JPS5978954A - Coating material for optical glass fiber - Google Patents

Coating material for optical glass fiber

Info

Publication number
JPS5978954A
JPS5978954A JP57186327A JP18632782A JPS5978954A JP S5978954 A JPS5978954 A JP S5978954A JP 57186327 A JP57186327 A JP 57186327A JP 18632782 A JP18632782 A JP 18632782A JP S5978954 A JPS5978954 A JP S5978954A
Authority
JP
Japan
Prior art keywords
diamine
coating material
component
optical fiber
precursor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57186327A
Other languages
Japanese (ja)
Other versions
JPS636506B2 (en
Inventor
Mitsuo Yoshihara
吉原 三男
Keichu Morikawa
森川 敬忠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Electric Industrial Co Ltd filed Critical Nitto Electric Industrial Co Ltd
Priority to JP57186327A priority Critical patent/JPS5978954A/en
Publication of JPS5978954A publication Critical patent/JPS5978954A/en
Publication of JPS636506B2 publication Critical patent/JPS636506B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Paints Or Removers (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve the adhesive strength to an optical fiber and the heat resistance by adding a polyimide precursor obtd. by reacting equimolecular amounts of a tetracarboxylic acid component and a diamine component with each other to a solvent which dissolves the precursor. CONSTITUTION:The titled material consists of a polyimide precursor obtd. by reacting almost equimolecular amounts of a tetracarboxylic acid component and a diamine component with each other and an org. solvent which dissolves the precursor. The tetracarboxylic acid component is selected from tetracarboxylic acids such as pyromellitic acid and benzophenonetetracarboxylic acid, tetracarboxylic acid anhydrides and lower alkyl esters of tetracarboxylic acids. The diamine component includes silico-diamine having amino groups at both terminals of the molecule. The coating material has superior adhesive strength to an optical fiber as well as superior heat resistance.

Description

【発明の詳細な説明】 この発明は光伝送用の光学ガラスファイバを被覆するた
めの耐熱性材料に関する。
DETAILED DESCRIPTION OF THE INVENTION This invention relates to a heat-resistant material for coating optical glass fibers for light transmission.

光伝送に用いられる光学ガラスファイバ(以下、光ファ
イバという)は、脆く、傷がつきやすいうえに可とう性
に乏しいので、このような傷が原因となってわずかな外
力によっても容易に破壊する。
Optical glass fibers (hereinafter referred to as optical fibers) used for optical transmission are brittle, easily damaged, and have poor flexibility, so they can be easily destroyed by even the slightest external force due to such scratches. .

したがって、従来より、光ファイバはガラス母材から紡
糸した直後にその表面に樹脂被覆が施されている。
Therefore, conventionally, the surface of an optical fiber is coated with a resin immediately after being spun from a glass base material.

このような樹脂被覆材料としては、従来、エポキシ樹脂
やウレタン樹脂などが用いられているが、これらは耐熱
性の点で満足できるものではない。
Conventionally, epoxy resins, urethane resins, and the like have been used as such resin coating materials, but these are not satisfactory in terms of heat resistance.

この点を改善するために、耐熱性被覆材料として、ポリ
イミドが提案されているが、この種の材料は光ファイバ
との密着性か悪く、耐湿性などの面で長期信頼性に欠け
るなどの問題点がある。
To improve this point, polyimide has been proposed as a heat-resistant coating material, but this type of material has problems such as poor adhesion to the optical fiber and lack of long-term reliability in terms of moisture resistance. There is a point.

この発明は、上記の問題点を解決するためになされたも
のであって、とくに耐熱性にすぐれるとともに、光ファ
イバとの密着性にすぐれる被覆材料を提供することを目
的としている。
The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a coating material that has particularly excellent heat resistance and excellent adhesion to optical fibers.

すなわち、この発明は、テトラカルボン酸またはその酸
無水物ないし低級アルキルエステルと分子両末端にアミ
ン基を有するシリコン系ジアミンを一成分として含むジ
アミンとを略等モル反応させて得られるポリイミド前駆
体およびこの前駆体を溶解する有機溶剤を含むことを特
徴とする光フアイバ用被覆材料に係るものである。
That is, the present invention provides a polyimide precursor obtained by reacting tetracarboxylic acid or its acid anhydride or lower alkyl ester with a diamine containing as one component a silicone diamine having amine groups at both ends of the molecule, and The present invention relates to an optical fiber coating material characterized by containing an organic solvent that dissolves this precursor.

この発明の被覆材料によれば、これを光ファイバの表面
に塗布して有機溶剤を揮散除去したのち、さらに高温下
で加熱処理することによりポリイミド前駆体が閉環(イ
ミド化)して耐熱性にすぐれるポリイミド被膜を与える
。この被膜は、上記前駆体の合成原料であるジアミンの
一成分として分子両末端にアミン基を有するシリコン系
ジアミンを用いていることから、光ファイバに対する密
着性か著しく改善されたものとなり、常態下はもちろん
のこと高湿条件下においても光ファイバの強度を高めて
、長期信頼性の向上に大きく寄与する。
According to the coating material of the present invention, the coating material is applied to the surface of an optical fiber to volatilize and remove the organic solvent, and then heat-treated at a high temperature to close the polyimide precursor (imidize) and make it heat resistant. Provides an excellent polyimide coating. This coating uses silicone-based diamine, which has amine groups at both ends of the molecule, as a component of diamine, which is a raw material for the synthesis of the precursor, so it has significantly improved adhesion to optical fibers, and under normal conditions. It also increases the strength of optical fibers even under high humidity conditions, greatly contributing to improving long-term reliability.

この発明のポリイミド前駆体を合成するために用いられ
るテトラカルボン酸成分としては、たとえばピロメリッ
ト酸、ベンゾフェノンテトラカルボン酸、ビフェニルテ
トラカルボン酸、ナフタレンテトラカルボン酸、シクロ
ペンタンテトラカルボン酸、1・2・3・4−ブタンテ
トラカルボン酸などの各種テトラカルボン酸およびその
酸無水物ないし低級アルキルエステルなどがある。
Examples of the tetracarboxylic acid component used to synthesize the polyimide precursor of the present invention include pyromellitic acid, benzophenonetetracarboxylic acid, biphenyltetracarboxylic acid, naphthalenetetracarboxylic acid, cyclopentanetetracarboxylic acid, 1.2. Examples include various tetracarboxylic acids such as 3,4-butanetetracarboxylic acid, and their acid anhydrides and lower alkyl esters.

上記テトラカルボン酸成分と反応させるジアミン成分と
しては、分子両末端にアミノ基を有するシリコン系ジア
ミンと、これ以外の脂肪族、芳香族、脂環族、異節環族
などの種々のジアミンとが用いられ、後者のジアミンと
してはとくに芳香族ジアミンが好ましく用いられる。
The diamine components to be reacted with the above tetracarboxylic acid component include silicone diamines having amino groups at both ends of the molecule, and various other diamines such as aliphatic, aromatic, alicyclic, and heterocyclic diamines. As the latter diamine, aromatic diamines are particularly preferably used.

分子両末端にアミン基を有するシリコン系ジアミンとし
ては、一般に下記の構造式; %式% (式中、klはメチレン基、フェニレン基または置換フ
ェニレン基、k2はメチル基、フェニル基または置換フ
ェニル基、Xは酸素原子、フェニレン基または置換フェ
ニレン基、nは整数でに1がメチレン基の場合は3また
は4、フェニレン基もしくは置換フェニレン基の場合は
1である)で表わされるものが好ましく用いられる。そ
の具体例を挙げれば下記の如くである。
Silicon-based diamines having amine groups at both ends of the molecule generally have the following structural formula; , X is an oxygen atom, a phenylene group or a substituted phenylene group, n is an integer, and when 1 is a methylene group, it is 3 or 4, and when 1 is a phenylene group or a substituted phenylene group, it is 1). . Specific examples thereof are as follows.

CH3CH3 CHa    CHs CH3CH3 CHa   CH3 CeHs   CaB6 1 CeHs   CeHs CeHs   CaB6 CH3CH3 CH3CHa CHa    CHa CH3CH3 CH3CH3 上記のシリコン系ジアミンの使用量は、ジアミン成分全
体の0.1〜30モル%、好ましくは1〜20モル%と
するのが望ましい。この量が少なすぎては光ファイバに
対する密着性改善効果を得にくく、また多くなりすぎる
と耐熱性などを損なう結果となり、いずれも好ましくな
い。
CH3CH3 CHa CHs CH3CH3 CHa CH3 CeHs CaB6 1 CeHs CeHs CeHs CaB6 CH3CH3 CH3CHa CHa CHa CH3CH3 CH3CH3 The amount of the silicone diamine used is 0.1 to 30 mol% of the total diamine component , preferably 1 to 20 mol% is desirable. If this amount is too small, it will be difficult to obtain the effect of improving adhesion to the optical fiber, and if this amount is too large, heat resistance will be impaired, both of which are undesirable.

シリコン系ジアミンと併用される他のジアミン成分とし
ては、前述したとおり芳香族ジアミンが好ましいが、そ
の具体例としては、m−フェニレンジアミン、P−フェ
ニレンジアミン、4・4′−ジジ アミノフェニルプロパン、4・4′−ジアミノジフエ△ ニルエタン、4・4′−ジアミノジフェニルメタン、ベ
ンジジン、3・3′−ジメトキシベンジジン、4・4′
−ジアミノジフエニルスルフイド、P−ビス(4−アミ
ノフェノキシベンゼン)、m−ビス(4−P−アミノフ
ェノキシ)ベンゼン、4・4′−ジアミノジフェニルエ
ーテル、4・4′−ジアミノジフェニルスルホン、m−
キシレンジアミン、P−キシレンジアミン、4・4′−
ジアミノシクロヘキシルメタン、ヘキサメチレンジアミ
ン、ヘプタメチレンジアミン、オクタメチレンジアミン
、ノナメチレンジアミン、4・4′−ジメチルへブタメ
チレンジアミン、3−メトキシへブタメチレンジアミン
、2・11−ジアミノドデカン、1・4−ジアミノシク
ロヘキサン、2・2′−ジアミノジエチルエーテル、2
・2′−ジアミノジエチルチオエーテノペ3・3′−ジ
アミノジプロポキシエタン、2・6−シアミツピリジン
、グアナミン、2・5−ジアミノ−1・3・4−オキサ
シアソール、2−(3’−アミノフェニル)−5−アミ
ノベンゾオキサゾール、ビス(4−アミノフェニル)ホ
スフィンなどが挙げられる。
As other diamine components used in combination with silicone diamine, aromatic diamines are preferred as described above, and specific examples include m-phenylene diamine, P-phenylene diamine, 4,4'-didiaminophenylpropane, 4,4'-diaminodiphenyl ethane, 4,4'-diaminodiphenylmethane, benzidine, 3,3'-dimethoxybenzidine, 4,4'
-diaminodiphenyl sulfide, P-bis(4-aminophenoxybenzene), m-bis(4-P-aminophenoxy)benzene, 4,4'-diaminodiphenyl ether, 4,4'-diaminodiphenylsulfone, m −
Xylene diamine, P-xylene diamine, 4,4'-
Diaminocyclohexylmethane, hexamethylene diamine, heptamethylene diamine, octamethylene diamine, nonamethylene diamine, 4,4'-dimethylhebutamethylene diamine, 3-methoxyhbutamethylene diamine, 2,11-diaminododecane, 1,4- Diaminocyclohexane, 2,2'-diaminodiethyl ether, 2
・2'-Diaminodiethylthioetenope 3,3'-diaminodipropoxyethane, 2,6-cyamitupyridine, guanamine, 2,5-diamino-1,3,4-oxacyazole, 2-(3 '-aminophenyl)-5-aminobenzoxazole, bis(4-aminophenyl)phosphine, and the like.

テトラカルボン酸成分とジアミン成分との反応は、両成
分を略等モル使用して有機溶剤中0−200℃で1〜1
0時間反応させることにより行なわれる。ここで用いる
有機溶剤としては、たとえばN・I’J−ジメチルホル
ムアミド、N−N−ジメチルアセトアミド、N−メチル
−2−ピロリドン、N−メチルカプロラクタム、フェノ
ール、キシレノール、クレゾールなどが挙げられる。
The reaction between the tetracarboxylic acid component and the diamine component is carried out using approximately equal moles of both components in an organic solvent at 0-200°C.
This is carried out by reacting for 0 hours. Examples of the organic solvent used here include N.I'J-dimethylformamide, N-N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, phenol, xylenol, and cresol.

このようにして得られるポリイミド前駆体の分子量とし
ては、N−メチル−2−ピロリドン中0.59 / 1
00m1V、30°Cでの固有粘度〔η〕が0.3〜3
程度のものである。この前駆体は光ファイバへ塗布後の
高温加熱処理によって閉環(イミド化)して不溶不融の
ポリイミドに変換される。
The molecular weight of the polyimide precursor thus obtained is 0.59/1 in N-methyl-2-pyrrolidone.
Intrinsic viscosity [η] at 00m1V and 30°C is 0.3 to 3
It is of a certain degree. This precursor is ring-closed (imidized) by high-temperature heat treatment after coating on the optical fiber, and converted into insoluble and infusible polyimide.

この発明の光ファイバ用被覆拐料は、このようにして得
られるポリイミド前駆体の有機溶剤溶液からなるもので
あるが、ポリイミド前駆体の濃度としては、一般に5〜
30重量%程度となるように調整するのが望ましい。こ
の溶剤溶液には、必要に応じて従来公知の各種の添加剤
を添加しても差し支えない。
The optical fiber coating material of the present invention is composed of an organic solvent solution of the polyimide precursor obtained in this way, and the concentration of the polyimide precursor is generally 5 to 5.
It is desirable to adjust the content to about 30% by weight. Various conventionally known additives may be added to this solvent solution as necessary.

以下に、この発明の実施例を記載してより具体的に説明
する。なお、以下において、ポリイミド前駆体の固有粘
度とは、N−メチル−2−ピロリドン中0.5 f/1
00m/、30″Cで測定した値を意味するものである
EXAMPLES Below, examples of the present invention will be described in more detail. In addition, in the following, the intrinsic viscosity of the polyimide precursor is 0.5 f/1 in N-methyl-2-pyrrolidone.
It means the value measured at 00 m/, 30''C.

実施例1 攪拌機、温度計および還流冷却器を備えた300CCの
四つロフラスコに、無水ピロメリット酸21,810.
1モル)、ジアミノジフェニルメタン17.89 (0
,09モル)、ビス(3−アミノプロピル)テトラメチ
ルジシロキサン2.59 (0,01モル)およびジメ
チルホルムアミド168gを仕込み、20〜25°Cで
10時間反応させて、固有粘度0.5、樹脂濃度20重
量%のポリイミド前駆体溶液を得、これをこの発明の光
フアイバ用被覆材料とした。
Example 1 In a 300 CC four-necked flask equipped with a stirrer, thermometer and reflux condenser, 21,810 ml of pyromellitic anhydride was added.
1 mol), diaminodiphenylmethane 17.89 (0
, 09 mol), bis(3-aminopropyl)tetramethyldisiloxane 2.59 (0.01 mol) and 168 g of dimethylformamide were reacted at 20 to 25°C for 10 hours to obtain an intrinsic viscosity of 0.5, A polyimide precursor solution with a resin concentration of 20% by weight was obtained, and this was used as the coating material for optical fiber of the present invention.

実施例2 実施例1と同様の四つ目フラスコに、無水ベンゾフェノ
ンテトラカルボン酸33’、2 fl (0,1モル)
、ジアミノジフェニルエーテル17.0g(0,085
モル)、ビス(3−アミノプロピル)テトラメチルジシ
ロキサン3.79 (0,015モル)およびN−メチ
ル−2−ピロリドン216gを仕込み、20〜25°C
て10時間反応させて、固有粘度1.3、樹;脂濃度2
0重址%のポリイミド前駆体溶液を得、これをこの発明
の光フアイバ用被覆材料とした。
Example 2 In a fourth flask similar to Example 1, 2 fl (0.1 mol) of anhydrous benzophenonetetracarboxylic acid 33' was added.
, diaminodiphenyl ether 17.0g (0,085
mol), 3.79 (0,015 mol) of bis(3-aminopropyl)tetramethyldisiloxane, and 216 g of N-methyl-2-pyrrolidone were heated at 20-25°C.
After reacting for 10 hours, the intrinsic viscosity was 1.3 and the resin concentration was 2.
A 0% polyimide precursor solution was obtained, and this was used as the coating material for optical fiber of the present invention.

実施例3 実施例1と同様の四つロフラスコに、無水3・3′・4
・4′−ビフェニルテトラカルボン酸14.7g(0,
05モル)、無水2・3・3′・4′−ビフェニルテト
ラカルボン酸14.7g(0,05モル)、ジアミノジ
フェニルエーテル19.89 (0,08モル)、ビス
(3−アミノプロピル)テトラフェニルジシロキサン5
.09 (0,02モル)およびクレゾール217gを
仕込み、180〜190’Cで5時間反応させて、固有
粘度1.8、樹脂濃度20亀量%のポリイミド用 前駆体溶液を得、これをこの発明の光ファイバ被△ 覆材材とした。
Example 3 In a four-loaf flask similar to Example 1, anhydrous 3, 3', 4
・4'-biphenyltetracarboxylic acid 14.7g (0,
05 mol), 2,3,3',4'-biphenyltetracarboxylic anhydride 14.7 g (0.05 mol), diaminodiphenyl ether 19.89 (0.08 mol), bis(3-aminopropyl)tetraphenyl Disiloxane 5
.. 09 (0.02 mol) and 217 g of cresol were charged and reacted at 180 to 190'C for 5 hours to obtain a polyimide precursor solution with an intrinsic viscosity of 1.8 and a resin concentration of 20 weight %. The optical fiber coating material was used as a coating material.

比較例 ビス(3−アミノプロピル)テトラメチルジシロキサン
を使用せず、ジアミノジフェニルメタンの使用量を0.
1モルとした以外は、実施例1と全く同様にしてポリイ
ミド前駆体の溶液を得、これを光フアイバ用被覆材料と
した。
Comparative Example Bis(3-aminopropyl)tetramethyldisiloxane was not used, and the amount of diaminodiphenylmethane used was 0.
A solution of a polyimide precursor was obtained in exactly the same manner as in Example 1, except that the amount was set at 1 mol, and this was used as a coating material for an optical fiber.

上記各実施例および比較例の被覆材料を用いて実際に以
下の方法で光ファイバを被覆し、その性能を調べた結果
は、下記のとおりであった。
Optical fibers were actually coated using the coating materials of the above-mentioned Examples and Comparative Examples in the following manner, and the performance thereof was investigated. The results were as follows.

〈試験例〉 50m/分の速度で紡糸した直径125μmの光ファイ
バの表面に紡糸工程に引き続く工程において、実施例1
〜3および比較例に係る各被覆材料を塗布したのち、長
さ5 Q Cmの赤外線加熱炉中、450”Cて焼杆け
た。被覆後のファイバの外径はいずれも140μnlで
あり、破断強度はいずれも5 kOてあった。
<Test Example> In a process subsequent to the spinning process, Example 1 was applied to the surface of an optical fiber with a diameter of 125 μm spun at a speed of 50 m/min.
After coating each of the coating materials according to ~3 and Comparative Example, the fibers were annealed at 450"C in an infrared heating furnace with a length of 5 Q cm. The outer diameter of the coated fibers was 140 μnl, and the breaking strength was Both were 5 kO.

つきに、これらの被覆ファイバを200°Cの雰囲気中
に168時間放置したのちに再度破断強度を調べてみた
ところ、いずれも初期の強度と変らなかった。一方、8
0°Cの温水中に168時間浸漬させたのちに、上記同
様に破断強度を調べてみたところ、実施例1〜3の場合
はいずれも初期と変らない5kqの強度てあったのに対
し、比較例の場合は2に9に低下していた。
Finally, after leaving these coated fibers in an atmosphere at 200°C for 168 hours, the breaking strength was again examined, and the strength was no different from the initial strength. On the other hand, 8
After being immersed in warm water at 0°C for 168 hours, the breaking strength was examined in the same manner as above, and in the case of Examples 1 to 3, the strength was 5 kq, which was the same as the initial strength. In the case of the comparative example, it decreased to 2 to 9.

」二記の試験結果から明らかなように、この発明の被覆
桐材によれは、耐熱性にすぐれると共に光ファイバに対
する密着性にすぐれる樹脂被覆を達成でき、光ファイバ
の長期信頼性を著しく向上させうるものであることがわ
かる。
As is clear from the test results in Section 2, the coated paulownia material of the present invention can achieve a resin coating with excellent heat resistance and excellent adhesion to optical fibers, significantly improving the long-term reliability of optical fibers. It is clear that this can be improved.

Claims (1)

【特許請求の範囲】[Claims] (1)テトラカルボン酸またはその酸無水物ないし低級
アルキルエステルと分子両末端にアミノ基を有するシリ
コン系ジアミンを一成分として含むジアミンとを略等モ
ル反応させて得られるポリイミド前駆体およびこの前駆
体を溶解する有機溶剤を含むことを特徴とする光学ガラ
スファイバ用被覆利料。
(1) A polyimide precursor obtained by reacting approximately equimolar amounts of tetracarboxylic acid or its acid anhydride or lower alkyl ester with a diamine containing as one component a silicone diamine having amino groups at both ends of the molecule, and this precursor. 1. A coating material for optical glass fiber, characterized in that it contains an organic solvent that dissolves.
JP57186327A 1982-10-22 1982-10-22 Coating material for optical glass fiber Granted JPS5978954A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57186327A JPS5978954A (en) 1982-10-22 1982-10-22 Coating material for optical glass fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57186327A JPS5978954A (en) 1982-10-22 1982-10-22 Coating material for optical glass fiber

Publications (2)

Publication Number Publication Date
JPS5978954A true JPS5978954A (en) 1984-05-08
JPS636506B2 JPS636506B2 (en) 1988-02-10

Family

ID=16186399

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57186327A Granted JPS5978954A (en) 1982-10-22 1982-10-22 Coating material for optical glass fiber

Country Status (1)

Country Link
JP (1) JPS5978954A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939064A3 (en) * 1998-02-25 1999-11-17 Hitachi, Ltd. Optical fiber and fiber-optic sensing system using the same
JP2015101729A (en) * 2013-11-25 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. Composition for producing polyimide, polyimide, molded article including said polyimide, and optical device including said molded article

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125754A (en) * 1974-03-20 1975-10-03
JPS5228266A (en) * 1975-08-04 1977-03-03 Gen Electric Semiconductor element and method of manufacture thereof
JPS57143328A (en) * 1981-02-27 1982-09-04 Nitto Electric Ind Co Ltd Production of siloxane-modified polyimide precursor
JPS57143327A (en) * 1981-02-27 1982-09-04 Nitto Electric Ind Co Ltd Production of siloxane-modified polyimide precursor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50125754A (en) * 1974-03-20 1975-10-03
JPS5228266A (en) * 1975-08-04 1977-03-03 Gen Electric Semiconductor element and method of manufacture thereof
JPS57143328A (en) * 1981-02-27 1982-09-04 Nitto Electric Ind Co Ltd Production of siloxane-modified polyimide precursor
JPS57143327A (en) * 1981-02-27 1982-09-04 Nitto Electric Ind Co Ltd Production of siloxane-modified polyimide precursor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0939064A3 (en) * 1998-02-25 1999-11-17 Hitachi, Ltd. Optical fiber and fiber-optic sensing system using the same
US6418260B1 (en) 1998-02-25 2002-07-09 Hitachi, Ltd. Optical fiber and fiber-optic sensing system using the same
JP2015101729A (en) * 2013-11-25 2015-06-04 三星電子株式会社Samsung Electronics Co.,Ltd. Composition for producing polyimide, polyimide, molded article including said polyimide, and optical device including said molded article

Also Published As

Publication number Publication date
JPS636506B2 (en) 1988-02-10

Similar Documents

Publication Publication Date Title
US4794157A (en) Polyetherimide copolymers, and method for making
JPS61118424A (en) Soluble silicone-imide polymer
JPH0749482B2 (en) Method for producing silicon-containing polyimide having low hygroscopicity and high adhesiveness and its precursor
KR950032465A (en) Heat Resistant Resin Composition, Heat Resistant Film Adhesive and Manufacturing Method Thereof
US4876329A (en) Polyimide polymers and copolymers using 3,5-diaminobenzotrifluoride
US5041513A (en) Polyimide resin compositions
JPS5813087B2 (en) Method for producing siloxane-modified polyimide precursor
EP0082724A1 (en) A polyamide acid, a process for its production and a polyimide produced therefrom
US4959437A (en) Process for producing a low thermally expansive and highly adhesive silicon-containing polyimide and a precursor thereof
JPS581685B2 (en) Method for producing polyamic acid containing a siloxane bond and polyimide having a siloxane bond and an isoindoquinazolinedione ring
JPS5827721A (en) Preparation of polyamide acid silicone intermediate and polyimide silicone copolymeric resin
US4511681A (en) Process for producing a polyimide solution
JPS61195130A (en) Production of aromatic polyimide film
US4499252A (en) Process for producing polyimide precursor
JPH047333A (en) New polyimide
JPS5978954A (en) Coating material for optical glass fiber
JP2766640B2 (en) New polyimide copolymer and its production method
KR100351627B1 (en) Colorless polyimides with good adhesion and their hybrids
KR920004605B1 (en) Process for the preparation of soluble imide oligomer
JPS61293227A (en) Production of s-triazine ring-containing soluble polyimidesiloxane precursor
JPS5953287B2 (en) Manufacturing method of polyimide precursor
JPS59176321A (en) Production of polyimide precursor
JPS5952898B2 (en) Method for producing polyimide precursor
JPH08120040A (en) Heat-resistant electrical insulating material and production of heat-resistant electrical insulating film from the same
JPS63241030A (en) Production of solvent-soluble polyimide