JPS5979006A - Air cooling blade of gas turbine - Google Patents

Air cooling blade of gas turbine

Info

Publication number
JPS5979006A
JPS5979006A JP18757882A JP18757882A JPS5979006A JP S5979006 A JPS5979006 A JP S5979006A JP 18757882 A JP18757882 A JP 18757882A JP 18757882 A JP18757882 A JP 18757882A JP S5979006 A JPS5979006 A JP S5979006A
Authority
JP
Japan
Prior art keywords
air
cooling
turbine
passage
shank
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18757882A
Other languages
Japanese (ja)
Other versions
JPS6364601B2 (en
Inventor
Manabu Matsumoto
学 松本
Shigeyoshi Kobayashi
成嘉 小林
Mitsutaka Shizutani
静谷 光隆
Shigeyuki Akatsu
赤津 茂行
Kazuhiko Kawaike
川池 和彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP18757882A priority Critical patent/JPS5979006A/en
Publication of JPS5979006A publication Critical patent/JPS5979006A/en
Publication of JPS6364601B2 publication Critical patent/JPS6364601B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Abstract

PURPOSE:To make it possible to utilize as sealing air the air which has been used for cooling the turbine bucket by a method wherein a cooling air passage in the turbine bucket is made to open in an intermediate chamber between the rotor and the operating gas passage. CONSTITUTION:The outlet port 72 of the cooling air passage 71 in the bucket of the movable blade 7 is made to open in a shank chamber 37 formed within the shank of the blade 7 and a flowout hole 73 is provided underside a sealing fin 55 on the side wall 35 of the shank so as to open in the intermediate chamber 52. Thus, the cooling air passed through the cooling air passage 71 is flowed into the intermediate chamber 52 from the flowout hole 73 so that it is reused as sealing air for the prevention of the flowing out of the operating gas and as leak air for labyrinth sealing.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガスタービンに係シ、特に、空気冷却式のガス
タービン動翼に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to gas turbines, and more particularly to air-cooled gas turbine rotor blades.

〔従来技術〕[Prior art]

ガスタービンの熱効率はタービン入口温度の高温化によ
って著しるしく向上する。このため燃焼ガスであるター
ビン作動ガス通路上にある動翼、静翼、及び動翼を回転
支持しているロータ等を効率良く冷却する仁とは、ター
ビンの効率同上に有効である。この冷却効率は各部の冷
却構造と冷媒の流量によって大きく左右される。一般に
、ガスタービンでは、タービンと直結された圧縮機によ
って生成される燃焼用圧縮空気の1部を抽気することに
よって冷却している。従って、タービンの総合効率上か
らは、極力少ない流量で有効に冷却することが望ましい
The thermal efficiency of a gas turbine is significantly improved by increasing the turbine inlet temperature. Therefore, efficient cooling of the moving blades, stator blades, rotors that rotatably support the moving blades, etc. on the turbine working gas passage, which is combustion gas, is effective in improving the efficiency of the turbine. This cooling efficiency is greatly influenced by the cooling structure of each part and the flow rate of the refrigerant. Generally, a gas turbine is cooled by extracting a portion of the combustion compressed air generated by a compressor directly connected to the turbine. Therefore, from the viewpoint of the overall efficiency of the turbine, it is desirable to effectively cool the turbine with as little flow rate as possible.

以下、従来のガスタービンの冷却構造の1例について、
第1図によシ説明する。同図は動翼及び静翼が組込まれ
ている部分だけを取上げ、部分的に断面をとって示しで
ある。動翼2は通常、図に示すように、ロータへの植設
部となるダブテイル31、シャンク3及び作動ガス通路
6内に突出したパケット21からなる。パケット21の
内部には複雑な冷却流路22が構成され、その出口23
はパケット先端のくぼみ24、あるいは、フィルム冷却
用の吹出し孔25となって、翼外面に開口されて直接作
動ガス通路に通じている。このパケット内部流路22に
対して、図示した例では、冷却空気が矢印33で示すよ
うに、ロータ1の中心部からダプテイル31の部分に形
成したヘソダ32で分岐され、シャンク3を経て導入さ
れている。第2図は第1図に示した動翼冷却流路22の
断面形状と、両側に接する動翼について、π−■矢視図
を示しである0図のように、シャンク3の中央部は重量
を軽減するために削除されておシ、動翼を周方向に配列
することによって隣接するシャンク間に支柱34、前後
の側壁35、プラットホーム36、及びダプテイル31
によって囲まれたシャンク室37が形成されている。そ
して、プラットホーム36の隣シとの合わせ面にはシー
ルピン38が設けてめυ、外側の作動ガス通路6からシ
ャンク室37への高温ガスの侵入を防止している。一方
、静翼4についても、その内部には動翼と類似した冷却
流路41が形成されてお夛、静翼についてはこのほか中
心部に’142が設けてあシ、この管42からダイヤフ
ラム5の内部を経て流出孔51に至シ、ダイヤフラム5
とロータ1間に囲まれて形成された中間室52に連通す
る7−ル空気流路53を設けである。この流路53を通
してシール空気を中間室52に供給し、回転体と静止体
間の間隙を通して作動ガス通路6から高温ガスが中間室
52内に流出しないように、シールフィン54及び55
を設け、且つ、作動ガス通路方向へ一定の空気を供給す
ると共に、ラビリンス。
Below is an example of a conventional gas turbine cooling structure.
This will be explained with reference to FIG. The figure shows only the part where the rotor blades and stationary blades are incorporated, and shows a partial cross section. The rotor blade 2 usually consists of a dovetail 31 serving as an implant to the rotor, a shank 3, and a packet 21 protruding into the working gas passage 6, as shown in the figure. A complicated cooling channel 22 is configured inside the packet 21, and its outlet 23
is a recess 24 at the tip of the packet or a blowout hole 25 for cooling the film, which is opened on the outer surface of the blade and directly communicates with the working gas passage. In the illustrated example, the cooling air is branched from the center of the rotor 1 at a diaphragm 32 formed at the doptail 31, and introduced through the shank 3, into the packet internal flow path 22, as shown by the arrow 33. ing. FIG. 2 shows the cross-sectional shape of the rotor blade cooling channel 22 shown in FIG. The column 34, the front and rear side walls 35, the platform 36, and the doptail 31 are removed to reduce weight, and by arranging the rotor blades in the circumferential direction, the strut 34, the front and rear side walls 35, the platform 36, and the doptail 31
A shank chamber 37 is formed surrounded by. A seal pin 38 is provided on the mating surface of the platform 36 with the adjacent one to prevent hot gas from entering the shank chamber 37 from the outer working gas passage 6. On the other hand, the stator blade 4 also has a cooling passage 41 similar to the rotor blade formed therein, and the stator blade also has a reed 142 in the center. 5 to the outflow hole 51 through the inside of the diaphragm 5.
A 7-hole air flow path 53 is provided which communicates with an intermediate chamber 52 surrounded and formed between the rotor 1 and the rotor 1. Seal air is supplied to the intermediate chamber 52 through this passage 53, and sealing fins 54 and 55 are provided to prevent high temperature gas from flowing out from the working gas passage 6 into the intermediate chamber 52 through the gap between the rotating body and the stationary body.
and supply a constant amount of air in the direction of the working gas passage, as well as a labyrinth.

シール56のリーク空気を補給している。このリーク空
気は後流側のシールフィン57の部分で作動ガスのリー
ク防止用シール空気となって作動ガス通路6内に流入し
ている。
The air leaking from the seal 56 is replenished. This leak air becomes seal air for preventing leakage of the working gas at the seal fin 57 on the downstream side and flows into the working gas passage 6.

このように機内には多くの冷却流路が構成されておシ、
これらの冷却空気はすべて作動ガス中に混入するように
なっているため、低温空気の混入によって、タービン作
動ガスの温度は降下し、熱効率の低下をもたよす。また
、吹出しフィルム冷却は翼表面での作動ガスの流れを乱
し同様にタービン効率に影響するため、極力避けた冷却
構造が望ましい。更に、フィンシールのシール空気流量
には作動ガス流出防止に必要なシール特性があって、単
に流れ方向を確保するだけの址では不足でかなシの流量
が必要であシ、2ビリンスシールからのリーク空気と合
わせて、はとんど、冷却には供しない無駄な空気である
。今後更にガスタービンの高温化を図るためには、この
ような無駄な空気を極力少なくして節約を図った冷却シ
ステムが必要である。
In this way, there are many cooling channels configured inside the aircraft.
Since all of this cooling air is mixed into the working gas, the temperature of the turbine working gas decreases due to the mixing of low-temperature air, leading to a decrease in thermal efficiency. Furthermore, since blown film cooling disturbs the flow of working gas on the blade surface and similarly affects turbine efficiency, it is desirable to have a cooling structure that avoids it as much as possible. Furthermore, the sealing air flow rate of the fin seal has sealing characteristics necessary to prevent the leakage of working gas, and simply ensuring the flow direction is insufficient, so a large flow rate is required, and leakage from the 2-birinsing seal is required. Together with air, it is mostly wasted air that is not used for cooling. In order to further increase the temperature of gas turbines in the future, a cooling system that reduces wasteful air as much as possible is necessary.

〔発明の目的〕[Purpose of the invention]

本発明の目的は高温化に適したガスタービン空冷翼を提
供するにある。
An object of the present invention is to provide a gas turbine air-cooled blade suitable for high temperatures.

〔発明の概要〕[Summary of the invention]

本発明の要点は、パケット内の冷却流路をロータとター
ビン作動ガス通路間の中間室に開口することにより、パ
ケットの冷却に供した空気をシール空気として再利用す
ることにある。
The gist of the invention is to reuse the air used for cooling the packet as sealing air by opening the cooling passage within the packet into an intermediate chamber between the rotor and the turbine working gas passage.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の1実施例を第3図によって説明する。図
示した動翼は外形状を変えることなく内部の冷却流路構
成だけを変えたもので、第1図に示したガスタービンに
適用できるQで、動翼外の部分のタービン構成図は省略
した。す次わら、本発明では、vJ翼7内の冷却流路7
1の出ロア2を、シャンク間に形成されるシャンク室3
7に開口し、さらに、シャンク側壁35のシールフィン
55よシも内径側に流出孔73を開口するように構成し
たものである。この構成によシ、冷却空気はダプテイル
部のヘッダ32から矢印74のように、パケット内の冷
却流路71に流入し、先端部で流れの向きを逆転してシ
ャンク室37に流入した後、流出孔73からロータ1と
ダイヤスラム5間に形成された中間室52に流出して、
作動ガス流出防止用シール空気及び2ビリンスシールの
リーク空気として供せられる。すなわち、本発明はパケ
ットの冷却空気を回収してシール空気として流用するこ
とにニジ、従来に要したシール空気の大部分を節約でき
、冷却空気混入によるタービン作動ガスの温度低下を軽
減できる。また、冷却流路の出口圧力が作動ガス圧力の
影響を受けず、且つ、各tlrf、w!1共共通の一定
圧にすることができ、この圧力は流出孔73の流路面積
によって調整しうるため、動翼の冷却に要、する空気流
源の制御を容易、且つ、精度よくできる利点がある。更
に、上記の一定圧力直を動員人口の圧力以上の適尚な直
に設定することによシ、回収空気をプラットホーム36
から、わずかに作動ガス通路に流出させることによって
、従来、要したシールビン38を省略することができる
。実施例のパケット内流路では、2本の流路を1本に合
流させて戻し、且つ、1本のフィルム冷却用流路を加え
て構成した場合を示しであるが、本発明は流路出口の1
部あるいは全部を中間室に開口する以外の流路構成、冷
却空気のパケット内への導入系路等を制約するものでは
なく、また、シャンク室37を経ないで、例えば、支柱
34を利用して中間室52に導出する場合にも適用しう
る。
Hereinafter, one embodiment of the present invention will be described with reference to FIG. The illustrated rotor blade has only the internal cooling flow path configuration changed without changing its external shape, and is Q that can be applied to the gas turbine shown in Figure 1. The turbine configuration diagram of the outside of the rotor blade has been omitted. . Next, in the present invention, the cooling channel 7 in the vJ blade 7
The output lower 2 of 1 is connected to the shank chamber 3 formed between the shanks.
In addition, the seal fin 55 of the shank side wall 35 is also configured to have an outflow hole 73 opened on the inner diameter side. With this configuration, the cooling air flows from the header 32 of the doptail part into the cooling channel 71 in the packet as shown by the arrow 74, reverses the flow direction at the tip, and flows into the shank chamber 37. It flows out from the outflow hole 73 into the intermediate chamber 52 formed between the rotor 1 and the diaphragm 5,
It is used as seal air to prevent the leakage of working gas and as leak air for two-birinse seals. That is, the present invention recovers the cooling air of the packet and uses it as sealing air, thereby saving most of the sealing air required in the past, and reducing the temperature drop in the turbine working gas due to mixing of the cooling air. Moreover, the outlet pressure of the cooling flow path is not affected by the working gas pressure, and each tlrf, w! The advantage is that the air flow source required for cooling the rotor blades can be easily and accurately controlled because the pressure can be set to a common constant pressure and this pressure can be adjusted by the flow path area of the outflow hole 73. There is. Furthermore, by setting the above-mentioned constant pressure to an appropriate value higher than the pressure of the mobilized population, the recovered air can be transferred to the platform 36.
By allowing a small amount of the gas to flow out into the working gas passage, the seal bottle 38 that was conventionally required can be omitted. The channel in the packet of the embodiment shows a case in which two channels are merged into one and returned, and one film cooling channel is added, but the present invention Exit 1
This does not limit the flow path configuration other than opening part or all of the part into the intermediate chamber, or the introduction path of the cooling air into the packet. It can also be applied to the case where it is led out to the intermediate chamber 52.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、動翼冷却用の空気を回収して臂効に活
用することによシ、少ない冷却空気流量で高効率のガス
タービンが得られる。
According to the present invention, a highly efficient gas turbine can be obtained with a small flow rate of cooling air by recovering the air for cooling the rotor blades and utilizing it for arm effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のガスタービンの動翼及び静翼まわυを示
す部分図、第2図は第1図の■−且矢視萌而面、第3図
は本発明による動翼の1実施例の部分断面図である。 7・・・aL37・・・シャンク室、38・・・シール
ピン、52・・・中間室、s 4・・・シールフィン、
55・・・シールフィン、56・・・ラビリンスシール
、71・・・冷却子1I¥1 一2二 第20
Fig. 1 is a partial view showing the rotor blade and stator blade rotation υ of a conventional gas turbine, Fig. 2 is a partial view of Fig. 1 taken from - and arrow, and Fig. 3 is an embodiment of the rotor blade according to the present invention. FIG. 3 is a partial cross-sectional view of an example. 7... aL37... Shank chamber, 38... Seal pin, 52... Intermediate chamber, s 4... Seal fin,
55... Seal fin, 56... Labyrinth seal, 71... Cooler 1I ¥1 122 20th

Claims (1)

【特許請求の範囲】[Claims] 1、パケットの内部に空気冷却式の冷却流路を有するガ
スタービン動翼において、前記パケット内の前記冷却流
路の出口を、タービン作動ガス通路外で、通路を形成す
る壁と、ロータとの間に形成される中間室に開口するよ
うに構成したことを特徴とするガスタービン空冷動翼。
1. In a gas turbine rotor blade having an air-cooled cooling passage inside the packet, the outlet of the cooling passage in the packet is connected to a wall forming the passage outside the turbine working gas passage and the rotor. A gas turbine air-cooled rotor blade configured to open into an intermediate chamber formed between the blades.
JP18757882A 1982-10-27 1982-10-27 Air cooling blade of gas turbine Granted JPS5979006A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18757882A JPS5979006A (en) 1982-10-27 1982-10-27 Air cooling blade of gas turbine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18757882A JPS5979006A (en) 1982-10-27 1982-10-27 Air cooling blade of gas turbine

Publications (2)

Publication Number Publication Date
JPS5979006A true JPS5979006A (en) 1984-05-08
JPS6364601B2 JPS6364601B2 (en) 1988-12-13

Family

ID=16208548

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18757882A Granted JPS5979006A (en) 1982-10-27 1982-10-27 Air cooling blade of gas turbine

Country Status (1)

Country Link
JP (1) JPS5979006A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077034A (en) * 1997-03-11 2000-06-20 Mitsubishi Heavy Industries, Ltd. Blade cooling air supplying system of gas turbine
JP2009162226A (en) * 2007-12-29 2009-07-23 General Electric Co <Ge> Turbine nozzle segment
CN102269016A (en) * 2011-07-09 2011-12-07 潍坊雷诺特动力设备有限公司 Clapboard steam seal for steam power device
JP2013142397A (en) * 2012-01-09 2013-07-22 General Electric Co <Ge> Turbine stator-vane seal carrier with slots for cooling and assembly
US8607419B2 (en) 2007-04-10 2013-12-17 Cordstrap B.V. Buckle for securing goods
EP1653047B1 (en) * 2004-10-27 2015-04-29 Snecma Gas turbine rotor blade
CN105927292A (en) * 2016-06-02 2016-09-07 东方电气集团东方汽轮机有限公司 Steam seal pressure plate structure with sealing key function

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH033501U (en) * 1989-05-25 1991-01-14

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710704A (en) * 1980-06-25 1982-01-20 Hitachi Ltd Gas turbine blade

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710704A (en) * 1980-06-25 1982-01-20 Hitachi Ltd Gas turbine blade

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6077034A (en) * 1997-03-11 2000-06-20 Mitsubishi Heavy Industries, Ltd. Blade cooling air supplying system of gas turbine
EP1653047B1 (en) * 2004-10-27 2015-04-29 Snecma Gas turbine rotor blade
US8607419B2 (en) 2007-04-10 2013-12-17 Cordstrap B.V. Buckle for securing goods
JP2009162226A (en) * 2007-12-29 2009-07-23 General Electric Co <Ge> Turbine nozzle segment
CN102269016A (en) * 2011-07-09 2011-12-07 潍坊雷诺特动力设备有限公司 Clapboard steam seal for steam power device
JP2013142397A (en) * 2012-01-09 2013-07-22 General Electric Co <Ge> Turbine stator-vane seal carrier with slots for cooling and assembly
CN105927292A (en) * 2016-06-02 2016-09-07 东方电气集团东方汽轮机有限公司 Steam seal pressure plate structure with sealing key function

Also Published As

Publication number Publication date
JPS6364601B2 (en) 1988-12-13

Similar Documents

Publication Publication Date Title
US6077034A (en) Blade cooling air supplying system of gas turbine
US6506013B1 (en) Film cooling for a closed loop cooled airfoil
US6435814B1 (en) Film cooling air pocket in a closed loop cooled airfoil
EP0911489B1 (en) Gas turbine cooling stationary blade
US5399065A (en) Improvements in cooling and sealing for a gas turbine cascade device
US3767322A (en) Internal cooling for turbine vanes
EP0955449B1 (en) Gas turbine blade
JP3426902B2 (en) Gas turbine cooling vane
JP2580356B2 (en) Cooled turbine blade
US6468031B1 (en) Nozzle cavity impingement/area reduction insert
JPH10220203A (en) Stationary blade for gas turbine
JPS6119804B2 (en)
JPS58126402A (en) Aerofoil which can be cooled
JPH11132005A (en) Gas-turbine stationary blade
JPH09505655A (en) Cooled turbine airfoil
GB1261765A (en) Improvements in axial flow turbomachinery vanes
JPH0552102A (en) Gas turbine
US6065931A (en) Gas turbine moving blade
JPS5979006A (en) Air cooling blade of gas turbine
CA2263576C (en) Stationary blade of gas turbine
US6572329B2 (en) Gas turbine
JPS62153504A (en) Shrouding segment
JPH0463901A (en) Gas turbine cooling blade
JPH04311604A (en) Turbine stationary blade
JPH11200893A (en) Coolant recovery type gas turbine