JPS597882A - Heat exchanger for cooling furnace body and its manufacture - Google Patents
Heat exchanger for cooling furnace body and its manufactureInfo
- Publication number
- JPS597882A JPS597882A JP11648882A JP11648882A JPS597882A JP S597882 A JPS597882 A JP S597882A JP 11648882 A JP11648882 A JP 11648882A JP 11648882 A JP11648882 A JP 11648882A JP S597882 A JPS597882 A JP S597882A
- Authority
- JP
- Japan
- Prior art keywords
- cast iron
- cooling
- layer
- heat exchanger
- furnace
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Furnace Details (AREA)
- Blast Furnaces (AREA)
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
この発明は高炉等の溶解炉や加熱炉の炉体冷却用の熱交
換体およびその製造方法に関し、より詳しくは鋳物内部
に冷却用パイプを鋳くるんだ炉体冷却用熱交換体および
その製造方法に間するものである。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a heat exchanger for cooling the furnace body of a melting furnace such as a blast furnace or a heating furnace, and a method for manufacturing the same. The present invention relates to a heat exchanger and a method for manufacturing the same.
近年、各種加熱炉や溶解炉の炉体の大型化にともない、
炉体寿命延長を目的として鋳鉄内部に冷却用バ、イ1を
鋳くるんだ熱交拗体岐物を炉体のれ皮と耐火物との間に
配置し、前記冷却用パイプ内に通水して水冷あるいは蒸
発冷却を行なう炉体冷却方式が採用されるようになって
いる。炉体の冷却効率向上は、炉内耐火物の寿命延長を
はかる上でも極めて重要であり、従来から種々の設備が
開発され実施されている。In recent years, as the furnace bodies of various heating furnaces and melting furnaces have become larger,
For the purpose of extending the life of the furnace body, a heat exchanger body with cooling bars and A1 cast inside the cast iron is placed between the furnace skin and the refractory, and water is passed through the cooling pipe. Furnace cooling methods that use water cooling or evaporative cooling are now being adopted. Improving the cooling efficiency of the furnace body is extremely important in extending the life of the refractories in the furnace, and various equipment has been developed and put into practice.
従来のこの種の炉体冷却用熱交換体としては、冷却用パ
イプと鋳ぐるみ材鋳鉄との間の熱伝導を良好にするとと
もに両者間の融着性を向上させるため、予め冷却用パイ
プの外面にメッキなどを施しておいてから鋳ぐるみ材と
しての溶融鋳鉄を注入し、冷却用パイプと鋳ぐるみ材と
を溶着させたものが知られている。しかしながらこのよ
うに溶着させる場合、冷却用パイプと鋳ぐるみ材との間
の鋳込み時の膨張・収縮量の差により冷却用パイプに亀
裂を生じることがあり、製品歩留りの低下を招いていた
。また炉壁に設置後において炉内の熱応力により鋳物に
亀裂が発生した場合、鋳ぐるみ材と冷却用パイプが溶着
により結合一体化されているため、鋳ぐるみ材のクラッ
クが冷却用パイプに伝播してパイプに亀裂が入り、水濡
れ事故や通水不能となる事故が生じる問題があった。Conventionally, this type of heat exchanger for cooling the furnace body has been designed to improve the heat conduction between the cooling pipe and the cast iron casting material, as well as to improve the fusion properties between the two. It is known that the cooling pipe and the casting material are welded together by plating the outer surface, injecting molten cast iron as the casting material, and welding the cooling pipe and the casting material. However, when welding in this manner, cracks may occur in the cooling pipe due to the difference in the amount of expansion and contraction during casting between the cooling pipe and the casting material, resulting in a decrease in product yield. In addition, if a crack occurs in the casting due to thermal stress in the furnace after it is installed on the furnace wall, the crack in the casting material will propagate to the cooling pipe because the casting material and the cooling pipe are integrated by welding. This has caused problems such as cracks in the pipes, resulting in accidents such as water getting wet or water not being able to flow through the pipes.
そこで最近ではこれらの欠点を除くために冷却用パイプ
と鋳ぐるみ材との間を非溶着として、鋳ぐるみ材に生じ
たクラックが冷却用パイプの破損につながらないように
したいわゆる非溶着型の炉体冷却用熱交換体が開発実用
化されるようになっている。この非溶着型熱交検体は、
鋳ぐるみ材鋳鉄に熱伝導性が良く冷却効率向上がはかれ
る鋳物材料を用い、前記冷却用パイプ表面を耐熱材料な
どで保護して、鋳ぐるみ材鋳鉄との溶着を防止して、パ
イプ強度の低下を防いでいる。このような非溶着型熱交
検体における鋳ぐるみ材鋳物としては、普通鋳鉄が主に
使用されている。普通鋳鉄は凝固温度が低いため低温注
入が可能であり、そのため冷却用パイプの強度低下を招
くおそれが少なく、また溶湯の流動性にづぐれるため鋳
造作業も容易であり、しかも熱伝導性にすぐれている等
、熱交換体詩ぐるみ材としC−面では優れた特性を有す
る。しかしながら普通鋳鉄は、粗大な片状黒鉛を凝固組
織中に五するため機械的強度が劣るとともに耐熱性にも
欠け、そのため普通鋳鉄を詩ぐるみ材とした熱交換体に
おいては操業中に鋳物に熱亀裂を生じやすく、損耗が著
じるしく、したがって炉体寿命を短くする問題がある。Recently, in order to eliminate these drawbacks, so-called non-welded furnace bodies have been developed in which the cooling pipe and the casting material are made non-welded so that cracks that occur in the casting material do not lead to damage to the cooling pipe. Cooling heat exchangers have been developed and put into practical use. This non-welding type heat exchange specimen is
Use a casting material that has good thermal conductivity and improves cooling efficiency for the cast iron casting material, and protect the surface of the cooling pipe with a heat-resistant material to prevent welding with the cast iron casting material, thereby reducing the strength of the pipe. is prevented. Ordinary cast iron is mainly used as the casting material for such non-welded heat exchange specimens. Ordinary cast iron has a low solidification temperature, so it can be poured at low temperatures, so there is less risk of weakening the cooling pipe.Also, the fluidity of the molten metal makes casting work easier, and it has excellent thermal conductivity. It has excellent properties on the C-plane, making it a heat exchange material. However, ordinary cast iron has coarse flaky graphite in its solidified structure, resulting in poor mechanical strength and lack of heat resistance.Therefore, in a heat exchanger made of ordinary cast iron, the casting material is heated during operation. There is a problem that cracks are likely to occur and wear and tear is significant, thus shortening the life of the furnace body.
ところで、普通鋳鉄と同様に高C1高Si材であってし
かも普通鋳鉄よりも機械的性質が優れ、特に耐熱性に富
む鋳物材とじてバーミキュラー黒鉛鋳鉄がある。バーミ
キュラー黒鉛PI鉄はその黒船形状が芋虫状(バーミキ
ュラー状)′cあるため、片状黒鉛の場合の如く黒鉛が
切欠きとなるおそれが少なく、そのため引張り強さ、伸
びなどの機械的性質に優れ、耐熱性にも富む。1なわち
第1図に従来の熱交換体の鋳ぐるみ材に用いられている
普通鋳鉄と強靭鋳鉄としてのバーミキュラー黒鉛鋳鉄の
室温から高温にわたる機械的性質を測定した結果を示す
。第1図から、バーミキュラー黒鉛鋳鉄は室温のみなら
ず600℃の高温においても普通鋳鉄の約2倍の強度を
有しており、したがって高熱に曝される熱交換耐用の鋳
物材質としては普通鋳鉄よりもすぐれているものと思わ
れる。しかしながらバーミキュラー黒鉛鋳鉄は熱間強度
にすぐれる反面、普通鋳鉄にくらべると流動性に劣るた
め鋳込み温度を高くとる必要があり、そのため冷却用パ
イプの鋳ぐるみ材として使用した場合にはその冷却用パ
イプの結晶粒粗大化をもたらし、パイプ強度の低下を招
来することが本発明者等の実験により明らかとなった。By the way, there is vermicular graphite cast iron, which is a high C1, high Si material like ordinary cast iron, has better mechanical properties than ordinary cast iron, and has particularly high heat resistance. Vermicular graphite PI iron has a caterpillar-like black ship shape, so there is less risk of the graphite becoming notched as in the case of flaky graphite, and therefore it has excellent mechanical properties such as tensile strength and elongation. , also has high heat resistance. 1. That is, FIG. 1 shows the results of measuring the mechanical properties of normal cast iron and vermicular graphite cast iron, which is a tough cast iron, used as casting materials for conventional heat exchangers over a range from room temperature to high temperature. From Figure 1, vermicular graphite cast iron has approximately twice the strength of ordinary cast iron not only at room temperature but also at high temperatures of 600°C. It seems that it is also excellent. However, although vermicular graphite cast iron has excellent hot strength, it has inferior fluidity compared to ordinary cast iron, so a high casting temperature is required. Therefore, when used as a casting material for cooling pipes, Experiments conducted by the present inventors have revealed that this leads to coarsening of crystal grains and a decrease in pipe strength.
この発明は以上のような事情を背景としてなされたもの
で、炉体冷却用の熱交換体として、鋳物全体としては高
強度で耐熱性に優れ、しかも冷却用パイプの強度低下を
招かないようにした熱交換体およびその製造方法を提供
することを目的とするものである。This invention was made against the background of the above-mentioned circumstances, and was designed to be used as a heat exchanger for cooling the furnace body, with the casting as a whole having high strength and excellent heat resistance, while not causing a decrease in the strength of the cooling pipe. The object of the present invention is to provide a heat exchanger and a method for manufacturing the same.
すなわちこの発明は、前述の、1、うな普通鋳鉄および
バーミキュラー黒鉛鋳鉄の両材質の利点を活用すると同
時にそれらの欠点を補充するべく、特に耐熱性と高温強
度の要求される炉内側にバーミキュラー黒鉛鋳鉄を適用
し、熱伝導性および低温鋳込みが要求される冷却用パイ
プ周囲には普通鋳鉄を適用した二層構造の熱交換体およ
びその製造方法を提供するものである。In other words, this invention aims to utilize the advantages of the above-mentioned 1. normal cast iron and vermicular graphite cast iron, and at the same time compensate for their disadvantages. The present invention provides a heat exchanger having a two-layer structure in which ordinary cast iron is applied around a cooling pipe that requires thermal conductivity and low-temperature casting, and a method for manufacturing the same.
具体的には、第1発明の熱交換体は、バーミキュラー黒
鉛鋳鉄からなる高温炉内側の第1層と、この第1層と溶
着結合しかつ冷却用パイプが鋳くるまれている普通鋳鉄
からなる第2層とを有してなることを特徴とするもので
ある。また第2発明の方法は、冷却用パイプを鋳鉄によ
り鋳くるんだ高温炉体冷却用熱交換体を製造するにあた
り、鋳造時の下型面の位置から鋳型内に配置された冷却
用パイプの下方20〜50mmの範囲内の位置までバー
ミキュラー黒鉛鋳鉄溶湧を注入し、その後このバーミキ
ュラー黒鉛鋳鉄溶湧が凝固完了あるいは未凝固の時点て
前記バーミキュラー黒鉛鋳鉄の上に普通鋳鉄溶湯を前記
冷却用バイブが鋳くるまれるよう注入することを特徴と
するものである。Specifically, the heat exchanger of the first invention consists of a first layer inside a high-temperature furnace made of vermicular graphite cast iron, and ordinary cast iron that is welded and bonded to this first layer and in which a cooling pipe is cast. It is characterized by having a second layer. Further, the method of the second invention, when manufacturing a heat exchanger for cooling a high-temperature furnace body in which a cooling pipe is cast with cast iron, provides a downward direction of the cooling pipe arranged in the mold from the position of the lower mold surface during casting. Inject the molten vermicular graphite cast iron to a position within the range of 20 to 50 mm, and then, when the molten vermicular graphite cast iron has solidified or has not yet solidified, pour the molten ordinary cast iron onto the vermicular graphite cast iron using the cooling vibrator. It is characterized by being poured so that it is cast.
以下この発明の熱交換体およびその製造方法をさらに詳
細に説明する。Hereinafter, the heat exchanger of the present invention and its manufacturing method will be explained in more detail.
第2図はこの発明の熱交換体の一例を示すものであり、
高炉等の高温炉におジノる内側に相当する第1層1はバ
ーミキュラー鋳鉄によって構成されており、またこの第
1層1に対し炉外側に相当する第2層2は普通鋳鉄によ
って構成されており、この第2層2には鋼管等からなる
適当数の冷却用バイブ3が詩ぐるまれている。さらに詳
しく説明すれば、第2層2の炉体外壁く鉄皮)側取付は
部に相当する面からは冷却用バイブ3の両端3A、3B
が突出しており、また第1層1の炉内側の面には複数の
耐火レンガ4が所定間隔をぼいC朽ぐるまれている。但
しこの耐火レンガ4の詩ぐるみは必ずしも必要ではない
。FIG. 2 shows an example of the heat exchanger of this invention,
The first layer 1, which corresponds to the inside of a high-temperature furnace such as a blast furnace, is made of vermicular cast iron, and the second layer 2, which corresponds to the outside of the furnace, is made of normal cast iron. A suitable number of cooling vibes 3 made of steel pipes or the like are wrapped around the second layer 2. To explain in more detail, the attachment of the second layer 2 to the outer wall of the furnace body (iron shell) is from the side corresponding to the ends 3A and 3B of the cooling vibe 3.
protrudes, and a plurality of refractory bricks 4 are encircled at predetermined intervals on the inner surface of the furnace of the first layer 1. However, this poem of Fire Brick 4 is not necessarily necessary.
上述のように第2層2の炉体外壁側取付は部に相当する
面からは冷却用バイブ3の両端が突出しているから、鍔
造時においては冷却用バイブ3が上型側に設置され、第
111が下型側に位置するように鋳込みがなされる。す
なわら上述のような2層構造の熱交換体の製造にあたっ
ては、先ず第1層1となるバーミキュラー黒鉛鋳鉄溶湧
を鋳型内に注入する。この際、バーミキュラー黒鉛鋳鉄
溶湧の鋳込み温度は、その流動性が損なわれない温度範
囲内で可及的に低温とづることが望ましい。As mentioned above, when the second layer 2 is attached to the outer wall of the furnace body, both ends of the cooling vibrator 3 protrude from the surface corresponding to the part, so the cooling vibrator 3 is installed on the upper mold side during the construction. , No. 111 are located on the lower mold side. That is, in manufacturing a heat exchanger having a two-layer structure as described above, first, molten vermicular graphite cast iron, which will become the first layer 1, is poured into a mold. At this time, it is desirable that the pouring temperature of the vermicular graphite cast iron be as low as possible within a temperature range that does not impair its fluidity.
そしてそのバーミキュラー黒鉛鋳鉄鋳鉄の下型面からの
凝固を持ってその上面が凝固完了した時点、あるいは上
面が未だ溶融状態にある時点で、第2!1I12となる
流動性の優れた餉通鋳鉄溶浚を静かに注入し、第1層1
との境界において完全に溶着させると同時に、冷却用バ
イブ3との融着を生じることなく鋳型内空隙にその台通
鋳鉄溶瀾を充満させ、冷却用バイブ3を鰐ぐるむ。Then, when the vermicular graphite cast iron has solidified from the lower mold surface and the upper surface has completely solidified, or when the upper surface is still in a molten state, the molten cast iron with excellent fluidity becomes No. 2!1I12. Gently pour the dredge into the first layer 1
At the same time, the cavity in the mold is filled with the molten cast iron flowing through the stand without causing any fusion with the cooling vibe 3, and the cooling vibe 3 is surrounded.
ここで上述の如く第1111として注入したバーミキュ
ラー黒鉛鋳鉄m’4と第211として注入する普通鋳鉄
の境界部分における両者の混合領域の幅は、第2層の普
通n鉄溶湯を注入開始する時点における第1w4のバー
ミキュラー黒鉛紡鉄溶渇の凝固進行状況によって異なる
が、本発明者等が実験的に測定したところ、第3図に示
すような結果が得られた。第3図において横軸は第1層
として注入したバーミキュラー黒鉛鋳鉄の表面(距ff
o)からの上下方向の各位置を示し、縦軸は第1層およ
び第2層凝固完了詩の各位置における第1層鋳鉄(バー
ミキュラー黒鉛鋳鉄)の混合割合を示す。Here, as mentioned above, the width of the mixing area at the boundary between the vermicular graphite cast iron m'4 injected as No. 1111 and the normal cast iron injected as No. 211 is the width at the time when the injection of the second layer of normal n iron molten metal is started. Although it differs depending on the progress of solidification of the 1st w4 vermicular graphite spindle melt, the inventors experimentally measured the results and obtained the results shown in FIG. 3. In Fig. 3, the horizontal axis is the surface (distance ff) of the vermicular graphite cast iron injected as the first layer.
Each position in the vertical direction from o) is shown, and the vertical axis shows the mixing ratio of the first layer cast iron (vermicular graphite cast iron) at each position of the first layer and the second layer solidification completed poem.
また第3図において符号5は第1層のバーミキュラー黒
鉛M麩の上面が凝固した状態で第2層の普通鋳鉄溶)易
を注入した場合の混合割合、符号6は第1層の上面が未
凝固の溶融状態で第2膚溶泪を注入した場合の混合割合
を示す。第3図に示す結果から、第1層、第2層の境界
部において両材質が混合する範囲は40〜8Qmm程度
であることが判明した。一方、耐火レンガ4を鋳ぐるん
だ場合におけるその耐火レンガ4の上面から冷却用バイ
ブ3まての距離は、熱交換体の設置される条件によって
も異なるが一般には40〜60Il1m程度であり、ま
・た耐火レンガを鋳くるまない場合の下型面(すなわち
炉内側表面)から冷却用バイブ3までの距離は通常55
111m−120wII稈度である。これらの数値およ
び第3図に示した混合fFi域の幅の測定結果と、鋳物
大きさ、冷却用バイブの配置位置など、鋳造方案で定ま
る空隙の大きさ等から総合的に検討した結果、鋳物下型
側に第1層1として注入するバーミキュラー黒鉛*aの
上面と冷却用バイブ3までの間隔は20mm〜50Il
lImとすることが望ましいことが判明した。?F!、
【わちこのように第1層として注入するバージキー1ラ
ー黒鉛鋳鉄溶湧の上面位置を冷却用バイブ3の下方20
〜50mmの位置とすることによって、2種類の異なる
材質の溶鉄が混合された組成の鋳鉄が耐火レンガ表面あ
るいは炉内側表面に出現しないと同時に、その混合組織
の鋳鉄が冷却用バイブの周囲に出現することが防止され
、炉内側表面もしくは耐火レンガ表面から冷却用バイブ
の周囲までバーミキュラー黒鉛鋳鉄組織から混合鋳鉄組
織を経て普通鋳鉄組織へ連続的に変化する組織が得られ
る。換言すれば、高温に曝される炉内側表面もしくは耐
火Iノンガ表面の位置においては耐熱性に冨むバーミキ
ュラー黒鉛鋳鉄組織が確保され、熱伝導性が要求される
冷却用バイブ周囲においては晋通鋳鉄組織が確保される
。なお第1W4の上面位置が冷却用の下方20mmの位
置よりも上方の場合には両材質の混合組織が冷却用バイ
ブの周囲に出現し、て冷却用バイブの周囲の熱伝導性が
低下するおそれがあり、一方策1層の上面位置が冷却用
バイブの下方50mmの位置よりも下方の場合には炉内
側表面もしくは耐火レンガ表面に混合組織があられれて
、その表面の耐熱性を損うおそれがある。In Fig. 3, numeral 5 indicates the mixing ratio when the second layer of ordinary cast iron is injected with the top surface of the first layer of vermicular graphite M fu solidified, and numeral 6 indicates the mixture ratio when the top surface of the first layer is not yet solidified. The mixing ratio is shown when the second skin melt is injected in the molten state of solidification. From the results shown in FIG. 3, it was found that the range where both materials are mixed at the boundary between the first layer and the second layer is about 40 to 8 Qmm. On the other hand, when the refractory brick 4 is cast, the distance from the top surface of the refractory brick 4 to the cooling vibe 3 is generally about 40 to 60 Il1m, although it varies depending on the conditions in which the heat exchanger is installed. When refractory bricks are not cast, the distance from the lower mold surface (i.e. furnace inner surface) to the cooling vibrator 3 is usually 55 mm.
The culm degree is 111m-120wII. As a result of comprehensive consideration of these values, the measurement results of the width of the mixed fFi region shown in Figure 3, the size of the casting, the placement position of the cooling vibrator, and the size of the void determined by the casting plan, the casting The distance between the top surface of vermicular graphite*a injected as the first layer 1 on the lower mold side and the cooling vibe 3 is 20 mm to 50 Il.
It has been found that lIm is desirable. ? F! ,
[In this way, the upper surface of the barge key 1 la graphite cast iron molten water to be injected as the first layer is positioned 20 below the cooling vibe 3.
By setting the position at ~50 mm, cast iron with a composition that is a mixture of two different types of molten iron does not appear on the refractory brick surface or the inner surface of the furnace, and at the same time, cast iron with a mixed structure appears around the cooling vibe. A structure that changes continuously from the vermicular graphite cast iron structure to the mixed cast iron structure to the normal cast iron structure is obtained from the inside surface of the furnace or the refractory brick surface to the periphery of the cooling vibe. In other words, a highly heat-resistant vermicular graphite cast iron structure is ensured on the inner surface of the furnace or the surface of the refractory I nongaster that is exposed to high temperatures, while Shintsu cast iron is used around the cooling vibrator where thermal conductivity is required. Organization is secured. In addition, if the top surface position of the first W4 is above the position 20 mm below the cooling part, a mixed structure of both materials may appear around the cooling vibe, which may reduce the thermal conductivity around the cooling vibe. On the other hand, if the top surface of the first layer is below the position 50mm below the cooling vibrator, a mixed structure may form on the inner surface of the furnace or the surface of the refractory bricks, which may impair the heat resistance of the surface. There is.
なおまた、第1層としてのバーミキコラー!?、鉛鋳鉄
と第2層としての普通鋳鉄との接合面付近く混合領域)
においては後述する実茄例にも示すように、溶着不良や
鋳鉄欠陥の発生はなく、また組織のチル化による強度低
下も生じないことが確認された。Also, vermiki kola as the first layer! ? , mixed area near the joint surface of leaded cast iron and ordinary cast iron as the second layer)
As shown in the actual eggplant examples described below, it was confirmed that there was no occurrence of poor welding or cast iron defects, and there was no decrease in strength due to chilling of the structure.
前記第1層に使用されるバーミキュラー鋳鉄は、要はそ
の基地中に晶出する黒鉛形状が片状と球状の中間の芋虫
状(バーミキュラー状)となっていれば良く、その成分
としては通常はCa、1〜3.9%(重量%、以下同じ
) 、Si 2.2〜2.6%の範囲内でしかも鋳鉄の
共晶程度をあられす炭素飽和度SC1すなわち
5c=C(%) / (4,23−9i (%)/3.
2)の値が0.90〜1.10の範囲内となるようにC
およびSiを含有し、かつ晶出黒鉛をバーミキュラー化
するべく黒鉛球状化能を右するか、49合金、Ca合金
、Ca合金の1種または2種以上を溶湯の鋳込み前に添
加して、鋳鉄中にに4fI O,010〜0.025%
、 CaO0002〜0.005%、Q90,010
〜0.020%のうち1種または2種以上を総量で0.
025%以下含有するようにしたものであれば良い。こ
れらの成分範囲は主として炭素を充分に黒鉛化し、しか
もその黒鉛が過度に球浄化してダクタイル鋳鉄における
ごとき球状黒鉛の割合が多くならないようにする観点か
ら定められる。In the vermicular cast iron used for the first layer, it is sufficient that the graphite crystallized in the matrix has a caterpillar shape (vermicular shape), which is between a flake and a spherical shape, and its components are usually Carbon saturation within the range of Ca, 1 to 3.9% (weight %, same hereinafter), Si 2.2 to 2.6%, and at a eutectic level of cast iron. Carbon saturation SC1, that is, 5c = C (%) / (4,23-9i (%)/3.
2) so that the value of C is within the range of 0.90 to 1.10.
and Si, and improve graphite spheroidizing ability to vermicularize crystallized graphite, or add one or more of 49 alloy, Ca alloy, and Ca alloy to cast iron before casting the molten metal. 4fI O,010~0.025% inside
, CaO0002~0.005%, Q90,010
~0.020% of one or more types in a total amount of 0.020%.
It is sufficient if the content is 0.025% or less. These component ranges are determined primarily from the viewpoint of sufficiently graphitizing the carbon and preventing the graphite from becoming excessively spheroidally purified and increasing the proportion of spheroidal graphite as in ductile cast iron.
なお、第1層として用いるバーミキュラー黒鉛鋳鉄は、
球状黒鉛組織を右するダクタイル鋳鉄の場合と異なり、
鋳込み詩におけるひけ横が少なく。The vermicular graphite cast iron used as the first layer is
Unlike ductile cast iron, which has a spheroidal graphite structure,
There are few sideways in cast-in poems.
したがって特に巨大な押湯を設胃4る必要はなく、また
γJ品歩留りも普)山鋳鉄の場合と同様に良好である。Therefore, there is no need to install a particularly large riser, and the yield of γJ products is as good as in the case of mountain cast iron.
以下にこの発明の具体的な実施例を記す。Specific examples of this invention will be described below.
実施例
第2図に示す如く炉内側に相当する鋳造詩の下型面に耐
火レンガ4を朽ぐるんだ2層1.2の1i鉄からなる炉
体冷却用熱交換体を製造した。この際、熱交換体全体の
大きさは、幅900mm、fiさ1800!11111
.厚さ300 mm、 重fR2850kg、詩ぐろま
れる冷却用バイブの径60.5mm、耐火レンガと冷却
用バイブの間隙は60n+mとした。2層構造の第1層
1として注入し1;バーミキュラー黒鉛鋳鉄溶)号の化
学組成はC3,47%、S+ :?、5196、トAn
0.78%、P O,033%、30.010%、1g
0.019%残り「eである。なおこの)8清は、鋳込
み前にFe −9i −)、(f1合金を添加して黒鉛
形状をバーミキュラー状(芋虫状)にして強度向]−を
はかったものである。一方第2H2として注入した普通
鋳鉄の化学組成はC3,57%、3i 1.78%、M
n O,54%、PO,045%、S O,014%、
残りFCであった。第1腑となるバーミキュラー黒鉛#
I鉄鋳鉄は耐火レンガ上面から冷却用バイブまでの間隔
の半分、すなわち、冷却用パイプ下方30mWlに相当
する位置にその溶湯上面が達するまで鋳込みを行ない、
下方からの凝固が進行するのを持った。この第1層とな
るバーミキュラー黒鉛鋳鉄溶湯の鋳込み塩度は1250
℃〜1280℃とした11次いで第1層として注入した
バーミキュラー黒鉛v!鉄の上面が未凝固の状態で第2
層となる隋通特鉄溶湯をバーミキュラー黒鉛鋳鉄の上に
静か1こt1人し、両溶湯の結合をはかるとともに冷却
用バイブの周囲を満し、鋳型的上面までの空隙に充填し
て凝固を行なわせた。第2層とした普通鋳鉄溶jの鋳込
み温度はその流動性を損なわない範囲C可能な限り低温
(約℃)とした。EXAMPLE As shown in FIG. 2, a heat exchanger for cooling the furnace body was manufactured, which was made of two layers of 1.2 1i iron, with refractory bricks 4 rotted on the lower surface of the casting mold corresponding to the inside of the furnace. At this time, the size of the entire heat exchanger is 900mm in width and 1800!11111 in fi.
.. The thickness was 300 mm, the weight fR was 2850 kg, the diameter of the cooling vibrator to be filled was 60.5 mm, and the gap between the refractory brick and the cooling vibrator was 60 n+m. Injected as the first layer 1 of the two-layer structure, the chemical composition of the vermicular graphite cast iron melt is C3.47%, S+:? , 5196, ToAn
0.78%, PO, 033%, 30.010%, 1g
The remaining 0.019% is ``e''.In addition, this 8th grade was prepared by adding Fe -9i -) and (f1 alloy to make the graphite shape vermicular (worm-like) and measure its strength] - before casting. On the other hand, the chemical composition of the ordinary cast iron injected as the second H2 is C3, 57%, 3i 1.78%, M
n O, 54%, PO, 045%, SO, 014%,
The rest were FC. Vermicular graphite #1
Cast iron is cast until the top of the molten metal reaches a position equivalent to half the distance from the top of the refractory brick to the cooling vibrator, that is, 30 mWl below the cooling pipe.
I had coagulation progressing from below. The salinity of the molten vermicular graphite cast iron that forms this first layer is 1250.
℃~1280℃ 11 Then vermicular graphite was injected as the first layer v! When the top surface of the iron is unsolidified,
Gently pour a layer of Sui Tong special iron molten metal onto the vermicular graphite cast iron, combine both molten metals, fill the area around the cooling vibe, fill the void up to the top of the mold, and solidify. I let it happen. The pouring temperature of the molten ordinary cast iron used as the second layer was set to be as low as possible (approximately ℃) within a range C that does not impair its fluidity.
このようにして製造した2WIW4造の炉休冷却用熱交
換体の鋳物部分につき、各部の50倍における顕微鏡絹
様を調べた結果の例を第4図〜第6図に示す。FIGS. 4 to 6 show examples of the results of examining the microscopic silkiness of each part of the cast parts of the 2WIW4 furnace cooling heat exchanger manufactured in this manner at 50 times magnification.
すなわち先f第4図の顕微表相−写真は、第1層どしC
注入した炉内面側付近のバーミキュラー黒鉛鋳鉄の凝固
後の明iを示す、ここでは黒鉛形状は芋虫状をしCおり
、また内部ひけ巣などの鋳造欠陥も形成されておらず、
Ill域的強唯のすぐれた鋳物を形成していることが明
らかであろうまた第5図の頒微鏡相熾写真は、第1舅と
第2層の接合面に相当する冷却用パイプの下方30FI
I!Iにおける鋳物の組織を示し、化学分析の結果化学
組成は両溶漬が50%ずつ混合していることが判明した
位置のものである。このバーミキュラー黒鉛鍔鉄溶澹と
賠通鋳鉄鋳鉄の坦稈に相当する部分の黒鉛形状は、芋虫
状のものと片状に近い形状のものがまざり、黒鉛形状は
崩れていることがわかった。In other words, the microscopic surface phase in Fig. 4 is the first layer C.
This shows the brightness of the injected vermicular graphite cast iron near the inner surface of the furnace after solidification. Here, the graphite shape is caterpillar-like, and there are no casting defects such as internal shrinkage cavities.
It is clear that the casting is one of the strongest in the world, and the microscopic photograph in Figure 5 shows the cooling pipe corresponding to the joint surface of the first layer and the second layer. Lower 30FI
I! The structure of the casting in I is shown, and the chemical composition is found to be a 50% mixture of both dippings as a result of chemical analysis. It was found that the graphite shape in the part corresponding to the flat culm of the vermicular graphite tsuba iron molten slag and the Huitong cast iron was a mixture of caterpillar-like and flake-like shapes, and the graphite shape was collapsed.
一方策6図の顕微1!組織写真は鋳ぐるみ冷却用バイブ
周辺の鋳物の組織を示し、粗大な片状黒鉛鋳鉄組織が得
られている。On the other hand, microscope 1 with 6 diagrams! The structure photograph shows the structure of the casting around the casting cooling vibe, and shows a coarse flaky graphite cast iron structure.
このようにして第1層としてバーミキュラー黒鉛鋳鉄、
第2Mとして普通鋳鉄を相継いで鋳込み、両者を鋳型内
に結合させて熱交換体を製造覆れば、その鋳物部分の組
織は耐熱強度の要求される炉内側から冷却用バイブ周辺
へと連続的に変化しており、結合不良やチル発生などの
欠陥も生じておらず、また従来の鋳ぐるみ材として酋通
?鉄を用いて鋳物部分を一体に形成した熱交換体と同様
に鋳ぐるみ材と冷却用パイプの間の溶着は生じていない
ことが確認された。In this way, as the first layer, vermicular graphite cast iron,
If ordinary cast iron is successively cast as the second M, and both are combined in the mold to produce a heat exchanger, the structure of the cast part will be continuous from the inside of the furnace where heat-resistant strength is required to the area around the cooling vibe. There are no defects such as poor bonding or chilling, and it is similar to conventional casting materials. It was confirmed that no welding occurred between the casting material and the cooling pipe, similar to the case with heat exchangers whose cast parts were integrally formed using iron.
また上記構造の熱交換体の鋳物部分の各部の橢械的強度
を求めると次の通りであった。°すなわち炉内側に相当
するバーミキュラー黒鉛鋳鉄の部分の引張り強さは37
.4kg/mJ、伸びは3.2%、冷却用パイプ周囲の
筈通R鉄の部分は引張り強さ11.8k Q 、/ −
1伸び0.7%の値が得られ、炉内側に相当する部分の
強度向上が充分に達成された。なお第1層溶湯と第2層
溶湯の境稈に相当する位置の1械的性質は、引張り強さ
は26.3k(+/aJ、伸びは16.6の値が得られ
、両材質の中、量的強度となっていることも判明した。Furthermore, the mechanical strength of each part of the cast part of the heat exchanger having the above structure was determined as follows. °In other words, the tensile strength of the vermicular graphite cast iron part corresponding to the inside of the furnace is 37
.. 4kg/mJ, elongation is 3.2%, and the tensile strength of the iron part around the cooling pipe is 11.8k Q, / -
A value of 1 elongation of 0.7% was obtained, and the strength of the portion corresponding to the inside of the furnace was sufficiently improved. As for the mechanical properties of the position corresponding to the boundary between the first layer molten metal and the second layer molten metal, the tensile strength is 26.3k (+/aJ), and the elongation is 16.6. It was also found that the level of quantitative strength was medium.
以上の説明で明らかなようにこの発明の炉体冷却用熱交
換体は、高温に曝される炉内側の部分もま強度、耐熱性
が優れるバーミキュラー黒鉛鋳鉄で信成され、しかも冷
却用パイプの周囲は熱伝導性が優れると同時に溶湯の流
動性が良好で低温鋳込みが可能な普通鋳鉄にJ、って鋳
くるまれるため従来と同悌に冷却用パーイブとの間を非
溶着とすることができるとともに鋳造時に冷却用パイプ
の強度低下を招くことがなく、シ、1こがって使用時に
おける炉内側からの熱影響に対して強靭でしかも使用時
におりる冷却用パイプの亀裂、破損による7に洩れ事故
の発生のお−てれも少ない等、各種の利点を有づるもの
である。またこの発明の熱父換体IFI造方跋にJ:れ
ば、上述のように優1tた!11性を右覆る熱交換体を
実際的に1造てきるほか、従来の熱交換体製造と同様に
特に巨大な押)gを設置する必要がないため造ヘソ、型
ばらし、仕上げ作業が容易であり、製品歩留りの低下を
招くこともない等ニ[卑上穫めて優れた利点を有する。As is clear from the above description, the heat exchanger for cooling the furnace body of the present invention is made of vermicular graphite cast iron, which has excellent strength and heat resistance, even in the inner part of the furnace that is exposed to high temperatures. Since it is cast in ordinary cast iron that has excellent thermal conductivity and good fluidity of the molten metal and can be cast at low temperatures, it is possible to prevent welding between the cooling parve and the same as before. In addition, it does not cause a decrease in the strength of the cooling pipe during casting, and is strong against heat effects from inside the furnace during use. It has various advantages such as less chance of leakage and accidents. Moreover, if the method of manufacturing the heat exchanger IFI of this invention is used, it will be excellent as described above! In addition to being able to actually manufacture a heat exchanger that meets the requirements of 11 properties, it is not necessary to install particularly large presses as in conventional heat exchanger manufacturing, making it easy to make, unmold, and finish the work. It has some excellent advantages, such as not causing a decrease in product yield.
第1図は、各種鋳鉄材質の高温にJ月Jる強度変化を示
すグラフ、第2図はこの発明の炉体冷却用熱交換体の一
構造例を示す略解的な縦断面図、第3図はこの発明の熱
交換体を製造するにあたって第1層上に異穫の第21の
WI肩を注入した場合の混合割合変化を示すグラフ、第
4図は第1W!Iとして注入したバーミキュラー黒鉛鋳
鉄材質の凝固組織写真、第5図はバーミキュラー黒鉛鋳
鉄と普通鋳鉄の・混合部の凝固組織写真、第6図は第2
層として注入した普通鋳鉄材質の凝固組織写真である。
1・・・第1層、 2・・・第2關、 ご3・・・冷却
用パイプ。
出願人 川崎製鉄株式会社
代理人 弁理士 豊田武久
(ばか1名)
aIs I 図
2
扁 /l (’C)
第3図
第41ソ1FIG. 1 is a graph showing the strength changes of various cast iron materials at high temperatures; FIG. The figure is a graph showing the change in the mixing ratio when the 21st WI shoulder of different harvests is injected onto the first layer in manufacturing the heat exchanger of the present invention. Figure 5 is a photograph of the solidification structure of the vermicular graphite cast iron material injected as I, Figure 5 is a photograph of the solidification structure of the mixed part of vermicular graphite cast iron and normal cast iron, and Figure 6 is
This is a photograph of the solidification structure of ordinary cast iron material injected as a layer. 1...First layer, 2...Second layer, 3...Cooling pipe. Applicant Kawasaki Steel Co., Ltd. agent Patent attorney Takehisa Toyota (one idiot) aIs I Figure 2 B / l ('C) Figure 3 Figure 41 So1
Claims (2)
と、この第1層と溶着結合しかつ冷却用パイプが鋳くる
まれている普通鋳鉄からなる第2層とを有してなること
を特徴とする炉体冷却用熱交換体。(1) It is characterized by having a first layer on the inside of the furnace made of vermicular graphite cast iron, and a second layer made of ordinary cast iron that is welded to this first layer and in which a cooling pipe is cast. A heat exchanger for cooling the furnace body.
熱交換体を製造するにあたり、 鋳造時の下型面の位置から鋳型内に配置された冷却用パ
イプの下′y520〜5Qmmの範囲内の位置までバー
ミキュラー黒鉛鋳鉄溶場を注入し、その。 後このバーミキュラー黒鉛鋳鉄溶揚が凝固完了あるいは
未凝固の時点で前記バーミキュラー黒鉛鋳鉄の上に前記
冷却用パイプが鋳くるまれるよう普通鋳鉄溶湯を注入す
ることを特徴とする炉体冷却用熱交換体の製造方法。(2) When manufacturing a heat exchanger for cooling a furnace body in which a cooling pipe is cast with cast iron, a distance of 520 to 5 Qmm below the cooling pipe placed in the mold from the position of the lower mold surface during casting. Inject the vermicular graphite cast iron melt field to the position within the range. Afterwards, when the vermicular graphite cast iron is completely solidified or not yet solidified, molten ordinary cast iron is injected onto the vermicular graphite cast iron so that the cooling pipe is cast over the vermicular graphite cast iron. manufacturing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11648882A JPS597882A (en) | 1982-07-05 | 1982-07-05 | Heat exchanger for cooling furnace body and its manufacture |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11648882A JPS597882A (en) | 1982-07-05 | 1982-07-05 | Heat exchanger for cooling furnace body and its manufacture |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS597882A true JPS597882A (en) | 1984-01-17 |
Family
ID=14688355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11648882A Pending JPS597882A (en) | 1982-07-05 | 1982-07-05 | Heat exchanger for cooling furnace body and its manufacture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS597882A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05307098A (en) * | 1991-05-02 | 1993-11-19 | Wakaida Rigaku Kiki Kk | Drying device for organic cell group |
-
1982
- 1982-07-05 JP JP11648882A patent/JPS597882A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05307098A (en) * | 1991-05-02 | 1993-11-19 | Wakaida Rigaku Kiki Kk | Drying device for organic cell group |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4953612A (en) | Composite metal articles | |
CN101634520B (en) | Casting method of cast steel cooling plate | |
CN101225497B (en) | Ductile iron exhaust manifold, method for preparing the same and device used in preparation | |
JPH10501877A (en) | Internal fireproof cooler | |
CN104313412A (en) | Manufacturing method of corrosion-resistant, heat-resistant and wear-resistant large-sized solid round high-Si aluminum alloy ingot | |
US6234790B1 (en) | Refractory wall structure | |
CN101952220A (en) | Refractory slag band | |
JPS597882A (en) | Heat exchanger for cooling furnace body and its manufacture | |
US4892293A (en) | Brick casting method of making a stave cooler | |
JPS61227120A (en) | Blowing lance for treating molten metal in metallurgical container | |
US4149705A (en) | Foundry ladle and method of making the same | |
JPS59159262A (en) | Casting for cooling furnace body and its production | |
RU2153004C2 (en) | Method for making cast products in the form of one part | |
CN103611921A (en) | Slag skimmer production method | |
JPS5917072B2 (en) | Massive refractories for hot-insertion repair | |
KR101051942B1 (en) | Cooling elements, in particular furnace cooling elements and methods of manufacturing the cooling elements | |
JPS61149625A (en) | Rotor with hub | |
JPS5914294B2 (en) | casting mold | |
JP3045461B2 (en) | Repair method of damaged part of blast furnace wall | |
US3822736A (en) | Method for manufacturing cooling members for cooling systems of metallurgical furnaces | |
JPS586763A (en) | Centrifugal casting method | |
SU524603A1 (en) | The method of manufacture of iron castings | |
SU916873A1 (en) | Pipeline bent portion lining method | |
JPS585750B2 (en) | Manufacturing method for steel castings | |
JPS58184037A (en) | Pipe of gating system made of metal |