JPS5979420A - Multi-channel magneto-resistance effect type magnetic head - Google Patents

Multi-channel magneto-resistance effect type magnetic head

Info

Publication number
JPS5979420A
JPS5979420A JP57190186A JP19018682A JPS5979420A JP S5979420 A JPS5979420 A JP S5979420A JP 57190186 A JP57190186 A JP 57190186A JP 19018682 A JP19018682 A JP 19018682A JP S5979420 A JPS5979420 A JP S5979420A
Authority
JP
Japan
Prior art keywords
magnetic
bias
magnetic field
channel
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57190186A
Other languages
Japanese (ja)
Inventor
Yutaka Hayata
裕 早田
Shigemi Imakoshi
今越 茂美
Hideo Suyama
英夫 陶山
Yasuhiro Iida
康博 飯田
Hiroyuki Uchida
裕之 内田
Tetsuo Sekiya
哲夫 関谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP57190186A priority Critical patent/JPS5979420A/en
Priority to CA000439693A priority patent/CA1209260A/en
Priority to KR1019830005085A priority patent/KR920001147B1/en
Priority to US06/546,060 priority patent/US4673998A/en
Priority to DE8383306602T priority patent/DE3382532D1/en
Priority to EP83306602A priority patent/EP0107982B1/en
Publication of JPS5979420A publication Critical patent/JPS5979420A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/127Structure or manufacture of heads, e.g. inductive
    • G11B5/33Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only
    • G11B5/39Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects
    • G11B5/3903Structure or manufacture of flux-sensitive heads, i.e. for reproduction only; Combination of such heads with means for recording or erasing only using magneto-resistive devices or effects using magnetic thin film layers or their effects, the films being part of integrated structures
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/40Protective measures on heads, e.g. against excessive temperature 

Abstract

PURPOSE:To apply a desired bias magnetic field to each MR element of each channel by providing two current supply power source terminals in common to all channels for a bias magnetic field generating means concerning each channel. CONSTITUTION:A current source for generation of bias magnetic field is connected between a connection part 22c of both foot parts of an E pattern of a channel CH1 at one side which is positioned at the most outerside and a center foot part 22s of a channel CHm positioning at the other side. In such a way, a bias conductor 22 is set in parallel to paired MR elements MRn1 and MRn2 and in series between adjacent channels respectively. Then bias magnetic field generating current source terminals tb and tb' are led out of both ends of the conductor 22, and ib1+ib2 is supplied between terminals tb and tb' from said current source. The bias magnetic field generating current (ib1+ib2) is supplied to the conduction parts corresponding to the elements MRn1 and MRn2 of a conductor 21. Thus bias magnetic fields HB and -HB which are opposite to each other are applied to each pair of MRn1 and MRn2.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、多チ中ンネル磁気抵抗効果型磁気ヘッドに係
わる。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a multi-channel magnetoresistive magnetic head.

背景技術とその問題点 従来の磁気抵抗効果(以−ト’MRという)型再生磁気
ヘッド、特にそのMR単素子磁気媒体との対接面より後
退した位置に配置されるようにしたいわゆるリア型θり
気ヘソ(゛の例は、例えば!′S1図にその要部の拡大
路線的平面図を示し、第2図にそのA−A線上の拡大路
線的断面図を示すように、例えばNi−Zn系フェライ
トより成る絶縁性の磁性基体(1)上に、MR単素子対
し゛ζ電磁誘導等によってバイアス磁界を5えるための
バイアス磁界発生手段としての電流通路となる帯状導電
膜(2)が被着され、これの上に絶縁N(3)を介して
例えばNi−Fe系合金、或いはN1−Go系合金薄膜
等より成るMR効果素子(4)が破着形成され、更にこ
れの上に絶縁J??i f51を介して、 Ni−Fe
系合金等より成る対の磁性層(6)及び(7)が、素子
(4)上を横切る方向に且つ素子(4)上において所要
の間隔を保持して対向保持され、一方の磁性層(6)の
外端部が、絶縁層(3)及び(5)の少なくともいずれ
か一方を介して基体(1)と対向することによっ゛ζ磁
気ギャップgが形成されるよ゛うになされ、他方の磁性
層(7)の外端が絶縁M (3)及び(5)に穿設され
た窓を通じて基体(1)に連接するようになされる。そ
して、これら導電層(2)、MR単素子4)、磁性N(
6)及び(7)を覆っ“ζ非磁性保護層(8)が被覆さ
れ、これの上に接着剤層(9)によって保護基体00)
が1’l Hされるようになされる。そして両基体(1
)及び00)に渡って磁気記録媒体との対接面(11)
が形成され、この対接面(11)に磁気ギャップgカ律
妬むようになされ、ごの磁気ギャップg及びMR単素子
4)を含む磁路、すなわち磁性基体(1)−磁気ギャッ
プg−併性層(61−M R素子(4)−磁性層(7)
−磁性基体(1,1の磁路が形成きれる。
BACKGROUND ART AND PROBLEMS Conventional magnetoresistive (hereinafter referred to as MR) type reproducing magnetic heads, especially the so-called rear type, which is placed at a position set back from the surface in contact with the MR single-element magnetic medium. For example, θ is an example of Ni. - On an insulating magnetic substrate (1) made of Zn-based ferrite, there is a strip-shaped conductive film (2) that serves as a current path as a bias magnetic field generating means for increasing the bias magnetic field for a single MR element by ζ electromagnetic induction, etc. is deposited, and an MR effect element (4) made of, for example, a Ni-Fe alloy or an N1-Go alloy thin film is formed on this via an insulating N (3), and further on this. Ni-Fe through insulation J??i f51
A pair of magnetic layers (6) and (7) made of a magnetic alloy or the like are held facing each other in a direction across the element (4) with a required spacing therebetween, and one of the magnetic layers ( The outer end of 6) faces the base (1) via at least one of the insulating layers (3) and (5), so that a magnetic gap g is formed, and the other The outer end of the magnetic layer (7) is connected to the base body (1) through windows drilled in the insulation M (3) and (5). Then, these conductive layer (2), MR single element 4), magnetic N (
6) and (7) are coated with a non-magnetic protective layer (8), and on top of this a protective substrate 00) is formed with an adhesive layer (9).
is made to be 1'lH. And both substrates (1
) and 00), the facing surface (11) with the magnetic recording medium
A magnetic gap g is formed on this contact surface (11), and a magnetic path including the magnetic gap g and the MR single element 4), that is, the magnetic substrate (1)-magnetic gap g-combined magnetic layer (61-MR element (4)-magnetic layer (7)
-Magnetic substrate (1,1 magnetic path can be formed.

このような構成において、導電層(2)にバイアス磁界
発生用の電流IB;?3:通じてMR単素子4)に所要
のバイアス磁界を与え、MR単素子4)に電流Iを流す
とき、その磁気ギャップgに対接ないしは対向する磁気
記録媒体よりのこれに記録された記録磁化による信ソ+
研界がMR単素子7I)にり、えられるごとによる抵抗
変化による電気的信号、すなわち出力信号がM R素子
(4)の両端から得られる。
In such a configuration, a current IB for generating a bias magnetic field is applied to the conductive layer (2). 3: When a required bias magnetic field is applied to the MR single element 4) and a current I is caused to flow through the MR single element 4), the recording recorded on the magnetic recording medium that is in contact with or facing the magnetic gap g. Shinso+ by magnetization
The research field is applied to the MR single element (7I), and an electrical signal, that is, an output signal, is obtained from both ends of the MR element (4) due to a change in resistance depending on the voltage.

ところが、このようなMR効果型磁気ヘット、特にリア
型のように磁性体が近接して配置される磁気ヘッドは、
その特性の非線型が問題となる。
However, such an MR effect type magnetic head, especially a rear type magnetic head in which magnetic bodies are arranged close to each other,
The problem is the nonlinearity of its characteristics.

ずなわら、この種磁気ヘッドでは、そのMR単素子磁気
I]−抵抗抵抗性特性3図に示すように2次曲線を示す
ために、今、同図で4マずように、このMR単素子4)
にハイ′1ス磁界■]Bが与えられた状態で符号(12
)で示す信号磁界が与えられたとするとMR単素子4)
におりる抵抗変化による出力信号は、同図で符号(13
)を付して示すような非対称な歪んだ信号となる。因の
にMR素子自体の磁気抵抗特性は、第4図にボされるよ
うに裾が広がるような特性を示し、その特性にずくれた
直線性を有する部分が存在するので、所要のバイアス磁
界HP’で、信号磁界(12’)に対しζ歪のない対称
性にずくれた出力信号(13’)を得ることができる。
However, in this type of magnetic head, in order to exhibit a quadratic curve as shown in Figure 3, the MR single element magnetic I]-resistance characteristic is Element 4)
When a high magnetic field ■]B is given to the sign (12
) is given, the MR single element 4)
The output signal due to the resistance change in the figure is indicated by the symbol (13
), resulting in an asymmetrical distorted signal as shown in the figure. However, the magnetoresistive characteristics of the MR element itself exhibit a widening characteristic as shown in Figure 4, and there are parts of the characteristic that have uneven linearity, so the required bias magnetic field With HP', it is possible to obtain a symmetrically distorted output signal (13') with no ζ distortion with respect to the signal magnetic field (12').

ごれは、MR単素子両側端面に顕著に生じる反磁界の影
響によるものごあるが、第1図及び第2図で説明したリ
ア型構成のもののように、MR単素子4)の両側端面に
近接して磁性層(6)及び(7)が配置されるものにお
いては、このような反磁界による特性−1の影響が小さ
くなることによると思われる。
Some of the dirt is due to the influence of the demagnetizing field that occurs noticeably on both end faces of the MR single element, but as in the case of the rear type configuration explained in Figs. This seems to be due to the fact that in the case where the magnetic layers (6) and (7) are arranged close to each other, the influence of such a demagnetizing field on characteristic -1 becomes smaller.

このようなMR単素子おける非線型線分を解消するもの
として、差動型構成とするものが提案されている。この
差動型MR磁気ヘッドは、第5図4、Zボずように、一
端が共通に接続された2 it!itのM R素イMl
ン1及びMR2より成り、各MR単素子Rz及びM11
2の各他端から導出された端子t1及びt。
A differential configuration has been proposed to eliminate such nonlinear line segments in a single MR element. This differential type MR magnetic head consists of 2 IT! It's M R elemental Ml
1 and MR2, each MR single element Rz and M11
Terminals t1 and t derived from each other end of 2.

が犬々独立の定電流源S1及びS2に接続されると共に
、差動増幅器Ampの入力端に接続されて成る。両MR
素子Mlh及びMR2の接続中点から導出された共通の
端子t3には、所定電位、例えば接地電位がli、えら
れ、各MR単素子Ri及びMR2に定電流iが逆方向に
りえられ、これと直交する方向に各MR単素子lh及び
MR2にバイアス磁界HBが逆向きに与えられる。この
ような構成による差動型磁気ヘットによれば、各MR単
素子R1及びMR2に共通の人力信号磁界が磁気記録媒
体からり−えられた場合第6図に示す互いに極性の異な
る出力信1づ−(141)及び(142)が5.えられ
、増幅器へmpの出力端子toutからは、これらの信
号の合成による正負、ヌj称矧を有する、ずなわち非線
型成分が相殺された信号(14)が得られる。
are connected to independent constant current sources S1 and S2, and also connected to the input terminal of a differential amplifier Amp. Both MRs
A predetermined potential, for example, ground potential li, is applied to a common terminal t3 derived from the connection midpoint of elements Mlh and MR2, and a constant current i is applied in the opposite direction to each MR single element Ri and MR2. A bias magnetic field HB is applied to each MR single element lh and MR2 in opposite directions in a direction orthogonal to the direction. According to the differential type magnetic head having such a configuration, when a human input signal magnetic field common to each MR single element R1 and MR2 is returned from the magnetic recording medium, output signals 1 having mutually different polarities as shown in FIG. zu-(141) and (142) are 5. A signal (14) is obtained from the output terminal tout of mp to the amplifier, which has positive and negative signals and has a positive and negative polarity, that is, nonlinear components have been canceled out.

このような定電流型の差動型MR磁気ヘッドによれば、
MR単素子非線型成分を相殺することができ、対称性に
ずくれた歪のない再生信号を得ることができる。しかし
ながら、この種磁気ヘッドでは、3個の端子t1〜L3
の導出を必要とし、差動増幅器Ampに接続される独立
の2本の信号線と、独立の2個の定電流源を必要とする
。したがって、多チャンネル磁気ヘッドに適用する場合
、チャンネル数がn個であるとJると、この多チャンネ
ル磁気ヘッドに少くとも2n+1個の端子の導出が必要
となり、更に少くとも20個の定電流源が必要となる。
According to such a constant current type differential MR magnetic head,
The MR single-element nonlinear component can be canceled out, and a reproduced signal without symmetrical distortion can be obtained. However, in this type of magnetic head, three terminals t1 to L3
It requires two independent signal lines connected to the differential amplifier Amp and two independent constant current sources. Therefore, when applied to a multi-channel magnetic head, if the number of channels is n, it is necessary to derive at least 2n+1 terminals for this multi-channel magnetic head, and at least 20 constant current sources. Is required.

また、定電流駆動であるため、その消費電力は大きく、
回路規模も大きくなり、例えばnが10〜50の多チヤ
ンネル磁気ヘットへの適用には不適当なものである。
In addition, since it is a constant current drive, its power consumption is large.
The circuit size also increases, making it unsuitable for application to multi-channel magnetic heads where n is 10 to 50, for example.

このような欠点を解消するものとしては、対のMR単素
子直列に連結し、その両性端に定電圧を与え、画素子の
接続中点から出力を差動的に取り出す構成を採るものが
提案された。
In order to overcome these drawbacks, it has been proposed to connect a pair of MR single elements in series, apply a constant voltage to both ends of the pair, and take out the output differentially from the connection midpoint of the pixel elements. It was done.

このような定電圧駆動による差動型磁気ヘッドによれば
、前述した定電流駆動の場合と同様に2次高調波成分の
キャンセルをなし得、同−消′iR電力時の感度は、定
電流駆動の場合の2倍となり、またこの同一消費電力時
のSN比及び信号パワーも定電流駆動の場合に等しくな
る。そして、各チャンネルに関して独立に夫々2個の定
電流源を設りる必要411や多数の端子導出及び多数の
配線が不要となることから構成の簡潔化を図ることがで
きるという多チヤンネル型磁気ヘットにおいて大きな利
益をもたらす。
According to such a differential magnetic head driven by constant voltage drive, the second harmonic component can be canceled in the same way as in the case of constant current drive described above, and the sensitivity at the time of iR power is lower than that of the constant current drive. This is twice as much as in the case of driving, and the SN ratio and signal power at the same power consumption are also the same as in the case of constant current driving. The multi-channel magnetic head can simplify the configuration because it eliminates the need to independently install two constant current sources for each channel, eliminates the need for multiple terminal leads, and eliminates the need for multiple wiring lines. brings great benefits.

すでにこのような定電圧駆動によるMRヘットとしてい
わゆり自己バイアス型構成を採るものが提案されている
。この自己バイアス型構成を採るものとしては、例えば
、特開昭52−23920号公開公報に開示されたもの
や、或いは、いわゆるバーバーポール型と呼称されるも
のなどがある。これらは、各MR素子に通ずる電流の方
向が各素子の容易磁化方向と所要の角度を有するように
なされ、素子に通ずる電流によってこれと所要の角度を
有するバイアス磁界が生ずるようになすものである。
A so-called self-bias type MR head driven by constant voltage has already been proposed. Examples of devices employing this self-bias type structure include the one disclosed in Japanese Patent Application Laid-Open No. 52-23920, and the so-called barber pole type. These are configured so that the direction of current flowing through each MR element has a required angle with the easy magnetization direction of each element, and the current flowing through the element generates a bias magnetic field having a required angle with this direction. .

例えばバーバーポール型のMRヘッドにおいてはその薄
膜MR素子の長手方向に沿う容易磁化力向に対して斜め
に、すなわち恰もバーバーポールにおける斜め模様のよ
うに、例えばAuより成る両導電性の複数の帯線を所要
の間隔を保持して平行配列させるものであるが、この場
合、多チャンネル磁気ヘッドにおいて、そのチャンネル
ピッチの縮小化をはかるべく、MR素子の縮小化をはか
ろうとすると、導電性帯線の間隔を狭める必要が生じ、
これに伴ってMR素子の実質的抵抗が小さくな−。
For example, in a barber pole type MR head, a plurality of biconductive bands made of, for example, Au are formed obliquely to the direction of easy magnetization force along the longitudinal direction of the thin film MR element, just like the diagonal pattern in a barber pole. In this case, when attempting to reduce the size of the MR element in order to reduce the channel pitch in a multi-channel magnetic head, conductive bands It became necessary to narrow the spacing between the lines,
Along with this, the effective resistance of the MR element becomes smaller.

−(s出力信号の取扱いがなしにくくなるなどの諸問題
が住しる。
-(s) There are various problems such as difficulty in handling the output signal.

発明の目的 本発明はこのような欠点を解消した多チヤンネル磁気抵
抗効果型磁気ヘットを提供すると共に、特にその各チャ
ンネルに関するバイアス磁界発生手段における電流供給
電源端子を、例えば金子51−ンネルに対して共通に2
11111設けるのみで、各チャンネルの各MR素子に
夫々所要のバイアス磁界がIy、えられるようなして構
成の簡潔化をはかるものである。
OBJECTS OF THE INVENTION The present invention provides a multi-channel magnetoresistive magnetic head that eliminates the above-mentioned drawbacks, and in particular, connects the current supply power terminal of the bias magnetic field generating means for each channel to, for example, a metal 51-channel. 2 in common
By simply providing 11111, the required bias magnetic field Iy can be applied to each MR element of each channel, thereby simplifying the configuration.

発明の概要 本発明にJ、夕いては、その基本的構成を第7図に示す
ようるこ、各チャンネル毎に、直列に連結した対のf(
i気1氏抗効果素子(MR素子) MRnl及びMRn
2を設ける。そし′ζごれら各列のMR素子MRni及
びMRn2の両端に定電圧Vl、V2を供給するととも
に、各MR素子旧?。、及びMRn2にこれに通ずる各
電流iと所定の角度例えば90°をなし、MR素子膜に
沿い互いに大きさが等しく逆向きのバイアス磁界11日
及び−IIBを印加する。またMR素子MR+1゜及び
MRn2のその直列接続中点から出力端子tsnを導出
しこれまり差動増幅器Aまり差動的に出力を取り出す。
Summary of the Invention The basic structure of the present invention is shown in FIG.
Anti-effect element (MR element) MRnl and MRn
2 will be provided. Then, constant voltages Vl and V2 are supplied across the MR elements MRni and MRn2 in each column, and each MR element old? . , and MRn2 form a predetermined angle, for example 90°, with each current i leading thereto, and bias magnetic fields -IIB and -IIB of equal magnitude and opposite directions are applied along the MR element film. Further, an output terminal tsn is derived from the midpoint of the series connection of MR elements MR+1° and MRn2, and the output from differential amplifier A is differentially taken out.

実施例 4Nf 8図は本発明による多チヤンネル磁気抵抗効果
型磁気・\ソトの一例の電気的接続態様を示すもので、
各チャンネルClh 、 C112、C1h  ・・・
Cl1mに関して夫々第7図で説明した各列のMR素子
MRn。
Embodiment 4Nf Fig. 8 shows an example of the electrical connection mode of a multi-channel magnetoresistive magnetoresistive magnet according to the present invention.
Each channel Clh, C112, C1h...
MR element MRn of each column explained in FIG. 7 with respect to Cl1m.

及びMRn> (Mlン11及びMR12+ MR21
及びMR22、MR31及びMRi2+  ・・・MR
m□及びMRm2)が設けられ、その各列の接続中点か
ら人々端子t Sn (LSi + ’82 +1’、
83  ・・・tsmが導出される。また、各チャンネ
ルC4(nにおける各列のMR素子肝、11及びMRn
2の各他端は、夫々各所定の電圧V1.’v’2が印加
された共通の給電線路β1及び12に対して並列に接続
される。
and MRn> (Mln11 and MR12+ MR21
and MR22, MR31 and MRi2+...MR
m□ and MRm2) are provided, and a terminal t Sn (LSi + '82 +1',
83...tsm is derived. In addition, the MR element liver of each column in each channel C4 (n, 11 and MRn
2 are connected to respective predetermined voltages V1. It is connected in parallel to the common feed lines β1 and 12 to which 'v'2 is applied.

これら各MR素子MRn1(MRt1+ MR21・・
・MRml)及びMRn2(MR12、MR22・・・
MRm2)は、夫々例えば第9図に示すように、磁気抵
抗効果を有するE字型パターンの金属薄膜例えばN i
 −F e雀合金、或いは旧−CO系合金薄膜(21)
により形成され、その両性側脚部(211)及び(21
2)が、人々電圧Vl、V2が与えられる線路ρ】、り
2に接続され、中央脚部(21s)から夫々信号とり出
し端子tsn(tst 、 ts21  HHHtsm
)が導出される。
Each of these MR elements MRn1 (MRt1+ MR21...
・MRml) and MRn2 (MR12, MR22...
MRm2) is a metal thin film having an E-shaped pattern having a magnetoresistive effect, for example, as shown in FIG.
-Fe sparrow alloy or old -CO alloy thin film (21)
formed by its bilateral legs (211) and (21
2) are connected to the lines ρ] and RI2 to which the voltages Vl and V2 are applied, and the signal output terminals tsn (tst, ts21 HHHtsm) are connected to the central leg (21s), respectively.
) is derived.

そして、薄膜(21)の各脚部(2h )及び(21s
)間、(21s )及び(212)間に夫々MR素子M
Rn1及びMRn2を形成する。このようにL−で、各
チャンネルCHnの各MR素子MRn、及びMRn2が
直列接続されることによりごれらに同一方向の電流iを
通ずる。E字型パターンの薄膜(21)は、その中火脚
部(21s )の中央を’trfiる中心綿に対して左
右対称的乙こ形成されて、両MR素子MRn□及びMR
n2が同一の特性を右するようになされる。
Then, each leg (2h) and (21s) of the thin film (21)
), (21s) and (212), respectively.
Rn1 and MRn2 are formed. In this way, each MR element MRn and MRn2 of each channel CHn are connected in series with L-, so that a current i in the same direction is passed through them. The thin film (21) having an E-shaped pattern is formed symmetrically with respect to the center fiber that extends in the center of the medium leg (21s), and both MR elements MRn□ and MR
n2 are made to have the same characteristics.

そし′乙これらfi、MR素子Mllnl及びMRn、
に対し′(ごれらの電流方向に対しこれと一致しない所
要の角度、例えばこれと直交し、互いに逆向きのバイア
ス磁界I(8及び−HBを外部から15.える。このよ
うに対のMR素子MRn1及びMRn2とに逆向きのバ
イアス磁界を与える手段としC1特に本発明においは、
電磁誘導による。その例としては、例え4J第10図に
示すように、前述しん例えばE字型パターンの磁気抵抗
効巣を有し、各列のM R素子MRnt及びMRn>を
構成するMR薄膜(21)と絶縁層を介して積層される
ようにこれに沿って同様の例えばE?字型パターン有す
る低電気抵抗を有する導電層よりなるバイアス導体(2
2)をf#崩して形成する。ごのバイアス導体(22)
はその5字型パターンの両側脚部(22+ )及び(2
22)を相カーに連結する連結部(22c )を有する
形状となし、各隣り合うチャンネルが順次E字型パター
ンの中央脚部(22s ) 、すなわち対のMR素子M
Rnl及びMRn2の接続中点に対応する部分が、次段
のチャンネルの導体パターン(22)の両側脚部の連結
部に接続するようにし、最外側に位置する一方のチャン
ネルC1)1の8字パターンの両脚部の連結部(22c
)と、同様の他方に位置するチャンネルCl1mの中央
脚部(22s)との間に、バイアス磁界発生用の電流源
を接続する。ごのようにして、このバイアス導体(22
)が対の励R素子旧。、及びMR,2に対し−Cは並列
の、隣接するチャンネル間では直列の配置関係となるよ
うにし、その両端からバイアス磁界発生用電流源端子t
b及びtb’を導出する。そし゛ζ両端子tb、 tb
’間にバイアス磁界発生用電流源よりI bi +’ 
b2を供給して導体(21)の各素子M Rns及びM
Rn2に対応する通電部に夫々バイアス磁界発生用電流
1bt+fb2を通ずることにより各列のMR素子MR
n1及びMRn2に互いに逆向きのバイアス磁界HB、
−HBを暗、えることができる。
These fi, MR elements Mllnl and MRn,
For example, bias magnetic fields I (8 and -HB) which are orthogonal to this current direction and opposite to each other are applied externally. In particular, in the present invention, C1 is a means for applying a bias magnetic field in the opposite direction to the MR elements MRn1 and MRn2.
By electromagnetic induction. As an example, as shown in FIG. 10 of 4J, the MR thin film (21) having an E-shaped pattern of magnetoresistive holes and constituting the MR elements MRnt and MRn of each column. Similar eg E? A bias conductor (2
2) is formed by breaking f#. bias conductor (22)
The two legs of the figure 5 pattern (22+) and (2
22) is shaped to have a connecting part (22c) for connecting it to the companion car, and each adjacent channel sequentially connects to the central leg part (22s) of an E-shaped pattern, that is, a pair of MR elements M
The part corresponding to the connection midpoint of Rnl and MRn2 is connected to the connecting part of both legs of the conductor pattern (22) of the next channel, and the part corresponding to the connection midpoint of the channel C1)1 located at the outermost stage is Connecting part of both legs of pattern (22c
) and the center leg (22s) of the other similar channel Cl1m, a current source for generating a bias magnetic field is connected. Connect this bias conductor (22
) is a pair of excitation R elements. , and MR,2, -C is arranged in parallel, and adjacent channels are arranged in series, and the bias magnetic field generation current source terminal t is connected from both ends of the arrangement.
Derive b and tb'. Then both terminals tb, tb
'I bi +' from the current source for generating bias magnetic field between '
b2 to each element M Rns and M of the conductor (21)
By passing a bias magnetic field generating current 1bt+fb2 through the current-carrying parts corresponding to Rn2, the MR elements MR in each column are
Bias magnetic fields HB in opposite directions to n1 and MRn2,
-Can darken HB.

このように本発明においては、バイアス導体(22)を
設けるものであるが、この場合の通電態様を、特に各チ
ャンネルにおける幻のMR素子M 11 n !及びM
Rn2に関しては並列となるようにするで)、チャンネ
ル相互では順次直列となるようにしたのでハイ゛ダス磁
界発生のための通電端子は、図示のよりに全チャンネル
に関して共通の電源に接続される2個の’Mil子tb
、 Lb”が設けられるに過き゛ないので、その構成は
簡単となる。
As described above, in the present invention, the bias conductor (22) is provided, but the current conduction mode in this case is particularly important for the phantom MR element M 11 n ! in each channel. and M
Rn2 is connected in parallel), and the channels are connected in series, so the current-carrying terminal for generating a high-dus magnetic field is connected to a common power supply for all channels as shown in the figure. 'Mil child tb
, Lb'', the configuration is simple.

次に」二連した本発明による多チャンネルMR型(イク
気ヘソ1′の具体的構造を第111321ないし第13
図を参144 して説明する。第11図は本発明による
多チャンネルMR型磁気ヘットの一例の要部の路線的拡
大平面図で、第12図は、そのA−A線上の拡大断面図
、第13図は同様に第11B!’IのB−B線上の拡大
“  Li7i i7旧ネlを示ず。(23)は、1部
コアとなる磁性基体、例えはNt−Zn系フェライトよ
りなる磁性基体(23)が設りられ、これの上にバイア
ス導体(22)と、定電圧V1及びv2の各給電線路1
11及びβ2を構成する導体(31)及び(32)が被
着形成され、これの上に絶縁IN(24)を介して、各
チャンネルCl1n  (CIL+ 、 CI+2  
・・・C11m )の各列のMR素子MRn□及びMR
n2(MR1’1及びMR12+ MR21及びMG2
z、・・・門Rm1及びMRm2)を形成するM R薄
膜(21)が人々所要のパターンに被着形成される。こ
れらバイアス導体(22) 、絶縁層(24)及びMR
薄膜(21)は、磁性基体(23)上に順次夫々全面的
に、蒸着、スパッタリング等によって被着し、その後、
これらをパターン化する。この場合、この導体層の基体
(23)に対する被着強度を上げるために必要に応じて
F地層としての例えばCr層を、全面的に例えば300
人の厚さに蒸着或いはスパッタリング等によって被着す
る。そしてこれの1−に前述したようにハイーrス導体
(22) 、給電導体(31)及び(32)を形成する
導電層、例えばAu金属層を同様に蒸着、スパッタリン
グ等によっ”ζ被着し、続い′ζこれの上に同様に全面
的に絶縁Jjiti (24)を形成するSi3N4或
いはへ1203等をに被着し、更にこれの上にMR薄1
m(21)を形成する例えばNi−Fe系合金、或いは
N1−Go糸合金冶膜を全面的に同様に蒸着或いはスパ
ッタリング等によって被着する。
Next, the specific structure of the double multi-channel MR type (ejaculation belly button 1') according to the present invention will be described in
This will be explained with reference to the figure. FIG. 11 is an enlarged plan view of essential parts of an example of a multi-channel MR type magnetic head according to the present invention, FIG. 12 is an enlarged sectional view taken along the line A-A, and FIG. 'Enlargement on the B-B line of 'I' Li7i i7 old nel is not shown. (23) is partially provided with a magnetic substrate that becomes the core, for example, a magnetic substrate (23) made of Nt-Zn ferrite. , on which a bias conductor (22) and each feed line 1 of constant voltage V1 and v2 are connected.
Conductors (31) and (32) constituting conductors 11 and β2 are deposited, and each channel Cl1n (CIL+, CI+2
...C11m) MR elements MRn□ and MR of each column
n2 (MR1'1 and MR12+ MR21 and MG2
The MR thin film (21) forming the gates Rm1 and MRm2 is deposited in a desired pattern. These bias conductors (22), insulating layers (24) and MR
The thin film (21) is sequentially deposited on the entire surface of the magnetic substrate (23) by vapor deposition, sputtering, etc., and then
Pattern these. In this case, in order to increase the adhesion strength of this conductor layer to the base (23), for example, a Cr layer as an F layer may be applied, for example, to
It is deposited to a human thickness by vapor deposition or sputtering. Then, as described above in 1-, a conductive layer, for example, an Au metal layer, which forms the high-speed conductor (22) and the power supply conductors (31) and (32), is deposited by vapor deposition, sputtering, etc. Then, on top of this, Si3N4 or 1203, etc., which forms an insulating film (24), is deposited on the entire surface, and further on top of this, MR thin film 1 is deposited.
For example, a Ni--Fe alloy film or a N1--Go thread alloy film forming m(21) is similarly deposited on the entire surface by vapor deposition, sputtering, or the like.

そして、その後に、これらMR薄膜層と、ごれのトの1
色牟t INと、ごれのl・°の導Ml r@と、更に
これの一部の上地j−とに亘って選択的に例えば各チャ
ンネルClInにおりる各列のMR素子MRn1及びl
’jRn2を形成するための前述した8字型パターンの
MR薄膜(2I)を形成する部分と、同様のバイアス導
体を形成する部分と、定電圧V1.V2の給電導体を形
成する部分、更に端子部を形成する部分等を残して他部
を、各)―に関して例えば間−マスクによって、或いは
上層のパターンをマスクとすることによって順次エツチ
ング除去する。しかしなから、この場合、上層に向って
幅狭となる断面台形状のエツチングとすることが望まし
い。次に、史にトAl″?>°!ll1lI2!IPi
にの1プ選択的エツチングを行って前述した18字型パ
ターンの薄膜(21)を形成する。これらエツチングは
、湿式法によるエツチング或いは乾式法によるエツチン
グ、すなわぢ例えば化学的エツチング或いはイオンエツ
チング等によって行いi4!る。このようにすれば、各
列のMR素子MRr+1及びM 1112を構成する8
字型パターンのMR薄膜(21)の形成がなされ、これ
の下に車なり合って絶縁層(24)によって絶縁された
8字型パターンのバイアス導体(22)と、給電導体(
31)及び(32)の形成がなされる。ここに、バイア
ス導体(22)は、第10図で説明したと同様にその両
性側脚部(22z )及び(222)を連結する連結部
(22c)が、隣り合うチャンネルの例えば前段側のチ
ャンネルClIn−+の各導体(22)の中央脚部(2
2s )に、連結部(22c)を挟んで対向する位置ま
で延長する延長部(22c”)を設LJおく。また給電
導体(31)及び(32)は、各チャンネルClInの
配列方向に沿って延長する帯状のパターンとして形成し
得る。
After that, these MR thin film layers and one of the dirt
For example, the MR elements MRn1 and MR elements of each column, which go to each channel ClIn, are selectively connected to the color tIN, the dirt l·° conductor Mlr@, and a part of the upper surface j-. l
'jRn2, a part where the MR thin film (2I) of the above-mentioned 8-shaped pattern is formed, a part where a similar bias conductor is formed, and a constant voltage V1. Except for the portion forming the power supply conductor of V2 and the portion forming the terminal portion, the other portions are sequentially removed by etching using, for example, a spacing mask or using the upper layer pattern as a mask. However, in this case, it is desirable that the etching has a trapezoidal cross section that becomes narrower toward the upper layer. Next, history is to Al″?>°!ll1lI2!
A thin film (21) having the above-mentioned 18-shaped pattern is formed by selective etching. These etchings are performed by wet etching or dry etching, eg, chemical etching or ion etching.i4! Ru. In this way, the 8 elements forming the MR elements MRr+1 and M1112 in each column
An MR thin film (21) in a figure-shaped pattern is formed, and a bias conductor (22) in a figure-8 pattern and a power supply conductor (
31) and (32) are formed. Here, the bias conductor (22) has a connecting portion (22c) connecting the bilateral leg portions (22z) and (222) of the bias conductor (22), for example, the front channel of the adjacent channel. The central leg (2) of each conductor (22) of ClIn-+
2s), an extension part (22c'') extending to a position opposite to each other with the connecting part (22c) in between is provided.Furthermore, the power supply conductors (31) and (32) are connected along the arrangement direction of each channel ClIn. It can be formed as an elongated band pattern.

次にバイアス導体(22)の、中火脚部(22s)の端
部上と、延長部(22c’)上と、各給電導体(31)
及び(32)の、各チャンネルClInに対応する部分
上の絶縁層(24)に夫々後述する配線導体層を接続す
るに供するコンタクト用窓(33)へ・(36)を穿設
する。
Next, the bias conductor (22) is placed on the end of the medium heat leg (22s), on the extension part (22c'), and on each feed conductor (31).
and (36) are drilled into contact windows (33) for connecting wiring conductor layers to be described later to the insulating layer (24) on the portion corresponding to each channel ClIn in (32).

そして、次にこれらパターンを覆って全面的に例えば5
i02よりなり絶縁層(24)とは異なる工・ノチング
性を有する非磁性絶縁1’M (37)を周知の技術で
被着する。この絶縁層(37)の厚さは後述する磁気記
ζ、老媒体との対接面における磁気ギヤツブ1番を規定
する厚さ、例えは0.3メtmの厚さをもっ′(全面的
に形成Jる。そしてこの絶縁層(37)に対し′(例え
ば湿JJQエツチングの或いはプラズマエツチング等に
よる乾式エツチングによる選択的エツチングを行って各
チャンネルの各E字型MR薄膜(2I)の各脚部間にお
い′ζ各対のMR素素子 Rn i及びMRn2と隣接
する位置に夫々窓(381)及び(382)を穿設して
磁性基体(23)の表面の一部を臨ませると共に、各M
R薄欣(21)の各脚部(211) 、  (212)
 、  (21s )の各端部上に人々窓(3Ut )
 、  (392)、(39s)を穿設しζこれら各脚
部(2h ) 、  (212) 、  (21s )
の各表面の一部を外部に臨まセる。更に、これら各窓の
穿設と同時に、先に穿設した窓(33)〜(36)上の
絶縁IN (37)をエソナング除去して再び、これら
窓(33)−・(37)を外部に臨ませる。
Then, cover these patterns and cover the entire surface with, for example, 5
A non-magnetic insulating layer 1'M (37) made of i02 and having different processing and notching properties than the insulating layer (24) is deposited using a well-known technique. The thickness of this insulating layer (37) is the thickness that defines the magnetic gear ζ, which will be described later, and the magnetic gear no. This insulating layer (37) is selectively etched (for example, by wet JJQ etching or dry etching such as plasma etching) to form each leg of each E-shaped MR thin film (2I) of each channel. Windows (381) and (382) are formed between the parts at positions adjacent to each pair of MR elements Rn i and MRn2, respectively, so as to expose a part of the surface of the magnetic base (23). M
Each leg part (211), (212) of R boxin (21)
, people windows (3Ut) on each end of (21s)
, (392), (39s) are drilled and ζ these legs (2h), (212), (21s)
A portion of each surface is exposed to the outside. Furthermore, at the same time as each of these windows is drilled, the insulation IN (37) on the previously drilled windows (33) to (36) is removed by esonanging, and these windows (33) to (37) are opened again to the outside. Let's face it.

次に、窓(38+ )及び(3B2 )内を含め且つ各
り(のM R素子Mlln1及びMlln、を横切る位
置を含んで例えば全面的に蒸着、スパッタリング等によ
ってNi−Fe系合金層等よりなる磁性層を形成し、こ
れを選択的に前述したと同様に湿式法、或いは乾式法に
よってエツチングして各M R素子MRn1及びMRn
2に対応して夫々対の磁性1m (41t )及び(4
12) 。
Next, a Ni-Fe alloy layer or the like is formed by vapor deposition, sputtering, etc. over the entire surface, including the inside of the windows (38+) and (3B2) and the position crossing each MR element Mlln1 and Mlln. A magnetic layer is formed and selectively etched by a wet method or a dry method in the same manner as described above to form each MR element MRn1 and MRn.
Corresponding to 2, the magnetic pairs of 1m (41t) and (4
12).

(421) 、  (422)が各MR素子の両側縁上
に絶縁層(37)を介して跨り、このMR素子−ヒにお
いて両者間に所要の間隔Gを保持して対向するように形
成する。磁性層(4h )及び(412) 、  (4
2t )及び(422)のMR素子の側縁上に跨る幅は
、夫々、例えばMR素子の幅が5μmのとき1μm程度
となるように選ばれる。そして、ここに、−・方の磁性
層(412)及び(422)はその一部が絶縁層(37
)の窓(38z )及び(382)を通じて、磁性基体
(23)に連接するようになされる。−力、基体(23
)上の磁性層(411)及び(412) 。
(421) and (422) are formed across both side edges of each MR element via an insulating layer (37), and are opposed to each other with a required distance G maintained between them in this MR element. Magnetic layers (4h) and (412), (4
The widths extending over the side edges of the MR element (2t) and (422) are each selected to be approximately 1 μm when the width of the MR element is 5 μm, for example. And here, a part of the magnetic layers (412) and (422) on the - side is the insulating layer (37).
) is connected to the magnetic substrate (23) through the windows (38z) and (382). - force, substrate (23
) on magnetic layers (411) and (412).

(421)及び(J22)が配列された部分を除いて少
なくとも各窓(33)〜(36) 、  (391) 
 (392)(39s)上に差し渡って、全1rii的
に例えば導電層(40)を被着し、選択的エツチングを
行って各窓(391)と(36)との間、窓(392)
と(35)との間、窓(33)と(34)との間に差し
渡る配線導電R1iと、史に窓(39S)から外部出力
端子tsnを導出するに供する配線部を残してエツチン
グ除去する。そして一端のチャンネルCIl+のバイア
ス導体(21)の延長部(22c ’)から一方のバイ
アス電源端子tbを導出し他端のチャンネルの中央脚部
(22s )に接続された配線部(40)から他方の端
子L1]′を導出する。
At least each window (33) to (36), (391) except for the part where (421) and (J22) are arranged
(392) For example, a conductive layer (40) is deposited over the entire surface of (39s) and selectively etched to form a layer between each window (391) and (36).
and (35), and between the windows (33) and (34), and the wiring part used to lead out the external output terminal tsn from the window (39S) is removed by etching. do. Then, one bias power supply terminal tb is led out from the extension (22c') of the bias conductor (21) of the channel CIl+ at one end, and the other bias power terminal tb is led out from the wiring part (40) connected to the center leg (22s) of the channel at the other end. Terminal L1]' is derived.

そして、これら各バクーン上を含んで全面的に例えば5
i02等よりなる保護膜(43)を被着し、カラスのよ
うな無機或いは有機接着剤層(44)をもって」一部(
3+j 護基板(45) 、例えばガラス扱等を接合す
る。そし°ζごれら保護基板(45)から磁性す;体(
23)に差し渡ってその各チャンネルClInの対の各
MR単素子こ対1゛る各一方の磁性層(4h)(421
)の外端側を切削研磨して磁気記録媒体との対接面(5
1)を形成する。このようにし゛ζ対接面(51)に臨
んで、非(O外絶縁層(37)の厚さによっ゛C規定さ
れるギャップ長を有する磁気ギャップg1.g2を、磁
性基体(23)と磁性層(4h )(42t、)との間
によって形成する。このような構成によれは、各チャン
ネルCtlnに関して各列の磁性層(4h )及び(4
12)と磁性基体(23)との間に形成され磁気ギャッ
プg、及びg2とMR単素子MRnl及びMRn2とを
含む各列の閉磁路が、磁性層(41工)及び(42t 
)−磁性基体(23)−磁性層(412)  (422
)−磁性層(41t )及び(422)に形成された多
チャンネル磁気ヘッドが構成される。
Then, for example, 5
A protective film (43) made of i02 or the like is applied, and a part (44) of a crow-like inorganic or organic adhesive is applied.
3+j A protective substrate (45), such as a glass substrate, is bonded. Then, the magnetic body (
23) for each channel ClIn pair of each MR single element pair 1' magnetic layer (4h) (421
) is cut and polished to form a surface facing the magnetic recording medium (5).
1) Form. In this way, a magnetic gap g1 and g2 having a gap length defined by C by the thickness of the non-O insulating layer (37) is connected to the magnetic base (23) facing the ζ contact surface (51). and the magnetic layers (4h) and (42t,). According to such a configuration, the magnetic layers (4h) and (42t,) of each column are formed for each channel Ctln.
12) and the magnetic substrate (23), each row of closed magnetic paths including the magnetic gap g and g2 and the MR single elements MRnl and MRn2 is formed between the magnetic layer (41) and the magnetic substrate (23).
) - Magnetic substrate (23) - Magnetic layer (412) (422
) - A multi-channel magnetic head formed in magnetic layers (41t) and (422) is constructed.

本発明による多チャンネルMR型磁気ヘットを製造する
方法は、上述した例に限られるものではないが、」−述
したように各バイアス導体(22)を構成する導電層と
、MR薄IQ(21)を構成するMR薄映層とを絶縁層
を介し゛ζ全面的に積層しC後、これらをパターン化す
るときは、その各MR単素子構成する例えばE字型パタ
ーンのMR薄膜(21)と、バイアス導体(22)とが
相方5に位置ずれするようなことなく、しかも絶縁#(
24)によって確実に電気的に絶縁して配置されるので
、各MR単素子lln+及び肝n2へのバイアス磁界を
確実に且つ効イ・1良くりえるごとができる。また、絶
縁r@(24)は、ギャップg1.g2において除去さ
れるので、このキャノン゛f?l1g2のギ中ツブ4’
4は、上1曲の絶縁1t4 (:(7)の厚さのみによ
って規定されることになるので、このギャップ長の設定
を容易に行うことができる。尚、内絶縁層(24)及び
(37)は、相互にそのエツチング性を異にする例えば
Al2O3。
The method for manufacturing a multi-channel MR type magnetic head according to the present invention is not limited to the above-mentioned example. ) and the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) constituting the MR thin film (21) which constitutes the MR thin film (21) that constitutes the MR thin film (21) which constitutes the MR thin film (21) are then patterned. and the bias conductor (22) will not be misaligned to the other party 5, and the insulation #(
24), the bias magnetic field applied to each MR single element lln+ and liver n2 can be changed reliably and with high efficiency. Further, the insulation r@(24) is connected to the gap g1. Since it is removed in g2, this canon f? l1g2's Gichutsubu 4'
4 is defined only by the thickness of the insulation 1t4 (: (7)), so this gap length can be easily set. 37) have mutually different etching properties, for example, Al2O3.

S i 3N 4と5in2とによって構成するときは
、上層の5i02による絶縁JM(37)に対して例え
ばプラズマエツチングによる選択的エツチングを行う場
合に下層のAl2O3或いはS i3N 4に対しては
殆んどエツチング効果が生じないようにすることができ
る利益がある。
When the structure is made of S i 3N 4 and 5in2, when selective etching is performed, for example, by plasma etching on the upper layer 5i02 insulation JM (37), the lower layer Al2O3 or Si3N 4 is hardly etched. There is an advantage in being able to prevent etching effects from occurring.

尚、J=、 j2E シた例では、各チャンネルに1対
のMR単素子設げた場合であるが、複数対設りた構成と
するごともできる。
In the example shown above, each channel is provided with one pair of MR single elements, but a configuration in which a plurality of pairs of MR elements are provided is also possible.

また、上jJ夕した例では、リア型MR磁気ヘッドに適
用した場合であるが、磁気媒体との対接面にMR単素子
端面が臨むように配置された場合においζもMR単素子
挾んで磁性体が近接配設される場合は、同様にこれらM
R単素子磁気抵抗特性が2次曲線を示すので、このよう
ないわゆるフロント型MR磁気ヘッドに適用することも
できる。
In addition, in the example given above, when applied to a rear type MR magnetic head, when the end face of the MR single element is placed so as to face the surface in contact with the magnetic medium, ζ is also sandwiched between the MR single elements. Similarly, when magnetic bodies are arranged close to each other, these M
Since the R single element magnetoresistive characteristic shows a quadratic curve, it can also be applied to such a so-called front type MR magnetic head.

また、上述したように本発明においては、各MR単素子
Rnt及びMRn2に、バイアス導体(22)にたいす
る通電によって発生させたバイアス磁界をMR素子外か
ら与えるようにしたものであるが、MR素子自体に通ず
る電流iによる自己バイアス効果の影響によって実質的
に、各チャンネルの対の両MR素子MRn、及びMl?
、2に対するバイアス磁界の強さが不均一となって非線
型成分のキャンセルが不充分となる場合がある。したが
って、この場合は、この自己バイアスの効果を考慮して
外部からのバイアス磁界を各MR単素子Iln□及びM
Rn2に関して異ならずことが望まれる。その例として
は、外部バイアス磁界をり、えるための前述したバイア
ス導体(22)の、各MR単素子Rnt及びMRn2に
沿って通ずる電流jb1及びib2自体を各MR単素子
Rro及びMRn2の自己バイアスの影響に応じた値に
設定する。すなわち、第10図から分るように一方のM
R素子肝□、に通ずる電流iの向きと、これに外部ノ\
イアス磁界をl−iえるための導体(22)の脚部(2
23)及び(22+ )間に通ずる電流1blは、カー
いにその方向が一致するに比し、他方のMR素子MRn
2に通ずる電流iの方向、と、これに外部ハイ′1ス磁
界を15えるだめの導体(22)の脚部(22s )及
び(222)間に通ずる電流jb2は互いにその方向が
逆方向と71くる。すなわち一方の素子MRn□に関し
ては、自己ハイ“1ス磁界の方向と外部からり、えるB
イアス磁界とが同方向で自己バイアスによってBイアス
磁界が強まる方向に作用し、他方の素子MRnzに関し
ては、自己バイアス磁界の方向と外部から与えるバイア
ス磁界とが逆方向で自己バイアスによってバイアス磁界
が弱められる方向に作用する。すなわら、今、画素子M
Rru及びMRn2に、実質的に5.えられる磁界H+
及びR2は、 となる。ここにI−IFJ、及びHB、は、各素子MR
nt及びMRn2への外部バイアス磁界、HMn を及
びHMR2は各素子MRnx及びMRn2の自己バイア
ス磁界である。
Furthermore, as described above, in the present invention, a bias magnetic field generated by energizing the bias conductor (22) is applied to each MR single element Rnt and MRn2 from outside the MR element. Substantially, both MR elements MRn of each channel pair, and Ml?
, 2 may become non-uniform, resulting in insufficient cancellation of nonlinear components. Therefore, in this case, considering the effect of this self-bias, the external bias magnetic field is applied to each MR single element Iln□ and M
It is desired that there is no difference regarding Rn2. For example, the currents jb1 and ib2 flowing along each MR single element Rnt and MRn2 of the aforementioned bias conductor (22) for obtaining an external bias magnetic field can be used to control the self-biasing of each MR single element Rro and MRn2. Set the value according to the influence of That is, as can be seen from Fig. 10, one M
The direction of the current i passing through the R element liver □, and the external
The legs (2) of the conductor (22) for increasing the magnetic field
The current 1bl flowing between 23) and (22+) is in the same direction as the other MR element MRn.
The direction of the current i flowing through the conductor (22) and the current jb2 flowing between the legs (22s) and (222) of the conductor (22) for applying an external high-speed magnetic field to it are opposite to each other. 71 comes. In other words, for one element MRn□, depending on the direction of the self-high "1" magnetic field and the external
In the same direction as the B-Iass magnetic field, the B-Iass magnetic field acts in the direction of strengthening due to the self-bias, and for the other element MRnz, the direction of the self-bias magnetic field and the externally applied bias magnetic field are in the opposite direction, and the bias magnetic field weakens due to the self-bias. Acts in the direction of That is, now pixel M
substantially 5. to Rru and MRn2. Magnetic field H+
and R2 are as follows. Here, I-IFJ and HB are each element MR.
The external bias magnetic fields to nt and MRn2, HMn and HMR2 are the self-bias magnetic fields of each element MRnx and MRn2.

ところで、実際上、導体(22)に通ずる電流ibによ
る磁界のMR単素子のバイアス磁界として作用するその
寄与率Aと、M R素子自体に流する電流jによる磁界
のバイアス磁界とし“ζ作用する寄J″′I率Bとは相
違する。これは、例えば前述した磁気−・、ノドにおけ
るように、下f(15磁11基体(23) −磁性層(
41)  ((lx )  (412) )  MR単
素子磁性M (42)  ((42t )  (422
) 丈による閉磁路が形成され、導体(22)がMR素
素子下あ−、て、この導体(22)のMR単素子の積層
部がこの閉磁路によ、って囲まれている場合は、その寄
ri率人は殆んど1と見做すことができるが、MRR子
自体は磁性層(41)及び(42)間の゛間隔Gを通じ
て閉磁路外に臨んでいるためにこれよりの磁束の漏洩に
よってその寄与率Bば、B・ぐ1であり、実測によると
、B/^ζ 1/2〜415であった。
By the way, in reality, the contribution rate A of the magnetic field due to the current ib flowing through the conductor (22) which acts as a bias magnetic field of the MR single element, and the bias magnetic field of the magnetic field due to the current j flowing through the MR element itself, which acts as "ζ". This is different from the ratio B. For example, as in the above-mentioned magnetic node, the lower f (15 magnetic 11 base (23) - magnetic layer (
41) ((lx) (412)) MR single element magnetic M (42) ((42t) (422
) If a closed magnetic path is formed by the height of the conductor (22), and the laminated portion of the MR single element of the conductor (22) is surrounded by this closed magnetic path, then , its contribution ratio can be considered to be almost 1, but since the MRR element itself faces outside the closed magnetic circuit through the gap G between the magnetic layers (41) and (42), Due to the leakage of magnetic flux, the contribution rate B is B·g1, and according to actual measurements, B/ζ 1/2 to 415.

一方、差動型の構成とするには両MR素子MRnt 。On the other hand, for a differential type configuration, both MR elements MRnt.

MRn2に実質的に与えるべき磁界H1及び−R2は、
Hr  −It 2の条件が謂たされる必要があるので
I(□及びH2を()−るための電流ill 、 il
h番才、従っ−(、 に各電流ibs及びib2を選定すればよい。
The magnetic fields H1 and -R2 that should be substantially applied to MRn2 are:
Since the condition of Hr −It 2 needs to be satisfied, the currents ill and il for I(□ and H2()-)
Therefore, the currents ibs and ib2 can be selected as follows.

このよ−)に27f体(22)の脚部(22s )と(
221)及び(222)との間の各MR単素子Rn、及
びMRnzに夫々沿)各辺stl及びst2に通ずる電
流ib+ + ib2に77Hいに異なる一ヒ記(3)
式に基づく電流値を(↓する方法とし゛ζシ;j、中央
部(22c)と各辺st4及びshを通じ、連結部(2
2c ) ”、の給電位置P間における1[(抗1仁、
R2を所要の値に設定することによって得る。例えば第
14図に示すように各脚部(221)及び(222)に
夫々所要の抵抗値に設定した抵抗体層等よりなる抵抗R
工及び1ン2を介在させることによって設定し得る。ご
の抵抗R1及びR2の設定は、例えは互いにその抵抗体
)背の比抵抗、膜厚、膜幅等の設定、史には連結部(2
2c )に対する給電線の接続位置Pと1110部(2
2x)及び(222)との各間隔を変化させることなど
によっζ得ることができる。。
The legs (22s) of the 27f body (22) and (
221) and (222), along each MR single element Rn and MRnz, respectively) Current ib+ + ib2 flowing through each side stl and st2 77H A different note (3)
The current value based on the formula is (↓).
2c) ”, between the power supply positions P of
Obtained by setting R2 to the required value. For example, as shown in FIG. 14, each leg (221) and (222) has a resistor R made of a resistor layer set to a required resistance value, respectively.
It can be set by intervening the machine and 1 and 2. The setting of the resistances R1 and R2 of each resistor is, for example, the setting of the specific resistance of the back (for example, the resistor), the film thickness, the film width, etc., and the setting of the connecting part (2
2c) and the connection position P of the feeder line to 1110 part (2c)
2x) and (222), etc. can be obtained. .

また、上述した例においては、導電体(22)の各辺s
b及びst2に関連する抵抗値171及びR2の設定に
よってごれら各辺sr1及びshを通ずる電流ib1及
びjb2を所要の値に設定して各MR単素子Rn1及び
MRn2の自己バイアスによる実質的磁界の不均一性を
排除するようにした場合であるが、ある場合は、これら
MR素子MRn1及びMRn2におりる自己バイアス分
を、バイアス導体(22)とは別に配L7たバイアス補
正用導体への通電によって発生させた磁界によって相殺
させるようにすることもできる。この場合の例としては
、例えば第15図に示すように各チャンネルClInに
関して共通に各MR単素子Rnz及びMRn2の延長方
向、従ってバイアス導体(22)の各辺sat及びsh
の延長方向に70って1本のバイアス補正用導体(50
)を配置してこれにMR単素子通ずる電流iとは逆向き
の所要の電流icをJlnする。このバイアス補正用導
体(50)は例えば16図に示すようにバイアス導体(
22)下に絶縁層(51)を介して薄腺導体を配置する
ことによって形成しうる。このようにしてバイアス禎1
ピ用導体−1の通電によって発生する磁界が一丁度各M
R素子に才夕ける自己バイアス磁界を相殺し得るように
なす。
Furthermore, in the above example, each side s of the conductor (22)
By setting the resistance values 171 and R2 related to b and st2, the currents ib1 and jb2 passing through each side sr1 and sh are set to the required values to create a substantial magnetic field due to the self-bias of each MR single element Rn1 and MRn2. However, in some cases, the self-bias that flows into these MR elements MRn1 and MRn2 is transferred to the bias correction conductor (L7) arranged separately from the bias conductor (22). It is also possible to cancel the magnetic field by a magnetic field generated by energization. As an example of this case, for example, as shown in FIG.
One bias correction conductor (50
), and a required current ic in the opposite direction to the current i flowing through the MR single element is applied to it. This bias correction conductor (50) is, for example, a bias conductor (50) as shown in FIG.
22) It can be formed by placing a thin conductor underneath with an insulating layer (51) interposed therebetween. In this way, the bias
The magnetic field generated by energization of conductor-1 for pins is exactly M
The self-bias magnetic field generated in the R element can be canceled out.

尚、これらMR素子の自己バイアスによる影響を131
餘する手段自体ば、言うまでもなく上述した本発明によ
るバイアス磁界発生のための!L、様、ずなわち2端子
tb、 tb’構成を採り対のMR素子MRn+及びM
Rn、に対しζは並列に、隣接するチャンネル間では直
列としたいわばチェーン型構成を1xる場合に限定され
ない。
In addition, the influence of self-bias of these MR elements is 131
Needless to say, the means for generating the bias magnetic field according to the invention described above are also included! A pair of MR elements MRn+ and M
The present invention is not limited to the case where ζ is parallel to Rn, and adjacent channels are connected in series, so to speak, in a 1x chain configuration.

発明の効果 」−述したように本発明によればM、R素子にたがいに
逆1hlきのパイ゛アス俳界を印加し、差動的に出力を
取り出すようにした例えば定電圧駆動による差動型構成
による磁気ヘッドにおいてその逆向きのバイアス磁界を
発生ずるバイアス発生手段におけるバイアス導体(22
)の通電パターンを対のMR素子MRnt及び肝、2に
関しては並列に、隣接するチャンネル間では直列とした
チェーン型パターンとしたことによって全チャンネルに
関しζ共通の電流源、すなわち2 fl?i+の端子t
b、 tb’の導出のみとすることができるので、構成
の簡潔化、従って製造の簡易化、更には・トラックピッ
チの縮小化を図ることができ、多チヤンネル磁気−・ノ
ドとしての利益が人である。
"Effects of the Invention" - As described above, according to the present invention, an inverse bias field of 1 HL is applied to each of the M and R elements, and outputs are taken out differentially. A bias conductor (22
) is made into a chain type pattern in which the pair of MR elements MRnt and 2 are connected in parallel, and adjacent channels are connected in series, so that a common current source for all channels, that is, 2 fl? i+ terminal t
Since only the derivation of b and tb' can be performed, the structure can be simplified, the manufacturing can be simplified, and the track pitch can be reduced, and the benefits as a multi-channel magnetic node can be improved. It is.

【図面の簡単な説明】[Brief explanation of the drawing]

第1121は磁気抵抗効果型磁気ヘッドの要部の拡大平
面図、第2図はそのA−A線上の断面図、第;3図はそ
の磁気)1L抗素子の磁気抵抗特性曲線図、第4図はそ
の比−咬説明に供する磁気抵抗特性曲線図、第5し1は
定電流駆動による差動型の磁気!1(抗効果型磁気ヘッ
ドの構成図、第6図はその出力波形し1、第7図は本発
明による磁気ヘッドの基本的構成図、第8図は本発明の
一例の電気的接続図、冴39図は本発明による磁気ヘッ
トの磁気抵抗効果素子の一例の路線的配置構成図、第1
0図はバイアス発lt、 if”股のバイアス導体の一
例の配置構成図、第11図は本発明による磁気ヘッドの
一例の要部の路線的拡大」1/−面1シ1、第12図及
び第1(3図は第11図のA−Δ線上、及びB−B線上
の拡大断面図、第141′)、1は磁気抵抗効果素子へ
のハイ了ス磁界発生手段の一例のパターン図、第15図
は磁気抵抗効果素子の自己バイアスを消去するバイアス
補正用導体を具備する磁気へ・71′のパターン図、第
16図はその要91%の拡大1すi面図である。 MRn+及びMRn2(MR1’1及びMRs2+ M
R2を及び肝22・・・)は磁気)氏抗効果素子、(2
1)は磁気抵抗効果を有するtW 股、(22)はバイ
アス導体、(23)はその磁性基体、(24)及び(3
7)は絶縁層、(41+ )  (4]2 )  (4
21)’  (422>は磁性層、(45)は上用5(
呆護基板である。 104 第1図 7 第2図 第4図 手続補正書 昭和58年2月 15日 待作庁長官若 杉 和 夫 殿 (特許庁審判長            殿)■、事件
の表示 昭和57年特許願第 190186  号2、発 明 
の 名 称  多チヤンネル磁気抵抗効果型磁気ヘッド
3、補正をする者 事件との関係   特許出願人 住所 東京部品用区北品用6丁目7番35号名称(21
8)  ソニー株式会社 代表取締役 大 賀 典 雄 4 代 理 人 東京都新宿区西新宿1丁目8番1号(
新卒ビル)6、補正により増加する発明の数 (1)明細書中、第4頁、6行「因みにMR素子自体の
」を[因みにMR素子に磁性体が近接していない場合の
」と訂正する。 (2)同、同頁、12行「顕著に生じる」を「生じる」
と訂正する。 (3)同、同頁、下から3行「非線型線分」を「非線型
成分」と訂正する。 (4)同、第7頁、1行「2倍となり、」を「半分とな
るが、」と訂正する。 (5)同、同頁、2〜3行「信号パワーも」を「信号パ
ワーは」と訂正する。 (6)同、同頁、3行「そして、各」を「そして、定電
流型の差動型MR磁気ヘッドに比べると、各」と訂正す
る。 (7)同、同頁、10行「いわゆり」を「いわゆる」と
訂正する。 (8)同、第8頁、10行「生じる。」の次に[また、
バイアス磁界を与えるためのバイアス導体端子は、2個
のMR素子の中点とその両側に必要であり、各磁気ヘッ
ド素子当り3個必要となる。 従って、多チャンネル磁気ヘッドでは多数の端子導出が
必要となる。」を加入する。 (9)同、同頁、下から3行「ようなして」を1ように
して」と訂正する。 00)同、第9頁、11行「差動増幅器Aより差動的に
出力を」を「増幅器Aより出力を」と訂ゞ正する。 (11)同、第12頁、3行「連結部」を[連結部(2
2C) Jと訂正する。 と訂正する。 C3)同、同頁、下から5行「AQ203等をに被着し
、」を「AQ203等を被着し、」と訂正する。 04)同、第15頁、10行「しかしながら、」を削除
する。 051  同、第18頁、13行「(412)及び(4
22) Jをr (421)及び(422) Jと訂正
する。 C6)  同、第19頁、下カラ4行「(421)」ヲ
[(412) Jと訂正する。 07)同、第20頁、2行r C421) jを[(4
11) Jと訂正する。 叫 同、同頁、3〜5行「各チャンネルCHn・・・間
に形成され」を削除する。 ←9 同、同頁、6行「とを含む6対の閉磁路が、磁性
」を「とを夫々含む6対の閉磁路が、夫々磁性」と訂正
する。 (イ)同、同頁7行「磁性基体(ハ)−磁性」を「磁性
基体(ハ)、磁性」と訂正する。 (21)  同、同頁、8行r (412)(422)
−磁性層(411)及び(422) jを[(412)
及び(422)−磁性基体(23) Jと訂正する。 □□□同、第21頁、8行[AC203,Jを「AQ2
03又は、」と訂正する。 (23)同、同頁、11行「行う場合に」を「行っても
」と訂正する。 (24)同、第22頁、3〜4行「フロント型」を「シ
ールド型」と訂正する。 (25)同、第23頁、下から3〜2行と訂正する。 (26)  同、第25頁、3〜7行 従って 従って と訂正する。 Qγ)同、第25頁、13行「中央部(22C) Jを
[中央部(22g) Jと訂正する。 (ハ)図面中、第11図を添付図面のように補正する。
1121 is an enlarged plan view of the main part of the magnetoresistive magnetic head, FIG. 2 is a sectional view taken along the line A-A, FIG. The figure is a magnetoresistance characteristic curve diagram to explain the ratio-to-magnetism, and the fifth and first one is a differential type magnetism driven by constant current! 1 (A configuration diagram of an anti-effect type magnetic head, FIG. 6 shows its output waveform, 1, FIG. 7 is a basic configuration diagram of a magnetic head according to the present invention, and FIG. 8 is an electrical connection diagram of an example of the present invention. Figure 39 is a line layout configuration diagram of an example of the magnetoresistive element of the magnetic head according to the present invention, the first
Figure 0 is a layout diagram of an example of the bias conductor between the bias source lt, if'', and Figure 11 is a linear enlargement of the main part of an example of the magnetic head according to the present invention. and 1st (Figure 3 is an enlarged cross-sectional view on the line A-Δ and line B-B in Figure 11, No. 141'), 1 is a pattern diagram of an example of a high-strength magnetic field generating means for the magnetoresistive element. , FIG. 15 is a pattern diagram of a magnetic field 71' having a bias correction conductor for erasing the self-bias of the magnetoresistive element, and FIG. 16 is a 91% enlarged 1-plane view thereof. MRn+ and MRn2 (MR1'1 and MRs2+ M
R2 and liver 22...) are magnetic) anti-resistance effect elements, (2
1) is a tW crotch having a magnetoresistive effect, (22) is a bias conductor, (23) is its magnetic substrate, (24) and (3)
7) is an insulating layer, (41+) (4]2) (4
21)'(422> is the magnetic layer, (45) is the upper layer 5 (
It is a stupid board. 104 Figure 1 7 Figure 2 Figure 4 Procedural amendments February 15, 1980 Mr. Kazuo Wakasugi, Director-General of the Patent Office (Mr. Chief Adjudicator of the Patent Office)■, Indication of the case 1988 Patent Application No. 190186 2. Invention
Name: Multi-channel magnetoresistive magnetic head 3, relation to the person making the correction case Patent applicant address: 6-7-35, Kitashinyo, Tokyo Parts Store Name (21
8) Sony Corporation Representative Director Norio Ohga 4th Deputy Managing Director 1-8-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo (
New graduate building) 6. Number of inventions increased by amendment (1) In the specification, page 4, line 6, ``Incidentally, the MR element itself'' is corrected to ``Incidentally, in the case where no magnetic material is in close proximity to the MR element.'' do. (2) Ibid., same page, line 12, “occurs noticeably” is “occurs”
I am corrected. (3) On the same page, in the bottom three lines, "nonlinear line segment" is corrected to "nonlinear component." (4) Same, page 7, line 1, ``It will be doubled,'' will be corrected to ``It will be halved,''. (5) On the same page, in lines 2 and 3, ``signal power also'' is corrected to ``signal power is''. (6) Same page, same page, line 3, ``and each'' is corrected to ``and, compared to a constant current type differential MR magnetic head, each.'' (7) Same, same page, line 10, ``iwayuri'' is corrected to ``so-called.'' (8) Ibid., page 8, line 10, next to “Arises.” [Also,
Bias conductor terminals for applying a bias magnetic field are required at the midpoint of the two MR elements and on both sides thereof, and three bias conductor terminals are required for each magnetic head element. Therefore, a multi-channel magnetic head requires a large number of terminal leads. ” to join. (9) Same page, 3 lines from the bottom, correct ``Yonashite'' to ``1''. 00) Same, page 9, line 11, "output differentially from differential amplifier A" is corrected to "output from amplifier A." (11) Same, page 12, line 3 "Connection part" [Connection part (2
2C) Correct it as J. I am corrected. C3) On the same page, in the 5th line from the bottom, correct "AQ203 etc. to be applied," to "AQ203 etc. to be applied,". 04) Same, page 15, line 10, ``However,'' is deleted. 051 Same, page 18, line 13 “(412) and (4
22) Correct J to r (421) and (422) J. C6) Same, page 19, bottom 4 lines "(421)" [Corrected as (412) J. 07) Same, page 20, line 2 r C421) j to [(4
11) Correct it as J. Same page, lines 3 to 5, "formed between each channel CHn..." should be deleted. ←9 Same, same page, line 6, "The six pairs of closed magnetic circuits containing and are magnetic" is corrected to "The six pairs of closed magnetic circuits, each containing and, are magnetic." (a) Same, same page, line 7, "Magnetic substrate (c) - magnetism" is corrected to "magnetic substrate (c), magnetism". (21) Same page, line 8 r (412) (422)
- Magnetic layers (411) and (422) j [(412)
and (422)-Magnetic Substrate (23) Corrected as J. □□□ Same, page 21, line 8 [AC203, J is changed to “AQ2
03 or,” is corrected. (23) Same, same page, line 11, ``if you do'' is corrected to ``even if you do''. (24) Same, page 22, lines 3-4, "front type" is corrected to "shield type". (25) Same, page 23, 3-2 lines from the bottom are corrected. (26) Ibid., p. 25, lines 3-7, amended to read therefore. Qγ) Same, page 25, line 13, “Central part (22C) J is corrected to [Central part (22g) J]. (C) In the drawings, Fig. 11 is corrected as shown in the attached drawing.

Claims (1)

【特許請求の範囲】[Claims] 各−f−ヤンスル毎に配した対の磁気抵抗効果素子に力
いに逆向きのバイアス磁界を印加し、差動的に出力を取
り出すようになされ、上記バイアス磁界を発注するバイ
アス磁界発生手段のバイアス導体を上記対の磁気抵抗効
果素子にたいしては並列に配し、隣接するチ十ンネル間
では直列に配してなる多チヤンネル磁気抵抗効果型σり
気−・ノド。
A bias magnetic field generating means for generating the bias magnetic field is configured to apply a bias magnetic field in the opposite direction to the magnetoresistance effect elements arranged for each -f-jansle, and extract output differentially. A multi-channel magnetoresistive effect type sigma-node in which a bias conductor is arranged in parallel to the pair of magnetoresistive elements and in series between adjacent channels.
JP57190186A 1982-10-29 1982-10-29 Multi-channel magneto-resistance effect type magnetic head Pending JPS5979420A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP57190186A JPS5979420A (en) 1982-10-29 1982-10-29 Multi-channel magneto-resistance effect type magnetic head
CA000439693A CA1209260A (en) 1982-10-29 1983-10-25 Magnetic transducer head using magnetroresistance effect
KR1019830005085A KR920001147B1 (en) 1982-10-29 1983-10-27 Multi-channel magnetic ressistance aqqect type magnetic head
US06/546,060 US4673998A (en) 1982-10-29 1983-10-27 Magnetic transducer head having series connected magnetroresistance effect sensing element with head output connected between the sensing elements
DE8383306602T DE3382532D1 (en) 1982-10-29 1983-10-28 MAGNETIC CONVERTER HEADS USING A MAGNETIC RESISTANCE EFFECT.
EP83306602A EP0107982B1 (en) 1982-10-29 1983-10-28 Magnetic transducer heads utilising magnetoresistance effect

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57190186A JPS5979420A (en) 1982-10-29 1982-10-29 Multi-channel magneto-resistance effect type magnetic head

Publications (1)

Publication Number Publication Date
JPS5979420A true JPS5979420A (en) 1984-05-08

Family

ID=16253879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57190186A Pending JPS5979420A (en) 1982-10-29 1982-10-29 Multi-channel magneto-resistance effect type magnetic head

Country Status (2)

Country Link
JP (1) JPS5979420A (en)
KR (1) KR920001147B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446035B1 (en) * 2000-10-05 2004-08-25 마쯔시다덴기산교 가부시키가이샤 Magnetoresistive device and/or multi-magnetoresistive device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100446035B1 (en) * 2000-10-05 2004-08-25 마쯔시다덴기산교 가부시키가이샤 Magnetoresistive device and/or multi-magnetoresistive device

Also Published As

Publication number Publication date
KR920001147B1 (en) 1992-02-06
KR840006712A (en) 1984-12-01

Similar Documents

Publication Publication Date Title
US4673998A (en) Magnetic transducer head having series connected magnetroresistance effect sensing element with head output connected between the sensing elements
US4896235A (en) Magnetic transducer head utilizing magnetoresistance effect
US4523243A (en) Magnetoresistive transducer using an independent recessed electromagnetic bias
EP0218814A1 (en) Differential twin track vertical read/write magnetic head structure
EP0185774A1 (en) Composite magnetic head device
JPS5979420A (en) Multi-channel magneto-resistance effect type magnetic head
JPS61120318A (en) Unified thin film magnetic head
JPS5979419A (en) Multi-channel magneto-resistance effect type magnetic head
US4814919A (en) Soft-film-bias type magnetoresitive device
JPS62287412A (en) Magnetic head
JPS6032885B2 (en) thin film magnetic head
JPS6017054Y2 (en) magnetic head
JP2000195016A (en) Thin film magnetic head
JPS61126618A (en) Thin film head of magnetoresistance effect type
JPS5933616A (en) Thin film magnetic head
JPS58108025A (en) Magnetoresistance effect type magnetic head
JPS599986A (en) Thin film magnetoelectric transducer
JP2997378B2 (en) Multi-channel thin film magnetic head
JP2002175610A (en) Thin film magnetic head
JPS6310310A (en) Magneto-resistance effect type magnetic head
JPH01150216A (en) Magneto-resistance effect type head
JPS6314315A (en) Magneto-resistance effect type magnetic head
JPS61196414A (en) Wiring device for multichannel thin film magnetic head
JPS6352314A (en) Yoke type thin film magnetic head
JPH0243248B2 (en)