JPS597935B2 - High precision water level meter verification device - Google Patents

High precision water level meter verification device

Info

Publication number
JPS597935B2
JPS597935B2 JP55133240A JP13324080A JPS597935B2 JP S597935 B2 JPS597935 B2 JP S597935B2 JP 55133240 A JP55133240 A JP 55133240A JP 13324080 A JP13324080 A JP 13324080A JP S597935 B2 JPS597935 B2 JP S597935B2
Authority
JP
Japan
Prior art keywords
water level
drive
linear scale
level gauge
verification device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55133240A
Other languages
Japanese (ja)
Other versions
JPS56153215A (en
Inventor
金太郎 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP55133240A priority Critical patent/JPS597935B2/en
Publication of JPS56153215A publication Critical patent/JPS56153215A/en
Publication of JPS597935B2 publication Critical patent/JPS597935B2/en
Expired legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F25/00Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume
    • G01F25/20Testing or calibration of apparatus for measuring volume, volume flow or liquid level or for metering by volume of apparatus for measuring liquid level

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)

Description

【発明の詳細な説明】 本発明は、主として水理模型用の各種水位計の検定を高
精度に行うための検定装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention mainly relates to a verification device for highly accurate verification of various water level gauges for hydraulic models.

従来行われている水位計の検定方法は、水位計を吊り下
げた状態もしくはそれと同様な支持状態で、その支持部
をマイクロメータで上下させ、マイクロメータの読みを
基準として水位計の出力を検定する方法などであるが、
これらの検定方法では可動部であるマイクロメータのね
じの摩耗により、測定誤差が生じるなどの欠点がある。
The conventional method for verifying water level gauges is to suspend the water level gauge or use a similar support, raise and lower the supporting part with a micrometer, and verify the output of the water level gauge based on the micrometer reading. How to do it, etc.
These verification methods have drawbacks such as measurement errors due to wear of the screws of the micrometer, which is a movable part.

上記に鑑み、本発明は支持部をマイクロメータで上下さ
せる代りに水位計を駆動台上に乗せてその台を上下させ
、駆動機構と別に設置したリニヤスケールの値を高さ検
出器でその移動距離を高精度に検出し、水位計の出力と
比較検定を行えるようにしたものである。
In view of the above, the present invention, instead of moving the support part up and down with a micrometer, places a water level gauge on a drive stand and moves the stand up and down, and uses a height detector to measure the value of a linear scale installed separately from the drive mechanism. It is designed to detect distance with high precision and perform comparison tests with the output of a water level gauge.

以下、図面に示す本発明の実施例について詳細に説明す
ると、第1図において、水位計検定装置は基台1上にそ
れと一体に形成して立設した支柱2を備え、その一側に
駆動台3のねじ孔に螺合してそれを上下動させるための
ねじ4を設けて、このねじ4を基台1または支柱2に突
設した粗動ハンドノ゛・5および微動つまみ6によつて
回転できるように構成し、水位計Tを載置した、駆動台
3を上下移動できるようにしている。
Hereinafter, the embodiment of the present invention shown in the drawings will be described in detail. In FIG. A screw 4 is provided which is screwed into the screw hole of the base 3 to move it up and down, and this screw 4 is operated by a coarse movement hand 5 and a fine movement knob 6 which are protruded from the base 1 or the support 2. It is configured to be rotatable, and a drive stand 3 on which a water level gauge T is placed can be moved up and down.

駆動台3の移動距離は上記駆動部とは別個の柱に設けた
リニヤスケール9の値を高さ検出器で高精度に読取るが
、この高さ検出器8附近部を第2図ないし第4図に示す
The moving distance of the drive base 3 is determined by reading the value of a linear scale 9 provided on a column separate from the drive unit with high precision using a height detector. As shown in the figure.

第2図において、別の支柱に固定したリニヤスケール9
は、ガラススケールに第4図aに示すような0.02薦
l巾の線を0.02mm間隔で焼き付けたものであり、
一方、それに対向配置した移動スケール10は、第3図
かられかるようにその背後に垂直方向に4個の受光トラ
ンジスタ11を配置できるだけの長さを有し、その表面
には、第4図bに示すように、各受光トランジスタ11
に対向する位置毎に0.03属目の間隔がある外は上記
リニヤスケール9と同様に0.02!fL7nの線が0
.02鷹露の間隔で焼き付けられている。而して、上記
のリニャスケール9および移動スケール10を挾んで、
前記4個の受光トランジスタ11に対し、駆動台3に設
けた垂直方向の4個の発光ダイオード12を対向配置し
、受光トランジスタ11で検出した出力は電気的に処理
した後、読取りカウンタ13に表示させるようにしてい
る。また、水位計Tの出力はケーブル14を介して接続
した水位計出力カウンタ15に表示させるものである。
なお、図中16は受光トランジスタ11と読取りカウン
タ13を接続するケーブル、17は発光ダイオードケー
ブル、18は水を入れた容器を示している。
In Figure 2, the linear scale 9 fixed to another support
is a glass scale with lines of 0.02cm width printed at intervals of 0.02mm as shown in Figure 4a,
On the other hand, the movable scale 10 disposed opposite thereto has a length that allows four light receiving transistors 11 to be vertically disposed behind it as shown in FIG. As shown in FIG.
Except that there is an interval of 0.03 genus for each position facing , it is 0.02 as in the above linear scale 9! fL7n line is 0
.. It is baked at intervals of 02 hawk dew. Then, sandwiching the linear scale 9 and the moving scale 10,
Four vertical light emitting diodes 12 provided on the drive base 3 are arranged to face the four light receiving transistors 11, and the output detected by the light receiving transistors 11 is electrically processed and then displayed on a reading counter 13. I try to let them do it. Further, the output of the water level gauge T is displayed on a water level gauge output counter 15 connected via a cable 14.
In the figure, 16 indicates a cable connecting the light receiving transistor 11 and the reading counter 13, 17 indicates a light emitting diode cable, and 18 indicates a container containing water.

上記構成を有する水位計検定装置に訃いて、高さ検出器
8の移動スケールの線模様は、受光トランジスタ11に
入る光の位相を90゜遅らせる機能を有するもので、例
えば1番上の受光トランジスタに対し2番目のものの出
力は丁度位相が90゜遅れることになり、同様に3番目
のものは2番目のものに比べて90同遅れ、4番目のも
のは3番目のものより90゜遅れることになる。
In the water level gauge verification device having the above configuration, the line pattern of the moving scale of the height detector 8 has the function of delaying the phase of light entering the light receiving transistor 11 by 90 degrees, for example, the topmost light receiving transistor On the other hand, the output of the second one will be delayed by exactly 90 degrees in phase, similarly, the third one will be delayed by 90 degrees compared to the second one, and the fourth one will be delayed by 90 degrees than the third one. become.

したがつて、容器18内の水に駆動台3上に置いた水位
計7の電極針を入れ、駆動台3を上下に動かすと、その
移動に伴つて移動スケール10が動き、リニアスケール
9と移動スケール10の明暗が1番上の受光トランジス
タにはSin波で、2番目のものにはCOs波に近い波
で、3番目および4番目のものには−Sin波および−
COs波に近い波が表われる。
Therefore, when the electrode needle of the water level gauge 7 placed on the drive stand 3 is put into the water in the container 18 and the drive stand 3 is moved up and down, the moving scale 10 moves with the movement, and the linear scale 9 and The light receiving transistor at the top of the moving scale 10 has a sine wave, the second one has a wave close to a COs wave, and the third and fourth ones have -sin waves and -
Waves similar to COs waves appear.

そこで、これらの出力を波形整形回路に}いて波形整形
することにより位相の異なるパルス(第5図a1〜A4
参照)とした後、微分して(第5図b1〜B4参照)合
成すると、得られたパルス群(第5図c参照)は0.0
2R7!Lの線の間隔を2分の1に分割したものに相当
するので、そのパルス群を計数することにより高精度の
読取りを行うことができる。
Therefore, by sending these outputs to a waveform shaping circuit and shaping the waveforms, pulses with different phases (a1 to A4 in Figure 5) are generated.
), then differentiated and synthesized (see Figure 5 b1 to B4), the obtained pulse group (see Figure 5 c) is 0.0
2R7! Since this corresponds to dividing the interval between the lines of L into 1/2, highly accurate reading can be performed by counting the pulse group.

なお、周期が同じで位相がπ/2だけずれた2つのSi
n波に近い波を重ね合わせて第3のSin波とし、その
際もとの2つの波の振幅を変えることによつて、第3の
波の位相を適宜に変えることができ、それを上述の場合
と同様に波形整形してパルス化し、微分して合成すれば
、さらに短い周期のパルスが得られ、読取精度を一段と
向上させることができる。このようにして、読取カウン
タ13に表示させた値を水位計7からの出力によつて動
作する水位計出力カウンタ15の値と比較検討すること
により、その水位計の検定を行うことができる。
Note that two Sis with the same period and a phase difference of π/2
By superimposing waves close to the n wave to form a third sine wave, and changing the amplitude of the two original waves at that time, the phase of the third wave can be changed appropriately, as described above. If the waveforms are shaped into pulses, differentiated, and synthesized in the same way as in the case of , pulses with even shorter periods can be obtained, and reading accuracy can be further improved. In this way, by comparing and examining the value displayed on the reading counter 13 with the value of the water level gauge output counter 15 operated by the output from the water level gauge 7, the water level gauge can be verified.

以上に詳述した本発明の検定装置によれば、次に列挙す
るように、従来の検定における欠点を解消してすぐれた
効果を発揮し、水位計の厳密な検定を行うことができる
。(a)リニアスケールは駆動部の柱と切り離している
ため、摩耗や荷重によるひずみがない。
According to the testing device of the present invention described in detail above, as listed below, the drawbacks of conventional testing can be overcome, excellent effects can be achieved, and water level gauges can be rigorously tested. (a) Since the linear scale is separated from the pillar of the drive section, there is no distortion due to wear or load.

リニアスケールが水位計を乗せて上下する駆動部を支え
る柱に、もしも直接取り付けてあると、水位計の荷重(
数1009〜数K9)が、駆動台を支持するネジ棒や支
柱に加わり荷重ひずみやたわみ等を生じる。また、構造
材の温度特性が生じて、これに取り付けてあるリニアス
ケールの目盛自体を狂わせる結果になる。しかし、駆動
部の支柱とは別に台座に垂直にリニアスケールを設置す
ることにより、荷重ひずみ等や構造材の温度特性による
影響をなくすることができる。b) リニアスケールを
駆動部の柱とは別に設置しているので、駆動部を支持す
る柱等を特に頑強、大型にしなくてよい。リニアスケー
ルを、駆動部の支柱に直接取り付けてある場合は、水位
計を乗せ−C上下する駆動台を支持するネジ棒や支柱は
、荷重ひずみやたわみ等を生じ、また、構造材の温度特
性は、リニアスケールの目盛誤差として生じることは前
記に述べている通りである。こうしたひずみや誤差を最
小限にするためには、装置自体を頑強、大型にするより
方法がない。しかし、構造材の温度特性は、リニアスケ
ールを支柱等と別個にしない限り影響する。本発明では
、簡単な構造でこのような問題が解決さねている。c)
基準となるリニアスケールが支柱と別個でない場合は、
構成材料の温度ひずみをなくするには、年中温度が一定
であるような環境で行うか、或いは、温度特性の小さい
材料で作るか等のことをしなければならない。
If the linear scale is directly attached to the pillar that supports the drive unit that carries the water level gauge and moves it up and down, the load of the water level gauge (
1009 to K9) are applied to the threaded rods and columns supporting the drive platform, causing load strain, deflection, etc. Furthermore, the temperature characteristics of the structural material occur, resulting in the scale itself of the linear scale attached to it becoming out of order. However, by installing a linear scale perpendicularly to the pedestal separately from the support of the drive section, it is possible to eliminate the effects of load strain, etc., and temperature characteristics of the structural material. b) Since the linear scale is installed separately from the column of the drive section, the column supporting the drive section does not need to be particularly strong or large. If the linear scale is directly attached to the support of the drive unit, the water level gauge should be mounted on the threaded rod or support that supports the drive stand that moves up and down. As mentioned above, this occurs as a scale error of the linear scale. The only way to minimize these distortions and errors is to make the device itself more robust and larger. However, the temperature characteristics of the structural material will affect the linear scale unless it is separate from the support etc. The present invention does not solve these problems with a simple structure. c)
If the reference linear scale is not separate from the column,
In order to eliminate temperature distortion in the constituent materials, it is necessary to do things such as doing it in an environment where the temperature is constant throughout the year, or making it from a material with small temperature characteristics.

また、大小様々の荷重の水位計を乗せて上下する駆動台
を支持するネジ棒や支柱は、荷重ひずみやたわみ等を生
ずるので、その影響を小さくするために、堅固で頑強、
大型にする必要がある。しかしながら、本発明では駆動
部とは別個の柱にリニアスケールを設けているので、駆
動部の支柱の設計に測定精度維持のための格別の配慮を
必要としない。
In addition, the screw rods and columns that support the drive platform that carries water level gauges of various sizes and move up and down are subject to strain and deflection under load, so in order to reduce the effects of this, they must be strong and robust.
It needs to be large. However, in the present invention, since the linear scale is provided on a column separate from the drive section, special considerations for maintaining measurement accuracy are not required in the design of the column of the drive section.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明を適用した高精度水位計検定装vの斜視
面、第2図は高さ検出器の拡大平面図、93図はその要
部正面図、第4図A,bはリニアスケール卦よび移動ス
ケールの正面図、第5図A,一A4、b1〜B4}よび
cは受光トランジスタの1力の処理に関する説明図であ
る。 1・・・・・・基台、2・・・・・・支柱、3・・・・
・・駆動台、4・・・・・・ねじ、7・・・・・・水位
計、 8・・・・・・高さ検出器。
Fig. 1 is a perspective view of a high-precision water level meter verification device v to which the present invention is applied, Fig. 2 is an enlarged plan view of the height detector, Fig. 93 is a front view of its main parts, and Fig. 4 A and b are linear Front views of the scale square and the moving scale, FIGS. 1... Base, 2... Pillar, 3...
...Drive base, 4...Screw, 7...Water level gauge, 8...Height detector.

Claims (1)

【特許請求の範囲】[Claims] 1 基台上に立設した支柱に、水位計を載置するための
駆動台を上下動させるねじを設け、ハンドルまたはつま
みの回転で駆動台を上下移動させる駆動部を構成し、こ
の駆動部とは別個の柱にリニヤスケールを設け、このリ
ニヤスケールの読取りを行う高さ検出器を上記駆動台に
設けたことを特徴とする高精度水位計検定装置。
1. A screw for vertically moving the drive platform on which the water level gauge is placed is provided on a column erected on the base, and a drive unit is configured to move the drive platform up and down by rotation of a handle or knob, and this drive unit A high-precision water level meter verification device, characterized in that a linear scale is provided on a separate column, and a height detector for reading the linear scale is provided on the drive stand.
JP55133240A 1980-09-24 1980-09-24 High precision water level meter verification device Expired JPS597935B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP55133240A JPS597935B2 (en) 1980-09-24 1980-09-24 High precision water level meter verification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP55133240A JPS597935B2 (en) 1980-09-24 1980-09-24 High precision water level meter verification device

Publications (2)

Publication Number Publication Date
JPS56153215A JPS56153215A (en) 1981-11-27
JPS597935B2 true JPS597935B2 (en) 1984-02-21

Family

ID=15099978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP55133240A Expired JPS597935B2 (en) 1980-09-24 1980-09-24 High precision water level meter verification device

Country Status (1)

Country Link
JP (1) JPS597935B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2283575B (en) * 1993-07-15 1996-11-27 Ronald Northedge Methods and systems for calibrating flow meters
CN109883519B (en) * 2019-03-15 2020-12-22 河海大学 Water level gauge detection and calibration device adopting double wells and detection method thereof

Also Published As

Publication number Publication date
JPS56153215A (en) 1981-11-27

Similar Documents

Publication Publication Date Title
JPH10508385A (en) Calibration device for coordinate measuring instrument
CN200975874Y (en) Segment difference detecting instrument
CN102865854B (en) Tilt angle measurement device
CN108981641B (en) A kind of calibration method for small angle measurement instrument digitlization calibrating installation
CN207585513U (en) Stone arch bridge bottom surface strain gauge means under a kind of load
JPS597935B2 (en) High precision water level meter verification device
CN209246981U (en) A kind of novel and multifunctional Bearing testing instrument
CN206019591U (en) A kind of grating sensor caliberating device
RU2739141C1 (en) Stand for calibration of buoy gauges and level gauges
CN210180344U (en) Height measuring device
JP3124659B2 (en) Calibration method of flatness measuring device
CN110657957B (en) Inclined cylindrical lens eccentricity measuring instrument
CN112284296A (en) Measuring device and method for projector workbench movement precision calibration
JPH0545102A (en) Gage for discriminating bottom part of vessel
CN104567734A (en) Method for calibrating length of sine arm of small-angle laser measuring device
CN213396873U (en) High-efficient thickness measuring equipment
CN205411338U (en) Simple and easy dull and stereotyped speed calibrating device of medical motion
CN214747757U (en) Testing device for measuring output value of resistance strain gauge
CN216482738U (en) Measuring device for 90-degree included angle of thread axis
CN214747633U (en) Cylinder-like downward-moving and displacement weighing equipment
CN210426496U (en) Coating thickness detector
CN214748763U (en) Outer rear-view mirror lens rotation angle measuring equipment
CN210154553U (en) On-line large-extension extensometer calibrating device
CN218822349U (en) Building slope detection device
CN108007774A (en) The apparatus and method for measuring flaky material Young's modulus