JPS5979322A - Constant current circuit - Google Patents

Constant current circuit

Info

Publication number
JPS5979322A
JPS5979322A JP19102982A JP19102982A JPS5979322A JP S5979322 A JPS5979322 A JP S5979322A JP 19102982 A JP19102982 A JP 19102982A JP 19102982 A JP19102982 A JP 19102982A JP S5979322 A JPS5979322 A JP S5979322A
Authority
JP
Japan
Prior art keywords
constant current
transistor
value
emitter
resistance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP19102982A
Other languages
Japanese (ja)
Other versions
JPH0551926B2 (en
Inventor
Kazuhisa Ishiguro
和久 石黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Sanyo Electric Co Ltd, Sanyo Denki Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP19102982A priority Critical patent/JPS5979322A/en
Publication of JPS5979322A publication Critical patent/JPS5979322A/en
Publication of JPH0551926B2 publication Critical patent/JPH0551926B2/ja
Granted legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F3/00Non-retroactive systems for regulating electric variables by using an uncontrolled element, or an uncontrolled combination of elements, such element or such combination having self-regulating properties
    • G05F3/02Regulating voltage or current
    • G05F3/08Regulating voltage or current wherein the variable is dc
    • G05F3/10Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics
    • G05F3/16Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices
    • G05F3/20Regulating voltage or current wherein the variable is dc using uncontrolled devices with non-linear characteristics being semiconductor devices using diode- transistor combinations
    • G05F3/30Regulators using the difference between the base-emitter voltages of two bipolar transistors operating at different current densities

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Nonlinear Science (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

PURPOSE:To prevent output constant current from dependence on temperature by setting the resistance value of the second tansistor whose base is connected to the base of the first transistor and the emitter is connected to the constant current source through a resistance, to a specified value. CONSTITUTION:When constant current I1 flows in a constant current source 1, this constant current I1 flows to the emitter of the first transistor 2, and constant current I2 having specified relation with above-mentioned constant current I1 flows from the collector of the second transistor 3 to a load 5. It is denoted by I1=VBE/R1 where VBE represents voltage between the base and emitter of a transistor, and R1 represents the resistance value. If the base current of transistors 2 and 3 is neglected, both ends voltage of the resistance 4 VR2 are shown by VR2=R2I2=VBE1-VBE2. The value of constant current I2 is introduced from this value. By differentiating the result by the temperature T and adjusting, the value R2 of resistance 4 is selected to be reduced to finally a specified value, and output constant current I2 becomes independent of the ambient temperature.

Description

【発明の詳細な説明】 (イ)技術分野 本発明は、定電流回路に関するもので、特に定電流回路
の出力定電流が温度変化に応じて変化しない様、回路定
数を所定の値に設定した定電流回路を提供せんとするも
のである。
[Detailed description of the invention] (a) Technical field The present invention relates to a constant current circuit, and in particular, the circuit constant is set to a predetermined value so that the output constant current of the constant current circuit does not change in response to temperature changes. The purpose is to provide a constant current circuit.

(ロ)技術の背景 IC(集積回路)においては、定電流回路h″−−多用
ているが、従来の定電流回路(ま、電源電圧ぬ変動に対
しては安定な出力定電流を得ることカー出来る反面、周
囲温度が変化し、定電流回路を!I4成する回路素子が
温度変化を起すと、そね、に工Sシて出力電流が変化し
、定電流性が保てなくなるという欠点を有していた。
(b) Background of the technology In ICs (integrated circuits), constant current circuits (h'') are often used, but conventional constant current circuits (well, to obtain a stable output constant current against fluctuations in the power supply voltage) On the other hand, if the ambient temperature changes and the temperature of the circuit elements that make up the constant current circuit changes, the output current will change accordingly, making it impossible to maintain constant current performance. It had

(ハ)発明の要点 本発明は、上述の点に鑑み成されたもので、抵抗(RI
)トランジスタのペースエミッタ間電圧(Vllア)と
に依存する定電流工、を流すこと力1出来る定電流源と
、ダイオード接続され、かつコレクタに前記定電流源が
接続された第1トランジスタと、エミッタに抵抗が接続
され、前記第1トランジスクと電流ミラー関係に接続さ
れた第2トランジスタとから成り、該第2トランジスタ
のコレクタに得らハる出力定電流■2が温度に依存しな
い様、前記抵抗の値R2を所定値に設定したものである
(c) Main points of the invention The present invention has been made in view of the above-mentioned points.
) a constant current source that can flow a constant current that depends on the emitter-to-emitter voltage (Vlla) of the transistor; a first transistor that is diode-connected and whose collector is connected to the constant current source; A resistor is connected to the emitter, and the second transistor is connected to the first transistor in a current mirror relationship, and the output constant current (2) obtained at the collector of the second transistor does not depend on the temperature. The resistance value R2 is set to a predetermined value.

(ロ)実施例 W71図は、本発明の一実施例を示すもので、(1)は
定電流■、を流すことが出来る定電流源、(2)はコレ
クタが該定電流源(11に、エミッタが電源(+VcC
)に、ベースがコレクタと共通にそれぞれ接続された第
1トランジスタ、及び(3)はベースが該第1トランジ
スタ(2)のベースに、エミッタが抵抗(4)を介して
前記電源に、コレクタが負荷(5)Kそれぞれ接続され
た第2トランジスタである。
(B) Example W71 Figure shows an example of the present invention. (1) is a constant current source that can flow a constant current (2), and (2) is a constant current source (11) in which the collector is connected to the constant current source (11). , the emitter is the power supply (+VcC
), a first transistor whose base is commonly connected to the collector, and (3) whose base is connected to the base of the first transistor (2), whose emitter is connected to the power supply via a resistor (4), and whose collector is Loads (5) K are respectively connected second transistors.

しかして、第1図の定電流回路においては、定電流源<
1)に定電流■、が流れると、該定電流工、は、第1ト
ランジスタ(2)のエミッタに流れ、前記定電流■、と
所定の関係を有する定電流■2が第2トランジスタ(3
)のコレクタから負荷(5)に流れる様に成されている
Therefore, in the constant current circuit shown in Fig. 1, the constant current source <
When a constant current (2) flows through the first transistor (2), the constant current (2), which has a predetermined relationship with the constant current (2), flows through the second transistor (3).
) flows to the load (5).

いま、定電流源(1)に流れる電流■1を、11二ふ 
          ・・・・・・ (1)1 (ただし、VB8はトランジスタのベース・エミッタ間
電圧、R,は抵抗値) とし、第1及び第2トランジスタ(2)及び(3)のベ
ース電流を無視すれば、抵抗(4)の両端電圧ぬ、は、
V−2= RtIt ” Vm*+  VIE2   
 ・−・・(21となる、ところで、前記v、ffi 
+及びη82は、それぞれ、 となるから、第(1)乃至第(4)式より、定電流■、
は、 V L −−j−ln (十1. )     叫・・(5
)2 となり、第(5)及び(6)式から、 となる。この第(7)式を整理すると、−・・・・ (
7) となるから、R2I2 = nVT  とおけば、第(
η式は、となる。この第(8)式において、左辺が零と
なる条件は、 であり、結局nが となれば、出力定電流■2は、周囲温度に依存しないも
のとなることは明らかである。従って、最終となる様に
、抵抗(4)の値R7を選択すれば、第2トランジスタ
(3)のコレクタに得られる定電流■2が抗(4)の温
度係数である。そして、第1図に示される回路を単一の
IC内に作成した場合には、前記nが定数となるので、
前記抵抗(4)の値を設定することにより、出力定電施
工、の設定を簡単に行(・得= 2000 ppm7℃
となるので、n=3.42となり、例えば100μへの
出力定電流I、を得る為には、第01)式から0.89
にΩの抵抗(4)を前記第2トランジスタ(3)のエミ
ッタに接続す射ばよいことになる。
Now, the current ■1 flowing through the constant current source (1) is 112 times
...... (1) 1 (where VB8 is the voltage between the base and emitter of the transistor, R is the resistance value), and the base currents of the first and second transistors (2) and (3) are ignored. For example, the voltage across resistor (4) is,
V-2= RtIt ” Vm*+ VIE2
...(21, by the way, the above v, ffi
+ and η82 are as follows, so from equations (1) to (4), constant current ■,
, V L --j-ln (11.) Shout...(5
)2, and from equations (5) and (6), it becomes. If we rearrange this equation (7), −・・・・ (
7) Therefore, if we set R2I2 = nVT, the (
The η formula is as follows. In Equation (8), the condition for the left side to be zero is as follows.If n becomes , it is clear that the output constant current 2 becomes independent of the ambient temperature. Therefore, if the value R7 of the resistor (4) is selected so as to be the final value, the constant current 2 obtained at the collector of the second transistor (3) is the temperature coefficient of the resistor (4). When the circuit shown in FIG. 1 is created in a single IC, n becomes a constant, so
By setting the value of the resistor (4), you can easily set the output constant current (gain = 2000 ppm 7℃)
Therefore, n = 3.42. For example, in order to obtain the output constant current I for 100μ, 0.89 from equation 01)
It is only necessary to connect a resistor (4) of Ω to the emitter of the second transistor (3).

第2図は、第1図における定電流源(1)を具体回連で
示した本発明の別の実施例を示すもので、定電流源(1
)を、ベース・コレクタ間が短絡されてダイオード接続
と成された第3トランジスタ(6)と、該第3トランジ
スタ(6)と電流ミラー関係に接続された第4トランジ
スタ(7)と、第1及び第2分圧抵抗(8)及び(9)
と、該第1及び第2分圧抵抗(8)及び(9)の分圧点
を定電圧とする為の第1及び第2ダイオードGO)及び
(11)とによって構成したものである。しかして、第
2分圧抵抗(9)の値をR1とすれば、該抵抗(9)に
流れる電流I、は、 ■。
FIG. 2 shows another embodiment of the present invention in which the constant current source (1) shown in FIG.
), a third transistor (6) whose base and collector are short-circuited to form a diode connection, a fourth transistor (7) connected to the third transistor (6) in a current mirror relationship, and a first and second voltage dividing resistors (8) and (9)
and first and second diodes GO) and (11) for making the voltage dividing points of the first and second voltage dividing resistors (8) and (9) a constant voltage. Therefore, if the value of the second voltage dividing resistor (9) is R1, the current I flowing through the resistor (9) is: (2).

バー= R+L + V−、” L =   ・・・(
121−垢一 となり、第3及び第4トランジスタ(6)及び(力は電
流ミラー関係にあるから、前記第4トランジスタ(力の
コレクタ電流もI、となり、結局、第1図の定電流源(
1)の条件を満す定電流回路が構成出来る。
Bar=R+L+V-,"L=...(
Since the third and fourth transistors (6) and (force are in a current mirror relationship, the collector current of the fourth transistor (force) is also I, and as a result, the constant current source (
A constant current circuit that satisfies the condition 1) can be constructed.

となり、この第a■式を図示すると第3図の如くなる。When this equation (a) is illustrated, it becomes as shown in FIG. 3.

しかして、第3図からn=3.42とすれば、る。また
、n=3.42の近傍すなわち、2.5 (nく5程度
の範囲でも、出力定電流I2の温度係数は、±3o o
 ppm/℃程度と極めて小さく、略温度に依存しない
定電流を発生することが出来る。従って、本発明は、温
度に依存しない定電流を発生するという本発明の主旨に
基き、出力定電流■2の温度係数が零となる抵抗値ばか
りでなく、その近傍の値を選択し得ることは勿論である
Therefore, if n=3.42 from FIG. In addition, in the vicinity of n=3.42, that is, in the range of about 2.5 (n), the temperature coefficient of the output constant current I2 is ±3o o
It is possible to generate a constant current that is extremely small, on the order of ppm/°C, and is substantially independent of temperature. Therefore, based on the gist of the present invention to generate a constant current that does not depend on temperature, the present invention makes it possible to select not only a resistance value at which the temperature coefficient of output constant current (2) becomes zero, but also a value in the vicinity thereof. Of course.

(ホ)効果 以上述べた如く、本発明に依れば、温度に依存しない定
電流を得ることが出来るので、特に熱的に均一性を保つ
ことの出来るIC内に−おける定電流回路に応用して効
果の高いものである。
(e) Effects As mentioned above, according to the present invention, it is possible to obtain a constant current that is independent of temperature, so it is particularly applicable to constant current circuits in ICs that can maintain thermal uniformity. It is highly effective.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す回路図、第2図は本発
明の別の実施例を示す回路図、及び第3図は本発明の説
明に供する為の特性図であろう主な図番の説明 (1)・・・定電流源、 (2)・・・第1トランジス
タ、(3)・・・第2トランジスタ、 (4)・・・抵
抗。 第1図 十Vcc 第2図   十VCC
Fig. 1 is a circuit diagram showing one embodiment of the present invention, Fig. 2 is a circuit diagram showing another embodiment of the invention, and Fig. 3 is a characteristic diagram for explaining the present invention. Explanation of figure numbers: (1) Constant current source, (2) First transistor, (3) Second transistor, (4) Resistor. Fig. 1 10Vcc Fig. 2 10VCC

Claims (1)

【特許請求の範囲】[Claims] (1)ペース・コレクタ間が短絡され、エミッタが電源
に、コレクタが定電流源に接続された第1トランジスタ
と、ベースが該第1トランジスタのベースに、エミッタ
が抵抗を介して前記電源に接続された第2トランジスタ
とを備え、前記定電流前記抵抗の値R2を定め、前記第
2トランジスタのコレクタに得られる定電流I2が温度
に依存しない様にしたことを特徴とする定電流回路。(
ただし、VIl!+はトランジスタのペース・エミッタ
間電圧で、α(VBv)はその温度係数、R1は抵抗値
で、α(R1)はその温度係数、VT(−一に工;には
、ボルツマン定数、Tは絶対温度、qは電子の電荷)は
熱電圧で、α(′vr)はその温度係数、α(R2)は
抵抗値R2の抵抗の温度係数である。)
(1) A first transistor whose pace and collector are short-circuited, whose emitter is connected to a power source and whose collector is connected to a constant current source, whose base is connected to the base of the first transistor and whose emitter is connected to the power source via a resistor. 2. A constant current circuit, characterized in that the constant current I2 is determined to be a value R2 of the resistor so that the constant current I2 obtained at the collector of the second transistor does not depend on temperature. (
However, VIl! + is the voltage between the transistor's pace and emitter, α (VBv) is its temperature coefficient, R1 is the resistance value, α (R1) is its temperature coefficient, VT (-1) is the Boltzmann constant, and T is the Absolute temperature, q is the electron charge) is the thermal voltage, α('vr) is its temperature coefficient, and α(R2) is the temperature coefficient of resistance of resistance value R2. )
JP19102982A 1982-10-29 1982-10-29 Constant current circuit Granted JPS5979322A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19102982A JPS5979322A (en) 1982-10-29 1982-10-29 Constant current circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19102982A JPS5979322A (en) 1982-10-29 1982-10-29 Constant current circuit

Publications (2)

Publication Number Publication Date
JPS5979322A true JPS5979322A (en) 1984-05-08
JPH0551926B2 JPH0551926B2 (en) 1993-08-04

Family

ID=16267706

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19102982A Granted JPS5979322A (en) 1982-10-29 1982-10-29 Constant current circuit

Country Status (1)

Country Link
JP (1) JPS5979322A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320554A (en) * 1976-08-11 1978-02-24 Hitachi Ltd Constant current circuit

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5320554A (en) * 1976-08-11 1978-02-24 Hitachi Ltd Constant current circuit

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152566A (en) * 2008-12-24 2010-07-08 Fujitsu Semiconductor Ltd Current producing circuit, current producing method and electronic device

Also Published As

Publication number Publication date
JPH0551926B2 (en) 1993-08-04

Similar Documents

Publication Publication Date Title
JP2682470B2 (en) Reference current circuit
KR0136121B1 (en) Overheat detecting circuit
JPH02285408A (en) Band gap voltage reference with advanced temperature correction
JPH08321732A (en) Current mirror circuit and reference current circuit
JP2001510609A (en) Reference voltage source with temperature compensated output reference voltage
JPH05727B2 (en)
US20120153997A1 (en) Circuit for Generating a Reference Voltage Under a Low Power Supply Voltage
JPS5979322A (en) Constant current circuit
JPH05216550A (en) Voltage generator
JPH05204480A (en) Constant voltage circuit
JP2748414B2 (en) Voltage source circuit
JP2729001B2 (en) Reference voltage generation circuit
JPS5819083B2 (en) constant current circuit
JP4163861B2 (en) Semiconductor device
JPH0820915B2 (en) Constant current circuit
JPS5834493Y2 (en) DC constant voltage power supply circuit
US9588538B2 (en) Reference voltage generation circuit
JP3437274B2 (en) Reference voltage circuit
JPH0789304B2 (en) Reference voltage circuit
JPS59144209A (en) Offset voltage trimming circuit of operational amplifier
JPS63258109A (en) Reference current source
JPH1195850A (en) Constant voltage generation circuit
JPH07121256A (en) Current mirror circuit
JPH07183737A (en) Current source circuit
JPS63236403A (en) Current source circuit