野 本発明は液相エピタキシャル成長ソJ法の改良に1μm
するものである。
[Detailed Description of the Invention] Gl) Technical Field of the Invention The present invention is directed to the improvement of the liquid phase epitaxial growth method with a thickness of 1 μm.
It is something to do.

(L))技術のR景 赤外線レーザ素子の材料としては、一般に鉛−錫−テル
ル ツブ このような結晶を素子形成に都合が良いように大面積で
しかも薄層の状態で得るようにするには、比較的大面積
の単結晶が得やすいテ/V /L7化鉛(Pbi’e)
の単結晶基板上にpb, )HSnXTet7)結晶1
14を面第11エピタキシャル成長方法で形成する方法
がとらノしている。
(L)) Technology R-view infrared laser elements are generally made of lead-tin-tellurium.In order to obtain such crystals in a large area and in a thin layer for convenient device formation, , Te/V/L7 lead oxide (Pbi'e), which makes it easy to obtain single crystals with a relatively large area.
pb, )HSnXTet7) Crystal 1 on a single crystal substrate of
14 is currently being formed by an 11th-plane epitaxial growth method.

((2)  従来技術と問題点 このような従来の液相エピタキシャル成長方法につい、
て第1図を用いながら説明する。
((2) Conventional techniques and problems Regarding such conventional liquid phase epitaxial growth methods,
This will be explained using FIG.

まず直方体形状のカーボンよりなる支持台1の凹所2に
PbTeの基板3と凹所4.5.6内にダミー用薄板7
,8.9を埋設する。そして支持台l上を矢印へ方向に
移動し直方体形状をしたカーボンよりなるスライド部材
10の貫通孔形状の液だめ11.J2,13内には基板
上に形成すべき第1 k+7のバッファ層形成用の、P
b 1−ysnX’l’eの拐料14・、第2層の活性
層形成用のPbl;(SnX’l”eの材才115、第
3層の閉じ込め層形成用のPbl ysnXT Gの月
料16f:それぞれX値の値を変動させて充填する。
First, a PbTe substrate 3 is placed in the recess 2 of a support base 1 made of rectangular parallelepiped carbon, and a dummy thin plate 7 is placed in the recess 4.5.6.
, 8.9 is buried. The slide member 10 is made of carbon and has a rectangular parallelepiped shape. In J2 and 13, there is a P for forming the first k+7 buffer layer to be formed on the substrate.
b 1-ysnX'l'e additive 14, Pbl for forming the second active layer; (SnX'l'e material 115, Pbl for forming the third confinement layer. Filler 16f: Filled by varying the X value.

このようにした支持台とスライド部材とを水素(H2)
ガス算囲気内の反応管中に導入して基板上に形成ずべき
Pb 1−ysnyTeの材料を溶融して、該J)b 
1−X5nX’I’eの溶液にダミー薄板中の成分を飽
和さゼる。その後所定のlI′4!温速度で加速度の温
度を降下させた状態で、基板3上に液だめ11.12゜
J3を順次静置しながら基板上に第1層のPbl −X
Sl’1y−Te (1)結晶層、’Is 2 M +
/) Pb 1−xSll X’re ノ結晶層、第3
1〜のPb1−ysnXTeの結晶層を順次形成するよ
うにしていた。
Hydrogen (H2)
The Pb 1-ysnyTe material to be formed on the substrate is melted by introducing it into a reaction tube in a gas atmosphere, and
The components in the dummy thin plate are saturated with a solution of 1-X5nX'I'e. Then the predetermined lI′4! The first layer of Pbl -
Sl'1y-Te (1) crystal layer, 'Is 2 M +
/) Pb 1-xSll X're crystal layer, third
Pb1-ysnXTe crystal layers of Pb1-ysnXTe were successively formed.

しかしこのJ、うな従来の方法においては基板上にエピ
タX−ンヤル成長層を結晶層形成材料のl′#液が過冷
却状態で形成できないといった欠点がある。
However, this conventional method has the drawback that an epitaxial growth layer cannot be formed on the substrate when the l'# liquid, which is the material for forming the crystal layer, is supercooled.

この結晶層形成材料を過冷却状態で基板上にエピタキシ
A・ル成長する方法は、亀ため内の結晶層形成JJ料の
溶液の温度をその溶液の飽和温度より、A i”cだけ
低い状態にして基板上にそのm敢を接触させてエビタギ
シャ/I/層を成長させる方法で、この方法によればエ
ピタキシャル層の成長条件が安定し、所望の厚さに精度
良くエピタキシャル)Δの厚さが制御できるのでこの方
法がとられるようになってきている。
The method of epitaxially growing this crystal layer forming material on a substrate in a supercooled state is to keep the temperature of the solution of the crystal layer forming JJ material in the turtle tank lower than the saturation temperature of the solution by A i"c. This method allows the growth conditions of the epitaxial layer to be stabilized and allows the epitaxial layer to be accurately grown to the desired thickness (the thickness of Δ). This method is increasingly being used because it allows control over

ところで従来の方法においては、所定の降6情速度で溶
液の温度を下げると、その溶液の21う冷却成分がダミ
ー用薄板上に析出してしまうため、基板上に液だめを静
止した時には過冷却成長ができないという欠点があった
However, in the conventional method, when the temperature of the solution is lowered at a predetermined cooling rate, the cooling component of the solution is deposited on the dummy thin plate. The drawback was that cooling growth was not possible.

0)発明の目的 本発明は上述した欠点を除去し、基板」二に形成すべき
結晶層の溶液を過冷却状態に保った寸才基板上でエピタ
キシャル成長できるようにし、かつ成長温度で任意に溶
液の過冷却度(八T)を制御できるような新規なエビク
ヤシャル成長力法の提供を目白りとするものである。
0) Purpose of the Invention The present invention eliminates the above-mentioned drawbacks, makes it possible to perform epitaxial growth on a semi-substrate in which the solution of the crystal layer to be formed on the substrate is kept in a supercooled state, and allows the solution to be formed at any desired growth temperature. The aim of this project is to provide a new ``epicary growth force'' method that can control the degree of supercooling (8T) of .

(e)  発明の構成 〃・かる目的を達成するだめの本発明の液相エピタキシ
ャル成長方法は基板を埋設する支持台と、その上をスラ
イドして移動し、基板上に形成すべき結晶層の利料を収
容すべき液だめを有する第1のスライド部材と、該第1
のスライド部材上を移動し、基板上に形成すべき結晶層
の材料とダミー用薄板とを収容しだ液だめを有する第2
のスライド部材とからなり、前記第2のスライド部材の
液だめ内の月剥を所定の温度で溶融して、あらかじめ結
晶層形成材料の飽和溶液を形成し、該第2のスライド部
材を移動させて前記飽和溶液を第1のスライド部材の液
だめ内に落下せしめたのち、更に第1のスフ・イド部材
を移動させて前記溶液を基板に接触させて基板上に結晶
層を形成することを特徴とするものである。
(e) Structure of the invention - To achieve the above object, the liquid phase epitaxial growth method of the present invention includes a support base in which a substrate is embedded, a support base that slides on the support base, and a crystal layer to be formed on the substrate. a first slide member having a liquid reservoir for containing a liquid;
A second slide member having a liquid reservoir that moves on the slide member and houses the material of the crystal layer to be formed on the substrate and the dummy thin plate.
a slide member, melting the moon flakes in the liquid reservoir of the second slide member at a predetermined temperature to form a saturated solution of the crystal layer forming material in advance, and moving the second slide member. to cause the saturated solution to fall into the liquid reservoir of the first sliding member, and then further move the first sifting member to bring the solution into contact with the substrate to form a crystal layer on the substrate. This is a characteristic feature.

(f゛)発明の実施例 以下図面を用いて本発明の一実施例につき詳細に説明す
る。
(f゛) Embodiment of the Invention An embodiment of the invention will be described below in detail with reference to the drawings.

第2図よシ第6図までは本発明の方法により液A″1」
エピタキシャル成畏する場合に2ける工程を示す断面図
、第7図は該成長作業を丈施する際の加熱炉の温度の時
間開化を足す。
From Fig. 2 to Fig. 6, liquid A''1'' was obtained by the method of the present invention.
FIG. 7 is a sectional view showing the second step in the epitaxial growth process, and shows the temperature change over time in the heating furnace during the growth process.

第2図に示すように本発明のプj法に用いるぞfり相エ
ピタキシャル成長装置はPt+Teの基板21を埋設し
た直方体形状のカーボン部材よりなる支持台22と、や
はり直方体形状のカーボン部材よりな−る支持台22」
二をスライドして基板」二に形成すべき結晶材料を収容
すべき貫通孔23・、24.25を有する第1のスライ
ド部材26と、該第1のスライド部材26上をスライド
して移動し、h(板上に形成すべき結晶層形成材料を収
容すべき11通孔27.28.2!J’、有する第2の
スライド部材30とよりなる。なおgr 1のスライド
部材の各貫通孔ダ寸 の間隔に催して第2のスライド部材」二の各1j ;i
fi孔の間隔は図示のようにせ寸くなっている。
As shown in FIG. 2, the phase epitaxial growth apparatus used in the PJ method of the present invention has a support base 22 made of a rectangular parallelepiped-shaped carbon member in which a Pt+Te substrate 21 is embedded, and a support base 22 made of a rectangular parallelepiped-shaped carbon member. "Support stand 22"
A first slide member 26 having through holes 23, 24, 25 for accommodating the crystal material to be formed on the substrate; , h (11 through holes 27.28.2!J' for accommodating the crystal layer forming material to be formed on the plate), and a second slide member 30 having 11 through holes 27, 28, 2! The second slide members are arranged at intervals of about 10 cm;
The intervals between the fi holes are narrow as shown in the figure.

このような第2のスライド部材300貫通孔27内の側
壁に沿わずように第1 M2のバッファ層形成材料と同
し組成(X値)のPb】zsnX’I’eのタミー薄板
31A、、3 ] 13をだけかけて設着し該貞通孔2
7内に基板上に形成すべき第1層のバッファ層形成用ノ
P b 1−;<5nxTeの材料32を収容する。
A tammy thin plate 31A of Pb]zsnX'I'e having the same composition (X value) as the buffer layer forming material of the first M2 is placed so as not to run along the side wall inside the through hole 27 of the second slide member 300. 3] Apply only 13 and install the hole 2.
7 contains a material 32 for forming a first buffer layer to be formed on the substrate.

次いで第2のスライド部材30の貫通孔28内の側壁に
lf)わすように第2層の活性層形成材料と同じ組成(
XIll′1)のPb I−X:’+nyTeのダミー
薄板33A、 3313勿たけかけて設置し、該貫通孔
18内に基板上に形成すべき第2層の活性層形成用のe
’b 1−zSnXTe (7) IA料34・を収容
する。
Next, a material having the same composition as the active layer forming material of the second layer (lf) is applied to the side wall of the through hole 28 of the second slide member 30 (lf).
Dummy thin plates 33A and 3313 of Pb I-X:'+nyTe of
'b 1-zSnXTe (7) Accommodates IA charge 34.

咀に第2のスライド部材300貫通孔29内の側壁に沿
わずように第3層の閉じ込め層形成材料と同じ組成(1
m)のPb、−XSrtXTeツタミーi’tNN35
A、 35Bケたけかけて設置し、該貫通孔29内に基
板上に形成すべき第3層の閉じ込め層形成用(Q Pb
1−X:5TIXTe)拐料36を収容する。
The same composition as the confinement layer forming material of the third layer (1
m) Pb, -XSrtXTetutamii i'tNN35
A, 35B for forming the third confinement layer to be formed on the substrate in the through hole 29 (Q Pb
1-X:5TIXTe) Contains 36 particles.

このJ、うな支持台22、第1のスライド部材26、第
2のスライド部材30を水素(H2)ガス雰囲気内の反
応管中に挿入し、まず最初第9図に示すようにT1=5
00℃の温度で第2のスライド部材3゜の貫通孔27.
28.29内の結晶層形成材料32゜34.3Gを溶融
しダミー薄板81A、 31B、 33ん33E35A
、35’J3の成分をそれぞれの結晶層形成材料に該結
晶層形成材料の溶液が飽和状態となる寸で溶解せしめる
。このとき500℃の温度での))b、 −XSnXT
eの飽和溶液がすべての貫通孔27,28゜29内で形
成さiする。
This J, the eel support 22, the first slide member 26, and the second slide member 30 are inserted into a reaction tube in a hydrogen (H2) gas atmosphere, and first, as shown in FIG.
The through hole 27 of the second slide member 3° at a temperature of 00°C.
28. Melt the crystal layer forming material 32゜34.3G in 29 and make dummy thin plates 81A, 31B, 33 and 33E35A.
, 35'J3 are dissolved in each crystal layer forming material to the extent that the solution of the crystal layer forming material is saturated. At this time, at a temperature of 500°C)) b, −XSnXT
A saturated solution of e is formed in all the through holes 27, 28, 29.

次に第2図に示すように第2のスライド部材30を矢印
)3方向に移動せしめ第3図の状聾にする。
Next, as shown in FIG. 2, the second slide member 30 is moved in three directions (arrows) to achieve the deaf state shown in FIG.

そして第3層形成用ノPb1zsnxTeノ500℃f
t7)飽和溶o、36を第1のスライド部4:J’ 2
6内の貫通孔25内に落下せしめる。
And Pb1zsnxTe for forming the third layer at 500℃f
t7) Saturated melt o, 36 to the first slide part 4: J' 2
6 into the through hole 25.

次にこの状態で加熱炉の温度をTg=510℃の状態と
して第2Mの活性層形成材料34にダミー薄板33]3
.33Aの成分を溶解せしめ510℃におけるpbl 
yshXTeノ飽和溶g!を形成したのち、第3図の矢
印C方向に第2のスライド部材30を移動させ、第4図
の状態にする。そして第2層の形成用ノ’Pb1−Xs
nyTe ノ510℃での飽和溶e、34を第1のスラ
イド部材26の貫通孔2斗内に落下せしめる。
Next, in this state, the temperature of the heating furnace is set to Tg=510°C, and the dummy thin plate 33]3 is placed on the second M active layer forming material 34.
.. Dissolve the components of 33A in pbl at 510°C.
yshXTe no saturated solution g! 3, the second slide member 30 is moved in the direction of arrow C in FIG. 3 to bring it into the state shown in FIG. 4. and Pb1-Xs for forming the second layer.
A saturated solution of nyTe at 510°C is dropped into the through hole 2 of the first slide member 26.

次にこの状態で加熱炉の温度を第9図の1゛3=520
シの状態として第1層のバッファ層形成材料32にタミ
ー薄板3]、A、 3113の成分を溶解せしめ520
 Cvc :b−けるPL)I−XSnXTeの飽和溶
液を形成し7たのち第4図の矢印り方向に第2のスライ
ド部材30を移動させ第5図の状態にする。そして第1
及Vの形成用ノP’l”) l ys1’1XTe ノ
b 20℃での飽和溶液32を第1のスライド部材26
の貫通孔23内に落下せしめる。
Next, in this state, the temperature of the heating furnace is set to 1゛3=520 in Figure 9.
In this state, the components of the tammy thin plate 3], A, 3113 are dissolved in the buffer layer forming material 32 of the first layer 520
After forming a saturated solution of Cvc:b-PL)I-XSnXTe, the second slide member 30 is moved in the direction of the arrow in FIG. 4 to bring it into the state shown in FIG. and the first
The saturated solution 32 at 20° C. is applied to the first slide member 26
into the through hole 23 of.

このようにすれば第1層、第2層、第3層形成利料の必
要な温度520℃、 510℃、500’l;での飽和
浴lf支が容易に11)られる。
In this way, it is easy to provide a saturated bath at temperatures of 520° C., 510° C., and 500° C. for forming the first, second, and third layers11).

この(す加熱炉の温度を低下させながら、515Cで第
5図の矢印1j2方向に第1のスライド部材26を移動
させ基板21 J二に第1のスライド部材26の貫通孔
23を1p置し該貫通孔23内のバッファ層形成用利料
32を基板zl上に接触させ基板上に第1 J?41の
バッファ層を5℃の過冷却状態から形成することができ
る。
While lowering the temperature of this heating furnace, move the first slide member 26 in the direction of the arrow 1j2 in FIG. By bringing the buffer layer forming material 32 in the through hole 23 into contact with the substrate zl, a first J?41 buffer layer can be formed on the substrate in a supercooled state of 5°C.

次に咀に加熱炉の温度を低下させながら505℃で第1
のスライド部材26を矢印E方向に移動させ、基板21
」二にスライド部月26の貫通孔24・を設置し、貫通
孔24内の活性層形成用のPb1−χSn;<Teの材
料34を基板21上に接触させ、基板上に第2層の−P
b1 zsnzTeの結晶層を5℃の過冷却状態から形
成することができる。
Next, while lowering the temperature of the heating furnace, the first one was heated to 505℃.
The slide member 26 is moved in the direction of arrow E, and the board 21 is moved.
''Secondly, the through hole 24 of the slide part 26 is installed, and the material 34 of Pb1-χSn; -P
A crystalline layer of b1 zsnzTe can be formed from a supercooled state of 5°C.

次に史に加ρ)炉の温度を低下させながら495℃で第
1のスライド部材26を矢印E方向に移動させ、l&板
21上にスライド部材26の貫通孔25内ノ第3 hn
形成用rD Pt)1..5nXTeノ材料36を接触
させ基板上に第3層のとじ込め層P1’)l−Xsnx
Teの結晶層を5℃の過冷却状態から形成することがで
きる。
Next, the first slide member 26 is moved in the direction of arrow E at 495° C. while lowering the temperature of the furnace, and the third hn inside the through hole 25 of the slide member 26 is placed on the plate 21.
Forming rD Pt)1. .. 5nXTe material 36 is brought into contact with the third confinement layer P1')l-Xsnx on the substrate.
A crystalline layer of Te can be formed from a supercooled state of 5°C.

ここで第3層のとじ込め層形成材料を=L95’Cの温
度での飽和溶液に形成すれば4・95℃でのPb1−χ
So、<’I’Sの飽和溶液が形成され、これを第2の
スライド部材であらかじめ形成してから第1のスライド
部材の貫通孔内に落し込み、これを用いて・1・95℃
から結晶層を形成すると従来の方法のように飽和状態と
なった溶液からのエピタキシャル成長も可能である。
Here, if the third layer confinement layer forming material is formed in a saturated solution at a temperature of =L95'C, Pb1-χ at 4.95°C
A saturated solution of So,<'I'S is formed, which is preformed on the second slide member and then dropped into the through hole of the first slide member, and is heated to 1.95°C using this solution.
If a crystal layer is formed from a saturated solution, epitaxial growth from a saturated solution is possible as in the conventional method.

■ 発明の効果 以」−述べたように本発明の方法によれば任惹の温度差
の過冷却状態でのエピタキシャル成長が可能となり、県
板とその上に形成するエピタキシャル層の界面が判然と
したエピタキシャル層が得られる効果があり、この結晶
を用いて赤外線レーザ素子を形成すれば素子の特性が向
上する。
■ Effects of the invention - As stated above, the method of the present invention enables epitaxial growth in a supercooled state with arbitrary temperature differences, and the interface between the plate and the epitaxial layer formed thereon is clearly defined. This has the effect of providing an epitaxial layer, and if an infrared laser device is formed using this crystal, the characteristics of the device will be improved.

7図は本発明の方法に用いる加熱かの温度の時間変化を
示す図である。
FIG. 7 is a diagram showing temporal changes in the heating temperature used in the method of the present invention.

図において1.22は支持台、2.4,5.6゜は凹所
、3.21はPbT e基板、?、 8.9.31A。
In the figure, 1.22 is a support, 2.4 and 5.6 degrees are recesses, and 3.21 is a PbTe substrate. , 8.9.31A.

;31B、 33A、 38B、 35A、  35B
はダミー薄板、i。
;31B, 33A, 38B, 35A, 35B
is a dummy thin plate, i.

はスライド部材、11.12.13.23,24゜25
.27.28.29は貫通孔、t+、32ij:バッフ
ァ層形成材料、15.34は活性層形成材料、26は第
1のスライド部材、30は第2のスライド部材、A、B
、C,D、Eはメツイド方向を示す矢印、TI、T、、
T3は加熱リハの温度を示す。
is a slide member, 11.12.13.23, 24°25
.. 27, 28, 29 are through holes, t+, 32ij: buffer layer forming material, 15.34 are active layer forming materials, 26 is the first slide member, 30 is the second slide member, A, B
, C, D, E are arrows indicating the metuid direction, TI, T, .
T3 indicates the heating rehearsal temperature.

第1図 第5図 第6図 一つ141tIFigure 1 Figure 5 Figure 6 One 141tI

Claims (1)

【特許請求の範囲】[Claims] 基板を埋設する支持台と、その上をスライドして移動し
、基板上に形成すべき結晶層の材料を収容すべきγf(
だめを有するIlのスライド部材と、該第1のスライド
部材上を移動し、爪板上に形成すべき結晶層の材料とダ
ミー用薄板とを収容した叡だめを有する第2のスライド
部材とからなり、前記第2のスライド部材の液だめ内の
材料を所定の温度で溶融してあらかじめ結晶層形成材料
の飽和溶6′i、を形成し、該第2のスライド部材を移
動させてfiiJ記飽和溶液を第1のスライド部材の液
だめ内に落−1・せしめたのち、更に第1のスライド部
材を移動させて前記I#液を基板に接触させて基板上に
結晶層を形成することを特徴とする液相エピタギシA1
/I/成長方法。
A support base in which the substrate is buried, and a γf (
A slide member of Il having a reservoir, and a second slide member that moves on the first slide member and has a reservoir containing the material of the crystal layer to be formed on the nail plate and a dummy thin plate. The material in the liquid reservoir of the second slide member is melted at a predetermined temperature to form a saturated solution 6'i of the crystal layer forming material in advance, and the second slide member is moved to record fiiJ. After dropping the saturated solution into the liquid reservoir of the first slide member, further move the first slide member to bring the I# liquid into contact with the substrate to form a crystal layer on the substrate. Liquid phase epitaxy A1 characterized by
/I/ Growth method.
JP19105382A 1982-10-29 1982-10-29 Liquid phase epitaxial growth method Pending JPS5979533A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19105382A JPS5979533A (en) 1982-10-29 1982-10-29 Liquid phase epitaxial growth method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19105382A JPS5979533A (en) 1982-10-29 1982-10-29 Liquid phase epitaxial growth method

Publications (1)

Publication Number Publication Date
JPS5979533A true JPS5979533A (en) 1984-05-08

Family

ID=16268104

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19105382A Pending JPS5979533A (en) 1982-10-29 1982-10-29 Liquid phase epitaxial growth method

Country Status (1)

Country Link
JP (1) JPS5979533A (en)

Similar Documents

Publication Publication Date Title
JPS5979533A (en) Liquid phase epitaxial growth method
US4149914A (en) Method for depositing epitaxial monocrystalline semiconductive layers via sliding liquid phase epitaxy
GB2036590A (en) Process and apparatus for the production of ga a1 as:si epitaxial coatings
JPS5926998A (en) Method for epitaxial growth in liquid phase
Yoon et al. Compositional homogeneity of potassium lithium niobate crystals grown by micro pulling down method
JPS59147440A (en) Liquid phase epitaxial growth method
JPS5827239B2 (en) Semiconductor crystal manufacturing equipment
JPH0251248B2 (en)
JPS5845192A (en) Liquid phase epitaxial growth apparatus
JPH079887B2 (en) Liquid phase epitaxial growth method
JPS58212142A (en) Liquid phase epitaxially growth method
JPS58215036A (en) Liquid phase epitaxial growth
JPS6311596A (en) Liquid phase epitaxy for multiple element compound semiconductor by two-phase melt method
JPS58138037A (en) Liquid phase epitaxial growing method
JPS5821831A (en) Method for liquid phase epitaxial growth
JPS59147441A (en) Liquid phase epitaxial growth method
JPS5918644A (en) Liquid phase epitaxial growth apparatus
JPS63285190A (en) Method for liquid epitaxial growth
JPS5834925A (en) Liquid phase epitaxial growth device
JPH025530Y2 (en)
JP3151277B2 (en) Liquid phase epitaxial growth method
JPS6174331A (en) Liquid-phase epitaxial growth equipment
JP3504523B2 (en) Liquid phase epitaxial growth equipment
JPH01133994A (en) Method and device for liquid-phase growth
JPS6064440A (en) Liquid phase epitaxial growth method