JPS5979009A - Gas turbine blade - Google Patents

Gas turbine blade

Info

Publication number
JPS5979009A
JPS5979009A JP18761782A JP18761782A JPS5979009A JP S5979009 A JPS5979009 A JP S5979009A JP 18761782 A JP18761782 A JP 18761782A JP 18761782 A JP18761782 A JP 18761782A JP S5979009 A JPS5979009 A JP S5979009A
Authority
JP
Japan
Prior art keywords
blade
cooling
cooling fluid
small holes
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18761782A
Other languages
Japanese (ja)
Other versions
JPS6327524B2 (en
Inventor
Yasuo Okamoto
岡本 安夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP18761782A priority Critical patent/JPS5979009A/en
Publication of JPS5979009A publication Critical patent/JPS5979009A/en
Publication of JPS6327524B2 publication Critical patent/JPS6327524B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • F01D5/188Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall
    • F01D5/189Convection cooling with an insert in the blade cavity to guide the cooling fluid, e.g. forming a separation wall the insert having a tubular cross-section, e.g. airfoil shape

Abstract

PURPOSE:To increase the quantity of a cooling fluid flowing through small holes formed in the walls of the turbine blade having a cooling fluid passage therein by a method wherein the angle between the line of axis of each of the small holes and the opening surface of each of the holes is determined to be nearly 90 degrees. CONSTITUTION:The cooling fluid passage B is provided with the blade A and the cooling fluid is flowed out from the blade A through the small holes E and Ea formed in the walls D and G of the blade A. Further, the angle between the line of axis of each of the small holes E in the abdominal wall D of the blade A and the opening surface of the fluid inlet side of the small hole Ea is determined to be nearly 90 degrees. As a consequence, it is possible to reduce the loss of pressure of the cooling fluid flowing through the small holes Ea and to increase the quantity of the cooling fluid flowing through the above-mentioned small holes Ea.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、ガスタービンの翼に係シ、特に、流体冷却方
式を採用した翼の改頁に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to blades of gas turbines, and particularly relates to a page break for blades employing a fluid cooling system.

〔発明の背景技術〕[Background technology of the invention]

一般的に、ガスタービンは往復機関に比して小型軽量で
大馬力が得られるなどの多くの利点を有している。この
ようなガスタービンは、通常、第1図に示すように、筒
状のケーシング1内に軸2を軸受を介して設け、この軸
2の両端部とケーシング1との間にそれぞれ圧縮機3と
パワータービン4とを構成し、圧縮機3で圧縮された高
圧空気で燃焼器5内の圧力を高め、この状態で燃料を噴
射させて燃焼させ、この燃焼によって生じた褐温、高圧
のガスをパワータービン4に導いて膨張させることKよ
り軸2の回転力を得るように構成されている。そして、
圧縮機3は、図の場合では、案内翼6と回転翼7とを軸
方向へ配列して軸流型とし、また、パワータービン4は
、軸2に固定された動翼8とケーシング1に固定された
静翼9とを軸方向に交互に配列して構成されている。
In general, gas turbines have many advantages over reciprocating engines, such as being smaller, lighter, and capable of producing greater horsepower. As shown in FIG. 1, such a gas turbine usually has a shaft 2 disposed within a cylindrical casing 1 via bearings, and a compressor 3 disposed between both ends of the shaft 2 and the casing 1. The high-pressure air compressed by the compressor 3 increases the pressure inside the combustor 5, and in this state fuel is injected and combusted, and the brown-temperature, high-pressure gas produced by this combustion is The rotational force of the shaft 2 is obtained from the K which is introduced into the power turbine 4 and expanded. and,
In the case shown in the figure, the compressor 3 is of an axial flow type with guide vanes 6 and rotor vanes 7 arranged in the axial direction, and the power turbine 4 has rotor blades 8 fixed to the shaft 2 and a casing 1. It is constructed by alternately arranging fixed stationary blades 9 in the axial direction.

ところで、上記のように構成されるガスタービンにあっ
て、出力効率を高めるには、パワータービン4の入口に
おける燃焼ガス温度を筒める必要がある。このように燃
焼ガス温度を高めていくと、このガスが高速で静翼9や
動翼8の回シを流れるため、これらの翼温度も上昇し、
翼を構成している金属材の許容温度を越える虞れがある
。このため、燃焼ガス温度を90υ℃以上とするガスタ
ービンにあっては、通常、翼本体の内部に冷却流体通路
を設け、この通路に冷却流体、たとえば空気を強制的に
流すことによって翼本体の温度を安全な値に保つように
している。最近では、出力効率を向上させるために燃焼
ガス温度を増々高める傾向にあシ、これに対処するため
に翼本体内に設けられる冷却流体通路も複雑化している
By the way, in the gas turbine configured as described above, in order to increase the output efficiency, it is necessary to control the combustion gas temperature at the inlet of the power turbine 4. When the combustion gas temperature is increased in this way, the gas flows at high speed through the rotary blades 9 and rotor blades 8, and the temperature of these blades also increases.
There is a risk that the allowable temperature of the metal materials that make up the blades will be exceeded. For this reason, in gas turbines in which the combustion gas temperature is 90υ℃ or higher, a cooling fluid passage is usually provided inside the blade body, and cooling fluid, such as air, is forced to flow through this passage. Trying to keep the temperature at a safe value. Recently, there has been a trend to increase the combustion gas temperature in order to improve output efficiency, and in order to cope with this trend, the cooling fluid passages provided within the blade body have also become more complex.

しかして、上記のように、翼本体内に冷却流体通路を設
けて翼本体を冷却するようにしたものでは必ず冷却流体
供給源を必要とする。この冷却流体供給源として格別な
供給源を別設することはプラントの高価格化を免れ得な
い。このため、通常は、圧縮機3によって高圧化された
空気の一部を導いて冷却流体として用い、翼本体内の冷
却流体通路を通った後の空気を翼本体の外面からガス流
中に向けて吹出させる方式が採用されている。
Therefore, as described above, a blade in which a cooling fluid passage is provided in the blade body to cool the blade body always requires a cooling fluid supply source. Providing a separate supply source as this cooling fluid supply source inevitably increases the cost of the plant. For this reason, normally a part of the air that has been made highly pressurized by the compressor 3 is guided and used as a cooling fluid, and the air that has passed through the cooling fluid passage in the blade body is directed into the gas flow from the outer surface of the blade body. A method of blowing out water is adopted.

〔背景技術の問題点〕[Problems with background technology]

上記のように・9ワータービン4を構成する動翼8およ
び静翼9内に冷却流体通路を設け、これら通路に圧縮機
3で高圧化された空気の一部を導いて各員を冷却し、冷
却に供された後の空気を部外面からガス流中に吹出させ
る方式にあっては、翼の位置によって翼内を通流する冷
却空気の量が大きく左右される。たとえば、第1図中9
gで示される第1段目の静翼では、圧縮機3の出口圧力
と、との静翼9aの回シの圧力との差が小さいため、通
常、静翼9a内の冷却流体通路には僅かの冷却空気しか
流れない。すなわち、静翼9aの回シの圧力は、圧縮機
出口圧力から燃焼器5内での圧力損失を差し引いた値で
あシ、上記圧力損失は、通常僅かであることからして、
結局、前述した差圧が小さく、静翼9a内の冷却流体通
路には少量の冷却空気しか流れないことになる。このよ
うに、静Jg 9 aは、その位置の影響を受け、冷却
空気を所要量確保するのが困難な翼である。そこで、従
来のガスタービンにあっては、静翼9&内にm2図に示
すような冷却流体通路を設けて、冷却空気の量が十分に
得られないことによる冷却性能の低下を緩和させるよう
にしている。すなわち、翼本体A内の中間部から前縁部
にかけて翼本体Aの高さ方向に延びる空洞Bを設けると
ともに中間部から後縁端にかけて上記空洞Bに通じた多
分岐流路Cを設け、上記空洞Bに導かれた空気の一部を
上記空洞Bと翼本体Aの前縁部外面および腹側外面との
間に存在する壁りに、第3図に拡大して示すように、上
記壁りの外内面に対して軸心線Sをそれぞれθ、φ(但
し0=φ)傾斜させて設けられた複数の細孔Eから翼外
へ吹出させ、また、残シの冷却空気を上記空洞B内に挿
設された仕切板Fに設けられている複数の小孔(図示せ
ず)を通して上記空洞Bと翼本体Aの背側外面との間に
存在する壁Gの内面に向けて噴射させるようにしている
。そして、仕切板Fの小孔から噴出した冷却空気の一部
を壁Gに前記と同様に設けられた細孔Eを通して翼外へ
吹出させるとともに残シの空気を前述した多分岐流路C
を介して翼本体Aの後端がら翼外へと吹出させるように
している。すなわち、この翼は、冷却空気が空洞B内を
通流することによる対流冷却、細孔B内を通流すること
にょ却空気が噴射されることによるインピンジ冷却およ
び多分岐流路C内を通流することによる対流冷却によっ
て冷却空気の量が少ないことによる冷却性能の低下を抑
えるようにしている。
As mentioned above, cooling fluid passages are provided in the rotor blades 8 and stationary blades 9 that constitute the 9-power turbine 4, and a portion of the air pressurized by the compressor 3 is guided into these passages to cool each member. In the method of blowing out the air after cooling into the gas flow from the external surface, the amount of cooling air flowing through the inside of the blade is greatly influenced by the position of the blade. For example, 9 in Figure 1
In the first-stage stator vane indicated by g, the difference between the outlet pressure of the compressor 3 and the rotary pressure of the stator vane 9a is small. Only a small amount of cooling air flows. That is, the pressure of the rotor of the stationary blade 9a is the value obtained by subtracting the pressure loss within the combustor 5 from the compressor outlet pressure, and since the pressure loss is usually small,
As a result, the above-mentioned differential pressure is small, and only a small amount of cooling air flows through the cooling fluid passage within the stator vane 9a. In this way, the static Jg 9 a is a wing that is affected by its position and it is difficult to secure the required amount of cooling air. Therefore, in conventional gas turbines, cooling fluid passages as shown in the m2 diagram are provided inside the stationary blades 9& to alleviate the decline in cooling performance due to insufficient amount of cooling air. ing. That is, a cavity B extending in the height direction of the blade body A is provided from the intermediate portion to the leading edge in the blade body A, and a multi-branch flow path C communicating with the cavity B is provided from the intermediate portion to the trailing edge. A part of the air guided into the cavity B is transferred to the wall existing between the cavity B and the leading edge outer surface and ventral outer surface of the wing body A, as shown in an enlarged view in FIG. The remaining cooling air is blown out of the blade through a plurality of small holes E provided with the axis S inclined by θ and φ (0=φ), respectively, with respect to the outer surface of the blade. Injected toward the inner surface of the wall G existing between the cavity B and the dorsal outer surface of the wing body A through a plurality of small holes (not shown) provided in the partition plate F inserted in B. I try to let them do it. Then, a part of the cooling air blown out from the small holes in the partition plate F is blown out of the blade through the small holes E provided in the wall G in the same manner as described above, and the remaining air is sent to the multi-branch flow path C described above.
The air is blown out from the rear end of the blade main body A to the outside of the blade through. In other words, this blade provides convection cooling when cooling air flows through the cavity B, impingement cooling when cooling air is injected into the pores B, and cooling air that flows through the multi-branched flow path C. Convection cooling is used to suppress the decline in cooling performance caused by a small amount of cooling air.

しかしながら、上記のように構成された翼にあっては、
次のような問題があった。すなわち、ガスタービンの翼
において、最も高温に加熱される部分は、前縁部外面お
よび腹側の外面である。したがって、これらに対する冷
却を良好に行なう必要がある。この種の翼を流体、っま
シ空気を使って冷却する場合、翼本体Aの形状からみて
、翼本体Aの前縁部および中間部腹側では、内側からの
インピンジ冷却と外面部での傾斜した細孔による対流冷
却およびフィルム冷却とを併用することが望ましい。す
なわち、インピンジ冷却では高速の空気流が被冷却面に
向けて噴射されるのでその冷却効果が大きい。また、頃
斜した細孔では傾斜に伴なう熱交換面積の増大化で大き
な対流冷却効果が得られ、また前述、めようにフィルム
冷却効果も得られる。したがって、両冷却方式を併用す
れば大きな冷却効果が得られるが、このように併用する
と、圧力損失が著しく増加し、この結果、たとえば第1
図に示した第1段目の静翼9aのように冷却空気供給圧
力と翼回シの圧力との差が元来、小さい場合には冷却空
気の量が大幅に減少し、この量の減少に伴なうマイナス
面が表われる。そこで、使って冷却するようにしている
のであるが、細孔Eを第3図に示したように単に、外面
に対して軸心線Sを傾斜させた状態に設けているので、
細孔Eにおける圧力損失が比較的大きく、この結果、所
要の冷却空気量を得ることが困難で冷却不足が原因して
往々にして翼本体Aにクラックなどが生じる問題があっ
た。
However, in the wing configured as above,
There were the following problems. That is, in a gas turbine blade, the parts that are heated to the highest temperature are the leading edge outer surface and the ventral outer surface. Therefore, it is necessary to properly cool these. When this type of blade is cooled using fluid or pure air, considering the shape of the blade body A, the leading edge and intermediate ventral sides of the blade body A are impinged from the inside and are cooled from the outside. It is desirable to use convective cooling with inclined pores in conjunction with film cooling. That is, in impingement cooling, a high-speed air flow is injected toward the surface to be cooled, so the cooling effect is large. Further, in the case of oblique pores, a large convection cooling effect can be obtained due to the increase in heat exchange area due to the inclination, and a film cooling effect can also be obtained as mentioned above. Therefore, if both cooling methods are used together, a large cooling effect can be obtained, but when used together in this way, the pressure loss increases significantly, and as a result, for example, the first
When the difference between the cooling air supply pressure and the pressure at the blade rotor is originally small, as in the case of the first-stage stator vane 9a shown in the figure, the amount of cooling air decreases significantly, and this amount decreases. The negative aspects associated with this are revealed. Therefore, the pores E are simply provided with the axis S inclined with respect to the outer surface, as shown in Fig. 3.
The pressure loss in the pores E is relatively large, and as a result, it is difficult to obtain the required amount of cooling air, and cracks often occur in the blade body A due to insufficient cooling.

〔発明の目的〕[Purpose of the invention]

本発明は、このような事情に鑑みてななれたもので、そ
の目的とするところは、内部に設けられる冷却流体通路
の圧力損失を十分小さくでき、もって、冷却流体供給圧
力と翼回りの圧力との差が小さい場合でも十分な量の冷
却流体を流すことができ、これによって良好な冷却特性
を発揮でき、しかも効果的なインピンジ冷却力〔発明の
概要〕 本発明に係るガスタービンの翼は、翼本体の外面に一端
側が開口するように設けられる対流冷却およびフィルム
冷却用の細孔を第4図に示すように設けたことを特徴と
している。すなわち、図中D 、 (G)は第3図に示
した壁と同様な壁であシ、とのiDに対流冷却およびフ
ィルム冷却用の細孔Eaを、その細心線Sが壁りの外面
に対してθ度傾き、かつ上記軸心?fMSと細孔Eaの
冷却流体流入側の開口面Hとの間の角度φが90度近傍
となるように設けているのである。なお、第4図中Iは
開口面Hと軸心線Sとの間の角度φを90度近傍に設定
するために設けられた凸部を示し、Jは同じく凹部を示
している。
The present invention was developed in view of these circumstances, and its purpose is to sufficiently reduce the pressure loss of the cooling fluid passage provided inside, thereby reducing the cooling fluid supply pressure and the pressure around the blades. A sufficient amount of cooling fluid can be flowed even when the difference between , is characterized in that pores for convection cooling and film cooling are provided in the outer surface of the blade body so that one end thereof is open, as shown in FIG. That is, D and (G) in the figure are walls similar to the walls shown in FIG. Tilt by θ degrees with respect to the above axis? The angle φ between the fMS and the opening surface H of the cooling fluid inflow side of the pore Ea is approximately 90 degrees. Note that in FIG. 4, I indicates a convex portion provided to set the angle φ between the opening surface H and the axis S to around 90 degrees, and J similarly indicates a concave portion.

〔発明の効果〕〔Effect of the invention〕

上記のような構成であると、今、細孔Eaの−できる。 With the above configuration, the pore Ea can now be formed.

すなわち、第5図に示すように、冷却流体容器Mの壁に
直管状の分枝管Nを接続し、この分枝管Nの軸心線と容
器Mの壁の内面とのV司の角度αを変化させたとき、分
校管Nの損失係数Xは第6図に示すように変化する。こ
れを式で表わすと、X = 0.5 + 0.3 co
sα+Q、2coaαとなる。この第6図から明らかな
ように分枝角αが90度のとき、損失係数が最も小さく
なる。
That is, as shown in FIG. 5, a straight branch pipe N is connected to the wall of the cooling fluid container M, and the angle V between the axis of the branch pipe N and the inner surface of the wall of the container M is determined. When α is changed, the loss coefficient X of the branch tube N changes as shown in FIG. Expressing this in the formula, X = 0.5 + 0.3 co
sα+Q, 2coaα. As is clear from FIG. 6, when the branch angle α is 90 degrees, the loss coefficient is the smallest.

したがって、このときに分校管N内の流速が最大となシ
、流址が最大となる。これから判るように本発明では、
細孔Eaの軸心線Sと細孔Eaの冷却流体流入側開口面
Hとの間の角度φ出される冷却流体の量が多いので、そ
れだけフィルム冷却効果も向上させることができる。さ
らに、細孔Eaでの圧力損失を十分小さくできるので、
第1図に示した第1段静翼9aのように冷却空気供給圧
力と翼回シの圧力との差が小翼の安全性向上化とガスタ
ービンの安定運転化とに寄与できる。
Therefore, at this time, the flow velocity in the branch pipe N is at its maximum, and the flow area is at its maximum. As will be seen, in the present invention,
Since the angle φ between the axial center line S of the pore Ea and the cooling fluid inflow side opening surface H of the pore Ea is large, the amount of the cooling fluid can be improved accordingly. Furthermore, since the pressure loss in the pore Ea can be sufficiently reduced,
As in the first stage stator vane 9a shown in FIG. 1, the difference between the cooling air supply pressure and the pressure of the blade rotation can contribute to improving the safety of the small blade and stabilizing the operation of the gas turbine.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を図面を参照しながら説明する
An embodiment of the present invention will be described below with reference to the drawings.

第7図は本発明を第1図における第1段静翼9aに適用
した例を示すもので第2図と同一部分は同一符号で示し
である。したがって、重複する部分の説明は省略する。
FIG. 7 shows an example in which the present invention is applied to the first stage stationary blade 9a in FIG. 1, and the same parts as in FIG. 2 are designated by the same reference numerals. Therefore, the explanation of the overlapping parts will be omitted.

この実施例においては、翼本体Aの前縁部および腹側に
位置する壁D[第4図に示した細孔、すなわち、軸心線
Sが翼本体外面に対してθ度傾斜しかつ軸心線Sと冷却
流体流入側開口面Hとの間の角度φが90度近傍に設定
された対流冷却およびフィルム冷却用の細孔Eaを複数
膜設けられたインピンジ冷却用の複数の小孔(図示せず
)から壁り、Gの内面に向けて噴射させるようにしてい
る。
In this embodiment, a wall D located on the leading edge and ventral side of the wing body A [the pore shown in FIG. A plurality of small holes for impingement cooling are provided with a plurality of small holes Ea for convection cooling and film cooling, in which the angle φ between the core wire S and the opening surface H on the cooling fluid inflow side is set near 90 degrees ( (not shown) toward the wall and the inner surface of G.

このように、壁りに設けられる細孔Eaを上述した条件
に設定しているので、前述した理由によって、これら細
孔Eaでの圧力損失を減少させることができる。したが
って、実施例に示すようにインピンジ冷却と併用しても
細孔Eaに所要量の冷却空気を通流させることができ、
結局、翼本体Aを良好に冷却することができる。
In this way, since the pores Ea provided in the wall are set to the above-mentioned conditions, the pressure loss in these pores Ea can be reduced for the reason mentioned above. Therefore, as shown in the example, even when used in combination with impingement cooling, the required amount of cooling air can be passed through the pores Ea.
As a result, the blade body A can be cooled well.

なお、実施例においては、壁Gに設けられる細孔Eの形
状を従来のものと同様に設定してい
In addition, in the example, the shape of the pore E provided in the wall G is set in the same way as the conventional one.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はガスタービンの概略構成を説明するための図、
第2図は従来のガスタービンにおけゑ第1段静翼の翼本
体横断面図、第3図は同翼本体に設けられた対流冷却お
よびフィルム冷却用の細孔を拡大して示す図、第4図は
本発明の翼の特徴点を説明するための図、第5図および
第6図は本発明の効果の根拠を説明するだめの図、第7
図は本発明をガスタービンの第1段静翼に適用した一実
施例の翼本体横断面図である。 A・・・翼本体、B・・・空洞、C・・・多分岐流路、
D。 G・・・壁、E r E a・・・対流冷却およびフィ
ルム冷却用の細孔。 出願人 工業技術院長 石 坂 誠 −第1図 す 第2図        第3図 第4図 第6図 分枝角(〆)
FIG. 1 is a diagram for explaining the schematic configuration of a gas turbine.
Figure 2 is a cross-sectional view of the blade body of the first stage stationary blade in a conventional gas turbine; Figure 3 is an enlarged view of the pores for convection cooling and film cooling provided in the blade body; The figure is a diagram for explaining the characteristic points of the blade of the present invention, Figures 5 and 6 are diagrams for explaining the basis of the effects of the present invention, and Figure 7 is a diagram for explaining the features of the blade of the present invention.
The figure is a cross-sectional view of a blade body of an embodiment in which the present invention is applied to a first stage stationary blade of a gas turbine. A...Blade body, B...Cavity, C...Multi-branched flow path,
D. G...Wall, E r E a... Pores for convection cooling and film cooling. Applicant: Makoto Ishizaka, Director, Agency of Industrial Science and Technology - Figure 1 Figure 2 Figure 3 Figure 4 Figure 6 Branch angle (closing)

Claims (1)

【特許請求の範囲】[Claims] 翼本体内に冷却流体通路を設け、上記通路に導かれた冷
却流体の全部または一部を、上記通路と翼本体外面との
間に存在する壁に上記外面に対して軸心線を傾けて設け
られた複数の細孔を通して翼本体外へ吹出させるように
したガスタービンの翼において、前記細孔の全部もしく
は一部は、その軸心線と冷却流体流入側に位置する開口
面との間の角度が90[近傍に設定されてなることを特
徴とするガスタービンの翼。
A cooling fluid passage is provided in the blade body, and all or part of the cooling fluid guided into the passage is directed to a wall existing between the passage and the outer surface of the blade body, the axis of which is inclined with respect to the outer surface. In a gas turbine blade in which air is blown out of the blade body through a plurality of pores, all or part of the pores are located between the axial center line and the opening surface located on the cooling fluid inflow side. A blade of a gas turbine characterized in that the angle of is set in the vicinity of 90 degrees.
JP18761782A 1982-10-27 1982-10-27 Gas turbine blade Granted JPS5979009A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18761782A JPS5979009A (en) 1982-10-27 1982-10-27 Gas turbine blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18761782A JPS5979009A (en) 1982-10-27 1982-10-27 Gas turbine blade

Publications (2)

Publication Number Publication Date
JPS5979009A true JPS5979009A (en) 1984-05-08
JPS6327524B2 JPS6327524B2 (en) 1988-06-03

Family

ID=16209237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18761782A Granted JPS5979009A (en) 1982-10-27 1982-10-27 Gas turbine blade

Country Status (1)

Country Link
JP (1) JPS5979009A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049970A1 (en) * 2003-11-21 2005-06-02 Mitsubishi Heavy Industries, Ltd. Turbine cooling vane of gas turbine engine
JP2010121619A (en) * 2008-11-20 2010-06-03 General Electric Co <Ge> Apparatus relating to turbine airfoil cooling aperture
EP2233693A1 (en) * 2008-01-08 2010-09-29 IHI Corporation Cooling structure of turbine blade

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381481A (en) * 1971-08-26 1975-01-22 Rolls Royce Aerofoil-shaped blades

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1381481A (en) * 1971-08-26 1975-01-22 Rolls Royce Aerofoil-shaped blades

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005049970A1 (en) * 2003-11-21 2005-06-02 Mitsubishi Heavy Industries, Ltd. Turbine cooling vane of gas turbine engine
US7300251B2 (en) 2003-11-21 2007-11-27 Mitsubishi Heavy Industries, Ltd. Turbine cooling vane of gas turbine engine
EP2233693A1 (en) * 2008-01-08 2010-09-29 IHI Corporation Cooling structure of turbine blade
EP2233693A4 (en) * 2008-01-08 2011-03-16 Ihi Corp Cooling structure of turbine blade
US9133717B2 (en) 2008-01-08 2015-09-15 Ihi Corporation Cooling structure of turbine airfoil
JP2010121619A (en) * 2008-11-20 2010-06-03 General Electric Co <Ge> Apparatus relating to turbine airfoil cooling aperture

Also Published As

Publication number Publication date
JPS6327524B2 (en) 1988-06-03

Similar Documents

Publication Publication Date Title
US3388888A (en) Cooled turbine nozzle for high temperature turbine
US9797261B2 (en) Internal cooling of engine components
US5536143A (en) Closed circuit steam cooled bucket
US6264428B1 (en) Cooled aerofoil for a gas turbine engine
US3475107A (en) Cooled turbine nozzle for high temperature turbine
US20100054915A1 (en) Airfoil insert
US3528751A (en) Cooled vane structure for high temperature turbine
EP2725195A1 (en) Turbine blade and corresponding rotor stage
US5791136A (en) Combined-cycle power generation plant, including a gas turbine, an annual exhaust gas channel having swirl suppression vanes, and a heat recovery boiler
US6174133B1 (en) Coolable airfoil
US3844678A (en) Cooled high strength turbine bucket
JPH09505655A (en) Cooled turbine airfoil
JP2017106458A (en) Engine component with film cooling
JP2017141832A (en) Surface contouring
JP2684936B2 (en) Gas turbine and gas turbine blade
GB2155558A (en) Turbomachinery rotor blades
JP7237458B2 (en) rotor blade tip
RU2286464C2 (en) Cooling system of gas-turbine stator nozzles
JP2012132438A (en) Apparatus and method for cooling platform region of turbine rotor blade
JP3213107U (en) Collision system for airfoils
US11015456B2 (en) Near wall leading edge cooling channel for airfoil
JPS59231102A (en) Gas turbine blade
JPS5979009A (en) Gas turbine blade
JP7271093B2 (en) turbomachinery rotor blades
KR102373729B1 (en) Cooling passage for gas turbine rotor blade