JPS5979514A - Autotransformer - Google Patents

Autotransformer

Info

Publication number
JPS5979514A
JPS5979514A JP57189261A JP18926182A JPS5979514A JP S5979514 A JPS5979514 A JP S5979514A JP 57189261 A JP57189261 A JP 57189261A JP 18926182 A JP18926182 A JP 18926182A JP S5979514 A JPS5979514 A JP S5979514A
Authority
JP
Japan
Prior art keywords
winding
series
tap
tertiary
transformer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57189261A
Other languages
Japanese (ja)
Inventor
Motoyasu Ichikawa
市川 元保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP57189261A priority Critical patent/JPS5979514A/en
Publication of JPS5979514A publication Critical patent/JPS5979514A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F30/00Fixed transformers not covered by group H01F19/00
    • H01F30/02Auto-transformers

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)

Abstract

PURPOSE:To avoid the variation of the tertiary terminal voltage in accordance with the position of the tap by a method wherein the 1st series winding, a branch winding and a tertiary winding are wound around a main leg of the 1st core and at the same time the 1st exciting winding connected to the tertiary winding in parallel and a tap-winding are wound around a side leg of the core and the 2nd exciting winding and the 2nd series winding are wound around the 2nd core. CONSTITUTION:One end of the 1st series winding 7 is connected to a high voltage line terminal U and another end is connected to one end of a branch winding 8 via a series winding 14 of a series transformer 15 and at the same time connected to an intermediate voltage line terminal (u). Another end of the branch winding 8 is connected to a neutral terminal V. The 1st exciting winding 11 is connected to terminals (a) and (b) of a tertiary winding 9 so as to be in parallel to the tertiary winding 9. A tap-winding 10 is provided and connected to the 2nd exciting winding 13 via a required position of the tap. The area enclosed by a dot line 12 shows the main transformer proper and the area enclosed by a dot line 15 shows the series transformer proper. With this constitution, the terminal voltage of the tertiary winding 9 is kept constant regardless to the position of the tap of the tap-winding 10.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は却巻変圧器、特に分割形単相単巻変圧器に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a winding transformer, and particularly to a split single-phase autotransformer.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

最近の電力需要のめざましい伸びに対応して我国でも5
00KV送電が開始され、近い将来には1000KV級
送電も計画されている。そして、これら超々島圧送電に
は直接接地系統が採用され、直接接地系統間の連系には
紅杭性の面から単巻変圧器が採用されている。ところで
これら単巻変圧器は我国の厳しい鉄道輸送限界、道路の
トレーラ−輸送制限などから一般に単相器として制作輸
送され、現地で三相バンクに組立てられて運転されてい
る。
In response to the recent remarkable growth in electricity demand, Japan has also
00KV power transmission has started, and 1000KV class power transmission is also planned in the near future. Directly grounded systems are used for these ultra-high pressure power transmissions, and autotransformers are used for interconnection between the directly grounded systems from the viewpoint of red pile performance. By the way, these autotransformers are generally manufactured and transported as single-phase transformers due to strict railway transportation restrictions and road trailer transportation restrictions in Japan, and are assembled and operated locally into three-phase banks.

第1図は、代表的な単相単巻変圧器の結語j図で、直列
巻線1の一端から高圧線路端子Uを導出し、直列巻lr
M1の他端から中圧線路端子Uを導出するとともに分路
巻線2に接続する。また、タップ巻線4を分路巻線2の
中性点側に接続し、中圧線路端子Uの電圧を一定にし高
圧線路端子Uの電圧を可変するものである。3は3次巻
線で、albはその端子である。
Figure 1 is a typical single-phase single-winding transformer diagram, in which a high-voltage line terminal U is led out from one end of the series winding 1, and the series winding lr
A medium voltage line terminal U is led out from the other end of M1 and connected to the shunt winding 2. Further, the tap winding 4 is connected to the neutral point side of the shunt winding 2 to keep the voltage at the medium voltage line terminal U constant and to vary the voltage at the high voltage line terminal U. 3 is a tertiary winding, and alb is its terminal.

第1図図示の変圧器5では中性点側でタップ切換を行っ
て高圧線路端子Uの電圧を可変するため、鉄心の励磁率
がタップ位置によって変化し、そのため三次巻線3の端
子alb間の電圧も変化するという欠点があり、また、
鉄心の励磁率がタップ位置によって変化することから最
大励磁のタップ以外での鉄心磁束密度は十分に余裕のあ
る値とな9、その結果鉄心重量が大きくなり、変圧器全
体も大きくなる等の欠点もある。
In the transformer 5 shown in FIG. 1, the voltage at the high-voltage line terminal U is varied by changing the tap on the neutral point side, so the excitation rate of the iron core changes depending on the tap position, and therefore, between the terminals alb of the tertiary winding 3 The disadvantage is that the voltage of
Since the excitation rate of the core changes depending on the tap position, the core magnetic flux density at taps other than the maximum excitation tap has a sufficient margin.9 As a result, the core weight increases and the transformer as a whole becomes larger. There is also.

の三次巻線付単相単巻変圧器を例にとると jp高タッ
プ、定格タップ、最低タップの電圧比はそれ励磁率は最
高タップの場合を1.0 p、uとすると、定格タップ
では0.89最低タツプでは0.80と少なくなり、鉄
心の利用率が低下することになる。また、三次巻線3の
端子alb間の電圧も定格時の電圧を63KVとすれば
最高、最低の各タップでそれぞれ70.8KV、56.
8KVと大幅に変化する。そして、三次巻線3の端子a
lb間には一般にコンデンサやりアクドルを接続し、無
効電力調姫ヲ行なうから上記のようにタップ位置により
大幅に電圧が変化すると、コンデンサ等の利用率が低下
し、無効電力制御が複雑になる等の問題が生ずる。この
ため、三次巻線の両端子間の電圧を一定にしかつ鉄心の
励m=動を防止する方法として、第2図に示すように主
変圧器5の鉄心の主脚に直列巻線1、分Iiも巻線2.
3次巻線3と共にタップ%糾4を巻装するとともにこの
タップ巻線4に接続された別置の直列変圧器6を励磁す
ることにより間接的に高圧端子Uの電圧を可変する方法
が捉案されている。しか−し、この方法は超高圧クラス
の大容斌器では鉄心主脚に上記4つの巻線を配置してい
るため、巻線径が犬となり輸送寸法が増大するため我国
のような輸送条件の厳しい国では適切な方法ではなく、
またその実例も少ない。
Taking a single-phase single-winding transformer with a tertiary winding as an example, the voltage ratio of the high tap, rated tap, and lowest tap is 1.0, and the excitation rate is 1.0 for the highest tap.If p and u are the highest tap, then for the rated tap, At the lowest tap of 0.89, it decreases to 0.80, and the utilization rate of the iron core decreases. Also, assuming that the voltage between terminal alb of the tertiary winding 3 is 63KV at the rated time, the highest and lowest taps are 70.8KV and 56.8KV, respectively.
It changes significantly to 8KV. And the terminal a of the tertiary winding 3
Generally, a capacitor or an accelerator is connected between LB and reactive power adjustment, so if the voltage changes significantly depending on the tap position as described above, the utilization rate of the capacitor etc. will decrease and reactive power control will become complicated. The problem arises. Therefore, as a method of keeping the voltage between both terminals of the tertiary winding constant and preventing the excitation of the iron core, as shown in FIG. Minute Ii is also winding 2.
A method has been found to indirectly vary the voltage of the high voltage terminal U by winding a tap wire 4 together with the tertiary winding 3 and exciting a separate series transformer 6 connected to the tap winding 4. It is being proposed. However, this method does not meet the transportation conditions in Japan, as the four windings mentioned above are arranged on the main leg of the iron core in ultra-high pressure class large-capacity propellers, which increases the diameter of the windings and increases the transportation size. It is not an appropriate method in countries with strict conditions,
There are also few actual examples.

以上説明したように、これまでの高電圧の単巻変圧器で
は三次巻線が変動した9あるいは鉄心のオリ用率が低下
する等の欠点があシ、間接式のタップ切換方式の変圧器
では巻線径が大きくなり輸送制限からも厳しくなるとい
う欠点があった。
As explained above, conventional high-voltage autotransformers have drawbacks such as fluctuations in the tertiary winding and a decrease in the core utilization rate, while indirect tap-change transformers have The drawback was that the diameter of the winding became larger and transportation restrictions became stricter.

〔発明の目的〕[Purpose of the invention]

本発明は、上記欠点を除去するためになされたもので、
その目的は、三次端子電圧がタップ位置によって変化せ
ず、かつ輸送ol能な容量の大きい単巻変圧器を提供す
ることにある。
The present invention has been made to eliminate the above-mentioned drawbacks.
The purpose is to provide an autotransformer whose tertiary terminal voltage does not change depending on the tap position and which has a large capacity and is transportable.

〔発明の概要〕[Summary of the invention]

本発明は、上記目的を達成するために、第1の鉄心の主
脚に第1の直列巻線と分路巻線と三次巻線を巻装すると
ともに前記第1の鉄心の側脚に前記三次巻線と並列接続
配置の第1の励磁巻線とタップ巻線を巻装してなる主変
圧器本体と、第2の鉄心に前記タップ巻線から励磁され
る第2の励磁巻線と@2の1θ列巻線を巻装してなる直
列笈圧器本体とから構成され、前記第2の直列巻線の一
1’i15:を前記分路巻線と接続して中圧線路端とな
し、前記第2の直列巻線の他端を前記第1の直列巻線の
一端である中圧端子側に接続し、さらに前7尼第1の直
列巻線の他端を高圧用路端とするとともに、前記主変圧
器本体及び直列変圧話本体をセノシそれ別個のタンク内
に収納した単巻変圧器に関するものである。
In order to achieve the above object, the present invention includes winding a first series winding, a shunt winding, and a tertiary winding around the main leg of the first iron core, and winding the first series winding, the shunt winding, and the tertiary winding around the side legs of the first iron core. a main transformer body formed by winding a first excitation winding and a tap winding connected in parallel with a tertiary winding; a second excitation winding that is excited from the tap winding around a second iron core; 1'i15: of the second series winding is connected to the shunt winding to form a medium voltage line end. None, the other end of the second series winding is connected to the medium voltage terminal side which is one end of the first series winding, and the other end of the first series winding is connected to the high voltage road end. The present invention also relates to an autotransformer in which the main transformer main body and the series transformer main body are housed in separate tanks.

実施例 本発明の一実施例を図面を参照して流明する。Example An embodiment of the present invention will be explained with reference to the drawings.

第3図は本発明の単巻変圧器の結線図、第4図は第3図
の単巻変圧器の巻線構成図である。なお第3図及び第4
図において、同一構成部分には同一符号を付している。
FIG. 3 is a wiring diagram of the autotransformer of the present invention, and FIG. 4 is a winding configuration diagram of the autotransformer of FIG. 3. In addition, Figures 3 and 4
In the figures, the same components are given the same reference numerals.

先ず、本発明の単巻変圧器の結線図を第3図について説
明する。同図に示すように、第1の直列巻1〜7の一1
7iAiは、高圧線路端子UK接続し、他端は直列変圧
器15の直列巻線14を介して分路巻線8の一端に接続
するとともに中圧線路端子UにI麦絖する。また、分路
巻線8の他端は中性点端子Vに接続する。三次巻線9の
端子をaSbとし、この三次巻線9と並列接続関係に第
1励磁巻線11を設ける。さらに、タップ巻線IOを設
け、このタップ巻線10は所望のタップ位1〆を通して
第2励磁巻線13に接続でれている。なお点線12で1
」口む部分は主変圧器本体を、また点線15で囲む81
3分は直列変圧器本体を構成する。
First, a wiring diagram of the autotransformer of the present invention will be explained with reference to FIG. As shown in the figure, one of the first series windings 1 to 7 is
7iAi is connected to the high voltage line terminal UK, and the other end is connected to one end of the shunt winding 8 via the series winding 14 of the series transformer 15, and is connected to the medium voltage line terminal U. Further, the other end of the shunt winding 8 is connected to the neutral point terminal V. The terminal of the tertiary winding 9 is aSb, and the first excitation winding 11 is provided in parallel connection with the tertiary winding 9. Furthermore, a tap winding IO is provided, and this tap winding 10 is connected to the second excitation winding 13 through a desired tap position 1. Note that dotted line 12 indicates 1
” The opening part is the main transformer body, and is surrounded by dotted line 15 81
3 minutes constitutes the series transformer body.

次に、上記第3図の単を変圧器の巻線配置構成図を第4
図について説明する。第1の鉄心主脚16には、第1の
直列巻線7、分路巻線8、三次巻線9を巻装するととも
に、鉄心側脚17には第1励磁巻線11およびタップ巻
線10を巻装して主変圧器本体12を構成し、また、第
2の鉄心脚18には第2の直列巻線14および第2の励
磁巻線13を巻装して直列変圧器本体15を構成する。
Next, the winding arrangement diagram of the transformer shown in Fig. 3 above is shown in Fig. 4.
The diagram will be explained. A first series winding 7, a shunt winding 8, and a tertiary winding 9 are wound around the first core main leg 16, and a first excitation winding 11 and a tap winding are wound around the core side leg 17. 10 is wound to constitute the main transformer main body 12, and the second series winding 14 and the second excitation winding 13 are wound around the second core leg 18 to form the series transformer main body 15. Configure.

そして、主変圧器本体12およびrM列変圧器本体15
は別々のタンクに収納されている。
Then, the main transformer main body 12 and the rM row transformer main body 15
are stored in separate tanks.

次に、本発明による単巻変圧器の作用について説明する
Next, the operation of the autotransformer according to the present invention will be explained.

第3図の単巻変圧器の結線図において、分路巻線8の両
端子u、V間にかかる電圧は中圧側の電圧で一定である
から、第1の鉄心の励磁はタップ位置による変化はない
。したがって、三次巻線9の端子電圧もタップ位置によ
らず一定となり、鉄心の利用率は高くなり、重量を低減
することができる。また、高圧0Illの電圧は、一定
の電圧を誘起する直列巻線7と分路巻線8の赫起亙圧に
タップ位置によって誘起′畦圧の変化する直列変圧器1
5の直列巻線14の誘起電圧を加えたものとなり、タッ
プ巻線100′1圧、直列変圧器の2つの巻線(13,
14)の巻数比の選定により所要の電圧牌祭が可能であ
る。
In the connection diagram of the autotransformer shown in Fig. 3, the voltage applied between both terminals u and V of the shunt winding 8 is constant at the medium voltage side, so the excitation of the first core changes depending on the tap position. There isn't. Therefore, the terminal voltage of the tertiary winding 9 is also constant regardless of the tap position, the utilization rate of the iron core is increased, and the weight can be reduced. In addition, the high voltage 0Ill is applied to the series transformer 1 whose induced voltage changes depending on the tap position in the series winding 7 and the shunt winding 8 which induce a constant voltage.
5, the induced voltage of the series winding 14 is added, the tap winding 100'1 voltage, the two windings of the series transformer (13,
14) By selecting the turns ratio, it is possible to obtain the required voltage ratio.

また、主変圧器12の主脚16にはタップ巻線10が巻
装されないため、巻線径が小さくなり、その分だけ輸送
限界内の変圧器容量を大きくすることができる。
Further, since the tap winding 10 is not wound around the main leg 16 of the main transformer 12, the winding diameter becomes smaller, and the transformer capacity within the transport limit can be increased accordingly.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば、三次巻線の端子
電圧はタップ巻線のタップ位置に無関係に一定となるよ
うに構成しているから変圧器鉄心の利用率は高くなり、
かつ主変圧器の主脚にはタップ巻線が巻装されていない
ため、その分輸送可能な容量の大きい単巻変圧器を得る
ことができる。
As explained above, according to the present invention, since the terminal voltage of the tertiary winding is configured to be constant regardless of the tap position of the tap winding, the utilization rate of the transformer core is increased.
Moreover, since no tap winding is wound around the main legs of the main transformer, an autotransformer with a larger transportable capacity can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の単巻変圧器の結線図、第2図は、直列変
圧器を中圧回路に挿入した従来の単巻変圧器の結線図、
第3図は本発明の一実施例である単巻変圧器の結線図、
第4図は第3図の単巻変圧器の巻線配置構成図である。 7.14・・旧列巻線、8・・・分路巻Yハ9・・三次
巻線、10・・タッグ巻線、11.13・・・励磁巻線
、12・・変圧器本体、15・・直列変圧器本体、16
.17.18・・・鉄心。 (8733)代理人 弁理士 猪 股 祥 晃(ほか1
名) 第1図 第2図
Figure 1 is a wiring diagram of a conventional autotransformer, Figure 2 is a wiring diagram of a conventional autotransformer in which a series transformer is inserted into a medium voltage circuit.
FIG. 3 is a wiring diagram of an autotransformer which is an embodiment of the present invention,
FIG. 4 is a diagram showing the winding arrangement of the autotransformer shown in FIG. 3. 7.14...Old row winding, 8...Shunt winding Yc9...Tertiary winding, 10...Tag winding, 11.13...Excitation winding, 12...Transformer body, 15... Series transformer body, 16
.. 17.18... Iron core. (8733) Agent: Yoshiaki Inomata, patent attorney (and 1 others)
Figure 1 Figure 2

Claims (1)

【特許請求の範囲】[Claims] (L)第りの鉄心の主脚に第1の直列巻線と分路巻線と
三次巻線を巻装するとともに前記第1の鉄心の側脚に前
記三次巻線と並列接続配置の第1の励磁巻線とタップ巻
線を巻装してなる主変圧器本体と、第2の鉄心に前記タ
ップ巻線から励磁畑れる第2の励磁巻線と第2の直列巻
線を巻装してなる直列変圧器本体とから構成され、前記
第2の直列巻線の一端を前記分路巻線と接続して中圧線
路端となし、前記第2のm列巻線の他端を前記第1の直
列巻線の一端である中圧端子側に接続し、さらに前記v
、1の直列巻線の他端を高圧線絡りとするとともに前記
主変圧器本体及び直列変圧器本体をそれぞれ別個のタン
ク内に収納したことを特徴とする単巻変圧器。
(L) A first series winding, a shunt winding, and a tertiary winding are wound around the main leg of the first iron core, and a first series winding, a shunt winding, and a tertiary winding are connected in parallel with the tertiary winding on the side legs of the first iron core. A main transformer main body is formed by winding a first excitation winding and a tap winding, and a second iron core is wound with a second excitation winding and a second series winding, which are excitation fields from the tap winding. one end of the second series winding is connected to the shunt winding to form a medium voltage line end, and the other end of the second m-series winding is connected to the shunt winding. connected to the medium voltage terminal side which is one end of the first series winding, and further connected to the v
, the other end of the series winding of 1 is entwined with a high voltage line, and the main transformer main body and the series transformer main body are housed in separate tanks.
JP57189261A 1982-10-29 1982-10-29 Autotransformer Pending JPS5979514A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57189261A JPS5979514A (en) 1982-10-29 1982-10-29 Autotransformer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57189261A JPS5979514A (en) 1982-10-29 1982-10-29 Autotransformer

Publications (1)

Publication Number Publication Date
JPS5979514A true JPS5979514A (en) 1984-05-08

Family

ID=16238338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57189261A Pending JPS5979514A (en) 1982-10-29 1982-10-29 Autotransformer

Country Status (1)

Country Link
JP (1) JPS5979514A (en)

Similar Documents

Publication Publication Date Title
US4943763A (en) Ferroresonant transformer with dual outputs
US1732937A (en) Transformer and coil system
JPS5979514A (en) Autotransformer
US3611232A (en) Cascade connected transformer
JPS59177908A (en) Autotransformer
JPS6214083B2 (en)
JPH0212007B2 (en)
JPS5927088B2 (en) single phase auto transformer
JPS59129409A (en) Split-type single-phase autotransformer
JPS6081811A (en) On-load tap changing autotransformer
SU1781711A1 (en) Three-phase saturating reactor
JPS59125608A (en) Single-phase autotransformer
JPS59123214A (en) Auto-transformer
JPH0320891B2 (en)
US4319183A (en) Control windings for self-saturating electrical reactors
JPH0122971B2 (en)
JPS6240415Y2 (en)
US1826890A (en) Electric controlling apparatus
JPH0132347Y2 (en)
JPH05159948A (en) On-load tap changing single-phase autotransformer
JPS58109A (en) Autotransformer
KR900007407B1 (en) Winding method for a autotransformer
JPS63252408A (en) Transformer with tap
JPS5871611A (en) Single-phase autotransformer
JPH011212A (en) Energy saving - micro transformer