JPS5978746A - Resin-coated sand grain for shell mold - Google Patents

Resin-coated sand grain for shell mold

Info

Publication number
JPS5978746A
JPS5978746A JP18991682A JP18991682A JPS5978746A JP S5978746 A JPS5978746 A JP S5978746A JP 18991682 A JP18991682 A JP 18991682A JP 18991682 A JP18991682 A JP 18991682A JP S5978746 A JPS5978746 A JP S5978746A
Authority
JP
Japan
Prior art keywords
group
resin
sand
carbonate
halogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18991682A
Other languages
Japanese (ja)
Inventor
Tsutomu Teramoto
寺本 努
Motoo Suzuki
基夫 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Chemical Co Ltd
Original Assignee
Aisin Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Chemical Co Ltd filed Critical Aisin Chemical Co Ltd
Priority to JP18991682A priority Critical patent/JPS5978746A/en
Publication of JPS5978746A publication Critical patent/JPS5978746A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Abstract

PURPOSE:To develop molding sand for a shell mold having excellent ordinary temp. strength and collapsing property after casting by coating the surface of the molding sand for the shell mold for casting an Al alloy with a specific binder. CONSTITUTION:The surface of molding sand, such as silica sand or olivine sand, is coated with a binder having the following compsn., whereby molding sand for a shell mold is obtd. The binder prepd. by mixing 0.5-10pts.wt. carbonate of bivalent metal such as CaCO3 coated with a satd. fatty acid with 100pts.wt. a resol type phenolic resin or novolak type phenolic resin contg. halogenated phenolic resin or a halogenated compd. such as a halogenated arom. compd. or halogenated aliphat. compd. is used. The binder is mixed at 2pts.wt. in terms of the phenolic resin in 100pts.wt. a casting to coat the surface. The shell mold made of such molding sand has high ordinary temp. strength and has an excellent collapsing property after casting of an Al alloy.

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、シェルし一ルド用イ64脂被覆砂粒に関し、
特に、6〕[込1)後の崩壊111に優れた樹脂被覆砂
粒(以下、I’ l’< CS Jど略ず)に関づる。 従来多ノ1型造型材料であるR CSどしては、柄物砂
の表面に71ノール樹脂等の熱硬化性樹脂を被覆したし
のが知られている。かかるR cSは、ホラ1−プロレ
ス、レミホットプロレス、:1−ルドブ「1ヒス等の方
法にJ、って製造され、優れた常?1品強度及び熱間強
度を右Jる。 しかし、従来のRCSは、鋳込み後のlr+l壊1りが
悪いという問題点を有していた。かかる欠点(、j1溶
渇渇度の低いアルミニウム等をt/l−込む場合には特
に顕諮であった。これ(よ、r< c sの結合4A(
゛ある熱硬化1!1樹脂が、アルミニウムのHl: r
:、r程庶の低温では十分熱分解されず、残留強度が高
い/ζめである。このため従来は、鋳込み後に前記成形
されk RCS @数1tS間500℃程度に加熱して
崩壊ざせる、いわゆる[砂焼き」と称Jる■程を要し、
エネルギー及び時間のロスが太さか・)たつ本発明はか
かる事情に鑑み案出されたちのぐあり、鋳込み後の崩壊
性に優れ、かつ、成形後の常温強度及び熱間強度にも優
れたR CSを17供りることを目的どJる。 本発明は鋳物砂ど、該鋳物砂の表向に被覆された結合材
とから成るRC8であり、該結合材は、ハロゲン化フJ
ノール樹脂あるいはハ占ゲン化化合物を含有Jるフェノ
ール樹脂と、2価金11其の炭酸塩とを含有覆るもので
ある。 鋳物砂は鋳型造型月利であるRC3の生体を成り。鋳物
砂は、造型前は流動1!■に富むことを要求されるとと
もに、鋳込み後は鋳込みに耐え11する程度の耐熱f1
を要求される。鋳物砂としては、珪砂、オリピンサンド
、クロマイ1〜リ−ンド、ジルコンリーンド、溶融石英
粒、アルミナ粒等が適しており、ぞの粒径は70μ〜i
 oooμ程度がよい。 結合材は、前記鋳物砂を相互に結合し、所定の鋳型形状
に造型する機能を有し、ハト1グン化フコーノール樹脂
あるいはハロゲン元素を含む化合物を含8りるフェノー
ル樹脂と、2価金属の炭酸塩とから成る。結合材には、
前記ハロゲン化化合物による前記フェノール樹脂の熱分
解を促進し、かつ、造型前にお1ノるフェノール樹脂の
硬化を促進づるために、酸化亜鉛、酸化鉄、酸化マンガ
ン、酸化チタン等の金属酸化物を1.5〜15.OWI
%程度添加してらよい。 ツボノール樹脂(よ、前記鋳物砂の結合材どしての機能
を右りる。フェノール樹脂のff1. fよ、従来のR
CSど同様に、鋳物砂100重量部に対し2小R部程度
でよい。)1ノール系樹脂としては、たどえぽ、レゾー
ル形フJ、ノール系樹脂、ノボラック形71ノール系樹
脂が適している。71ノール樹脂による鋳物砂の被覆は
、ホラ1〜プロセス、しミホットプロセス、コールドプ
ロセスのいづれによってもよい。 ハロゲン元素を含む化合物は、前記フ1−ノール樹脂の
助燃剤どして該フ[ノール樹脂の熱分解を促進する機能
を右する。ハ1」ゲンは、ハL1ゲン化フェノールの形
で、フェノール樹脂中に合まれていてもよい。ハロゲン
元素を含む化合物の含白但は、)、rノール樹脂100
重量部に対し、′1・〜20重1部程度が適当である。 ハロゲン元素を含む化合物を71ノール樹脂に添加覆る
時期は、鋳物砂とフェノール樹脂とを況練してRCSを
製造する時でもよく、d5るいは、あらかじめノl、ノ
ール樹脂中にハ[Jグンノシ素を含む化合物を添加しく
“J3いてもよい。ハ[]グン元素を含む化合物どじC
は、テ1−ラクロルビスフェノール△、アトラブ[!ム
ビスフェノールΔ、臭素化)■ニルメ、タアクリル酸エ
ステル、及び奥索化フェニルアリル土−ノール等のハロ
ゲン化芳香族化合物、塩素化バラツイン、塩素化ポリJ
−チレン及び塩素化ポリプロピレン等のハ1」ゲン化炭
化水素化合物等を用いることができる。 2価金属の炭酸塩は、前記ハロゲン元素を含む化合物の
熱分解の際に発生するハロゲン元素をトラップし、金型
等の腐食を防止し、作業環境悪化を防止するとともに、
該ハロゲン元素を含む化合物ににるフェノール樹脂の熱
分解をりみAj)かに行なわける機能を有する。21+
11i金属の炭酸塩どしては、炭酸カルシウム、炭酸マ
グネシウム、炭酸バリウム、炭酸亜鉛等を用いることが
できる。炭酸カルシウムを用いる場合、その添加171
−は、ノlノール樹脂100重石部に対し炭酸カルシウ
ム0゜5〜10infft部程度ど゛りるど、不発明の
効果は一層発揮される。J:た21111i金属の炭酸
塩(、L保護液119で被!!7Jるとよい。その理由
は、前記ハ「1グン元累を含む化合物の熱分解前に、該
2ilTli金属の炭酸塩とフェノール樹脂とが反応し
U t)*:うことを防止づるためである。したがって
該lap ’f(被膜のH判は、低温下に(13いて2
価金属の炭酸+3,1と〕Iノール樹脂どの反応を防止
でき、かつ、高温下では、2価金属の炭酸塩と前記ハf
」ゲン化水素との反応を妨げないものであればJ、い。 1!菖すれば、フェノール樹脂の硬化する程度の湿度で
は魚梵L!−4”に、前記2価金属の炭酸塩をし−)か
つと保護し、フェノール樹脂が熱分FJ?づる程度の^
渇で&J、蒸発して、前記2価金属とフェノール樹脂と
を接触さ1.る月利が良い。かかる保訛被模は、たとえ
ば、炭酸カルシウムを飽和脂肪酸で表面処理りることに
Jζ−)で得られる。 以上のような構成の本発明のR(:、Sは、鋳込み後の
崩壊性が優れている。ぞの理由は、)rノール樹脂の熱
分解、燃焼が、ハ[1グン元素をaむ化合物によって促
進される一方、該ハ[1ゲン元素を含む化合物から発生
J−るハロゲン化水素が、前記2価金属の炭酸塩によっ
て1〜ラツプされるlこめ、前記熱分解、燃焼が、より
一層づ−みやかに行4iわれるためである。 特に本発明のRCSは、アルミニウムのJ、つな溶湯温
度の低い月利を鋳込んだ場合にし、優れI、二崩壊性を
右し、砂焼き」二程を要しない。したがってエネルキー
、及び時間のロスがない。 J、た、本発明のRC8は、鋳型成形後の強度も、従来
のRC8に比し遜色がない。結合(Aであるフェノール
樹脂にJ、って、常温強度1.熱間強度が確保されるか
らである。 以下、本発明の実lAl1例を説明する。 鍋物砂どして珪砂を用い、〕Jノール樹脂としてアン[
ニアレゾール樹脂を用い、ハ[1グン元素を含む化合物
として塩素化パラフィンを用い、2価金属の炭酸塩とし
て炭酸jJルシウムを用いて本発明のRC3を製造した
。該RCSは、炭酸カルシウムの添加量を変えて表に示
すように2秤類製造し、それぞれ実施例1−2どした。 また、比較のために炭酸カルシウムを添加しないRC8
を製造し、比較例とした。 具体的に(よ、以上の(A)(B)(C)の順序で製造
した。 (A>、+=素化パラフィンを含むアンモニjルゾール
樹脂の1!I造 (1)フェノール500 k<1、ε35%バラホルム
アルデヒド282 k(]を反応缶に仕込み冷fil 
1.、ながら25%アンモニア水751(りを反応液温
度が555℃を越えないJζうに徐々に仕込む。 (2)反応液温度を55 □−60℃に保ち4Kから粘
度X−Y (ガード゛す一気泡粘瓜it )になるまで
反応さlる。 (3) 110=−1501’orrの減圧下′c淵縮
1112水を行なう。 (4)反応液温度が70℃に達したら直りに加熱減圧を
1bめメタノール100kgを仕込み溶解さUる。 (5) 50 ’CまC冷)II L、ハ1コグン冗素
を含む化合物として、塩素化パラフィンを50kO仕込
み、溶解さける。 (6)このアンモニアレゾールのメタノール溶液をスプ
レードライヤーにて噴霧乾燥し、ノLノール樹脂として
平均球径500μの、固形アンモニアレゾール樹脂を1
!Vだ。(帽られIζ樹脂は平均分子fil 1550
、流!III哀(at125℃) ’111 nv、ゲ
ルタイム(at150℃>92secrあ−)た。)(
B)炭酸カルシウムの混合 前記(△)で製造した1M素化パラ−ツインを含むアン
モニアレゾール樹脂1001H>部に、炭酸カルシウム
等を以下の如き各重量部混合した。 (実施例1) 脂肪酸表面処理炭酸力ルシウーム/1重■Y部、ステア
リン酸亜鉛1.5mm部を混合打粉。 (実施例2) 脂肪酸表面処理炭酸カルシウム8重■部、ステアリン酸
111j鉛0.5重量部、■ヂレンビススラノ′リン酸
アフイド1.5重が部を混合1]わ)。 (比較例) 炭酸カルシウムは無添加とし、ス7アリン酸1F鉛2巾
吊部を混合打粉。 (C)RC8の製造 あらかじめ160℃に加熱された鋳物用「砂8kgをス
ピードミキザーNS(、−2型(遠州畝T製)に入れ1
50℃になった時、前記実施例1−・・2、及び比較例
(゛製造した各材料をそれぞれ160(]添加、30秒
混練する。次昏こ冷IAI水120gを加え、さらに混
練を35秒行なう。ステアリン酸カルシウム8gを加え
、20秒混線後排出し、それぞれ表に示すシエルモール
ド用樹脂被覆砂粒を(qRC8についclそれぞれ常温
曲げ強さ、温間曲げ強さ、崩壊率、塩化水素の量を測定
した。尤の結果を表に示す。 尚、上記試験に用いた試験方法のうち、融着点(まJ 
A C1−試験法C−1に、又常温曲げ強さはJI S
  K−6910にそれぞれ準じてfj’tTった。 温間曲げ強さGJ J A CT tiIt験法5M−
5にt(tじて行なった。また、崩壊率は焼成条イ′1
縦35.11J10、長さ40、各mmのテストピース
を作成し、このテストピースど空気どの接触をさりるた
めに7ストピースをアルミ箔で2重に包み予め/150
℃に調fli″Jした電気炉に入れ20分(fυ瞑P(
)さυる。室温まで放冷後24メツシコの゛ふるい機″
にか()3分間振動を与え、テストピースを崩壊さ[!
崩壊した落下砂を受り聞に受(〕、イの小量を測定する
。 崩壊率=(落下砂重量/デストビース小串)×100ど
した。 また塩化水素の蚤の測定は、300 ℃の金型にRC8
を50CJ落下させ30秒後り目ら光生りる11C1f
flを北側式検知管で測定JることにJ、っ4行な っ
 lこ 。 表より本発明のr< c sは、炭酸カルシウムを添加
しないRCS f、Z比し、崩壊率が優れている1、特
にイの効果は、炭酸力ルシウlオをフ[ノール樹脂10
0重量部に対し4重量部稈庶以上添加(〕た揚合に顕著
C′ある。J、た、常温曲げ強さ、1llf間曲げ強さ
6f憂れ(いる。 以上要づるに本発明は、鋳物砂と、該鋳物砂の表面に被
覆された結合材とから成り、該結合材は、ハロゲン化フ
ェノール樹脂あるいはハ
The present invention relates to I64 fat-coated sand grains for shell and flattening,
In particular, it relates to resin-coated sand grains (hereinafter referred to as I'l'< CS J) that are excellent in disintegration 111 after 6] [Include 1). Conventionally, RCS, which is a multi-no-one molding material, is known in which the surface of patterned sand is coated with a thermosetting resin such as 71-Nol resin. Such RcS is manufactured using methods such as Hora 1-Pro Wrestling, Remi Hot Pro-Wrestling, and 1-Rudobu, and has excellent regular 1-product strength and hot strength.However, Conventional RCS has the problem of poor lr + l breakdown after casting. This (yo, r< c s bond 4A (
゛A certain thermosetting 1!1 resin is aluminum Hl: r
:, it is not thermally decomposed sufficiently at low temperatures of about r, and the residual strength is high/ζ. For this reason, conventionally, after casting, it was necessary to heat the molded material to about 500°C for several tens of seconds and collapse it, a process called "sand baking".
The present invention has been devised in view of the above circumstances, and has been devised to reduce the loss of energy and time. The purpose is to offer 17 CS. The present invention is an RC8 consisting of foundry sand, etc., and a binding material coated on the surface of the foundry sand, and the binding material is halogenated film J.
It contains a phenol resin containing a phenol resin or a divalent compound, and a carbonate of divalent gold 11. Foundry sand is the living body of RC3, which is a mold making monthly rate. Molding sand is fluid 1 before molding! ■It is required to be rich in
is required. As foundry sand, silica sand, olipin sand, chromium 1~lead, zirconleand, fused silica grains, alumina grains, etc. are suitable, and the grain size of these is 70μ~i.
A value of about oooμ is good. The binding material has the function of binding the foundry sand to each other and molding it into a predetermined mold shape, and is made of a divalent metal-containing fuconol resin or a phenolic resin containing a compound containing a halogen element. Consisting of carbonate. The binding material includes
Metal oxides such as zinc oxide, iron oxide, manganese oxide, titanium oxide, etc. are used to promote thermal decomposition of the phenolic resin by the halogenated compound and to accelerate curing of the phenolic resin before molding. 1.5 to 15. OWI
It may be added about %. Tubonol resin (functions as a binder for the foundry sand). Phenol resin ff1. f, conventional R
As with CS, about 2 parts of small radius per 100 parts by weight of foundry sand is sufficient. ) As the 1-nol resin, Tadoepo, resol type Fu-J, norl resin, and novolac type 71-nol resin are suitable. The foundry sand may be coated with the 71-nol resin by any of the Hola 1 process, Shimi hot process, and cold process. The compound containing a halogen element serves as a combustion improver for the phenol resin and promotes thermal decomposition of the phenol resin. The halogen may be incorporated into the phenolic resin in the form of a halogenated phenol. For white-containing compounds containing halogen elements, ), rNol resin 100
Appropriately, about 1 part by weight is 1 part to 20 parts by weight. The compound containing a halogen element may be added to the 71Nol resin when manufacturing RCS by kneading the foundry sand and the phenol resin. A compound containing an element may be added.
is Te1-lachlorbisphenol△, atlab [! (mubisphenol Δ, brominated) ■ Halogenated aromatic compounds such as nilme, taacrylic acid ester, and phenyl allyl earth-nol, chlorinated baratuin, chlorinated polyJ
- Genated hydrocarbon compounds such as tyrene and chlorinated polypropylene can be used. The divalent metal carbonate traps the halogen element generated during thermal decomposition of the compound containing the halogen element, prevents corrosion of molds, etc., and prevents deterioration of the working environment.
It has a function of thermally decomposing the phenolic resin contained in the compound containing the halogen element. 21+
As the carbonate of the 11i metal, calcium carbonate, magnesium carbonate, barium carbonate, zinc carbonate, etc. can be used. When calcium carbonate is used, its addition 171
- The effect of the invention is even more effective when the amount of calcium carbonate is about 0.5 to 10 inffft parts per 100 parts of norol resin. J: The carbonate of the 21111i metal is preferably coated with the L protective solution 119.The reason for this is that the carbonate of the 21111i metal and the carbonate of the 2ilTli metal are This is to prevent the film from reacting with the phenol resin.Therefore, the lap 'f (H size of the film is
It is possible to prevent the reaction between the carbonate of a valent metal +3,1 and the [I-nor resin], and at high temperatures, the carbonate of a divalent metal and the above-mentioned haf
"J, yes, as long as it does not interfere with the reaction with hydrogen genide. 1! If the irises are present, the humidity is high enough to harden the phenolic resin. -4", the carbonate of the divalent metal is added to protect it, and the phenol resin absorbs heat FJ?^^
The divalent metal is evaporated by drying and brought into contact with the phenolic resin.1. Good monthly interest. Such a stable pattern can be obtained, for example, by surface treating calcium carbonate with a saturated fatty acid. The R(:, S) of the present invention having the above-mentioned structure has excellent disintegration properties after casting. On the other hand, when the hydrogen halide generated from the compound containing the hydrogen element is wrapped by the carbonate of the divalent metal, the thermal decomposition and combustion are further accelerated. This is because the rows can be executed more quickly. In particular, the RCS of the present invention has excellent disintegration properties when cast at a low molten temperature of aluminum, and does not require sand baking. Therefore, there is no loss of energy or time. J. The strength of the RC8 of the present invention after molding is comparable to that of the conventional RC8. This is because bonding (J to the phenolic resin A ensures room temperature strength 1. hot strength. Hereinafter, an example of the present invention will be described. Using silica sand as pot sand,) As a J-nor resin,
RC3 of the present invention was produced using a nearresol resin, a chlorinated paraffin as a compound containing the element Ha, and lucium carbonate as a divalent metal carbonate. Two scales of the RCS were prepared by changing the amount of calcium carbonate added as shown in the table, and used as Examples 1 and 2, respectively. Also, for comparison, RC8 without adding calcium carbonate
was manufactured and used as a comparative example. Specifically, it was manufactured in the order of (A), (B), and (C) above. 1. Pour ε35% rose formaldehyde 282k () into a reaction vessel and cool it.
1. , while gradually adding 25% ammonia water (751g) until the reaction liquid temperature does not exceed 555℃. (2) Keep the reaction liquid temperature at 55□-60℃ and adjust the viscosity (3) Condense 1112 water under reduced pressure of 110 = -1501'orr. (4) As soon as the temperature of the reaction solution reaches 70°C, heat and reduce pressure. Pour 100 kg of methanol and dissolve. (5) Pour 50 kO of chlorinated paraffin as a compound containing redundant carbon at 50'C and dissolve. (6) This methanol solution of ammonia aresol was spray-dried with a spray dryer, and one solid ammonia aresol resin with an average spherical diameter of 500 μ was used as a nol resin.
! It's V. (The capped Iζ resin has an average molecular weight of 1550
, Flow! III (at 125°C) '111 nv, gel time (at 150°C>92secr). )(
B) Mixing of Calcium Carbonate Calcium carbonate and the like were mixed in the following parts by weight with 1001 parts of the ammonia aresol resin containing 1M hydrogenated para-twin produced in the above (Δ). (Example 1) Fatty acid surface-treated lucium carbonate/1 weight x Y part and 1.5 mm part of zinc stearate were mixed and powdered. (Example 2) 8 parts by weight of fatty acid surface-treated calcium carbonate, 0.5 parts by weight of lead stearate 111j, and 1.5 parts by weight of dilene bisthurano'phosphate aphide were mixed (1). (Comparative example) Calcium carbonate was not added, and a 2-width hanging part of 1F sulphate was mixed and powdered. (C) Manufacture of RC8 8 kg of foundry sand preheated to 160°C was placed in a speed mixer NS (type 2 (manufactured by Enshuune T)).
When the temperature reached 50°C, add 160 g of each of the materials prepared in Examples 1 to 2 and Comparative Example (2) and knead for 30 seconds. Next, add 120 g of cold IAI water and knead further. 35 seconds. Add 8 g of calcium stearate, mix for 20 seconds, then discharge, and prepare the resin-coated sand grains for shell mold shown in the table (cl for qRC8). The actual results are shown in the table. Of the test methods used in the above test, the fusion point
A C1-Test method C-1, and room temperature bending strength is JIS
Each fj'tT was carried out according to K-6910. Warm bending strength GJ J A CT tiIt test method 5M-
5 and t (t). Also, the disintegration rate was calculated as follows:
Create a test piece with a length of 35.11J10 and a length of 40 mm, and wrap the 7-stroke piece twice with aluminum foil in advance to prevent contact between the test piece and the air.
Place in an electric furnace adjusted to ℃ for 20 minutes (
). After cooling to room temperature, use a 24-meter sieve
Vibrate for 3 minutes to disintegrate the test piece [!
A small amount of fallen sand is measured in the receiving space. Collapse rate = (weight of falling sand / Dest bead small skewer) x 100. Also, hydrogen chloride fleas are measured on gold plated at 300℃. RC8 in the mold
Drop 50CJ and 30 seconds later, the light will appear 11C1f
I decided to measure fl with the north type detector tube, so I did four steps. From the table, r
When 4 parts by weight or more of culm is added to 0 parts by weight, there is a noticeable C'. , consisting of foundry sand and a binder coated on the surface of the foundry sand, and the binder is made of halogenated phenolic resin or halide.

【−1グン化化合物を含有づ−
る)Jノール樹脂と、2価舎属の炭酸塩どを含イ」りる
ものであり、鋳込、み後6月】“11壊性に優れている
ことを特徴とづるものCある。 特7f出願人  アイシン化]二株式会ネ1代理人  
弁理上  大 川  穴 間   弁理上  藤 谷  修
[-1 Contains a gunified compound-
It contains J-norm resin and bivalent carbonate, and is characterized by its excellent fracture resistance after casting and casting. Special 7f applicant Aisin Chemical Co., Ltd. 1 Agent
As a patent attorney, Anama Okawa As a patent attorney, Osamu Fujitani

Claims (3)

【特許請求の範囲】[Claims] (1)l物砂ど、該鋳物砂の表面に被覆された結合材ど
から成り、該結合材(よ、ハロゲン化)rノール樹脂あ
るいはハに1グン化化合物を含有するフェノール樹脂と
、2価金属の炭酸塩どを含有り−ることを特徴とJ−る
シJルモールド用樹脂被覆砂粒。
(1) consisting of a binder coated on the surface of the foundry sand, the binder (i.e., halogenated), r-nol resin, or (c), phenol resin containing a 1-glycan compound; 1. Resin-coated sand grains for J-ru seal molds, characterized by containing carbonates of valuable metals.
(2)前記2価金属の炭酸塩は、保護11ジで被覆され
た炭酸カルシウムであり、該炭酸、カルシウムの前記フ
ェノール樹脂に対りる割合は、71ノ一ル樹脂100重
M部に対し炭酸カルシウム0.5・〜10重吊部である
特許請求の範囲第1項^1戟のシェルモールド用(h・
1脂被覆砂粒。
(2) The carbonate of the divalent metal is calcium carbonate coated with a protective layer, and the ratio of the carbonate and calcium to the phenol resin is 100 parts by weight of the 71-noyl resin. Calcium carbonate 0.5-10 for shell mold of claim 1 which is 0.5-10 heavy hanging part (h-
1 fat coated sand grain.
(3)前記ハト1ゲ化化化合物は、ハ[1ゲン化芳香族
化合物、ハ[Iグン化脂肪族化合物の群J、り選ぽれた
少なくとも1秤であり、該ハ「フグ化化化合物の前記フ
ェノール樹脂に対する割合は、71ノ一ル樹脂100重
量部に対し、ハロゲン化化合物1・〜20重川部用ある
特Ht(請求の範囲第1項記載のシェルU−ルド用樹脂
被覆砂粒。
(3) The above-mentioned compound is at least one selected from group J of group J of group J, group J of group J, group J of group J, group of group J, group of group J, group of group J, group of group J, group of group J, group The ratio of the compound to the phenolic resin is 1 to 20 parts by weight of the halogenated compound to 100 parts by weight of the 71-noryl resin. .
JP18991682A 1982-10-28 1982-10-28 Resin-coated sand grain for shell mold Pending JPS5978746A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18991682A JPS5978746A (en) 1982-10-28 1982-10-28 Resin-coated sand grain for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18991682A JPS5978746A (en) 1982-10-28 1982-10-28 Resin-coated sand grain for shell mold

Publications (1)

Publication Number Publication Date
JPS5978746A true JPS5978746A (en) 1984-05-07

Family

ID=16249349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18991682A Pending JPS5978746A (en) 1982-10-28 1982-10-28 Resin-coated sand grain for shell mold

Country Status (1)

Country Link
JP (1) JPS5978746A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153714A2 (en) * 1984-02-29 1985-09-04 Nissan Motor Co., Ltd. Disintegration assistant for casting molds
CN104023872A (en) * 2011-11-08 2014-09-03 日油株式会社 Flow improver for resin coated sand
CN104690212A (en) * 2015-02-04 2015-06-10 繁昌县金科机电科技有限公司 Pre-coated sand with uniform shell layer and unshelled performance and preparation method of pre-coated sand
CN113770297A (en) * 2021-09-09 2021-12-10 合肥仁创铸造材料有限公司 Self-heat-absorption precoated sand and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0153714A2 (en) * 1984-02-29 1985-09-04 Nissan Motor Co., Ltd. Disintegration assistant for casting molds
EP0153714A3 (en) * 1984-02-29 1986-01-02 Nissan Motor Co., Ltd. Disintegration assistant for casting molds
CN104023872A (en) * 2011-11-08 2014-09-03 日油株式会社 Flow improver for resin coated sand
CN104690212A (en) * 2015-02-04 2015-06-10 繁昌县金科机电科技有限公司 Pre-coated sand with uniform shell layer and unshelled performance and preparation method of pre-coated sand
CN113770297A (en) * 2021-09-09 2021-12-10 合肥仁创铸造材料有限公司 Self-heat-absorption precoated sand and preparation method thereof

Similar Documents

Publication Publication Date Title
JPS5978746A (en) Resin-coated sand grain for shell mold
JP2000317578A (en) Heat generating element
US3247556A (en) Sand mold process using resinous binder from alkaline condensation of urea, formaldehyde, and furfuryl alcohol
JPH0246294B2 (en)
JPS60227944A (en) Binder for molding sand
JPS5973143A (en) Resin-coated sand grain for shell mold
JPS5978747A (en) Resin-coated sand grain for shell mold
JP3145548B2 (en) Mold material for shell mold
US4028123A (en) Compacted refractory shapes
JPS61169128A (en) Phenolic resin binder for shell mold and resin coated sand for shell mold
JP2971925B2 (en) Resin coated sand for shell mold
JPH0516932B2 (en)
JPH0292880A (en) Production of heat resistant and porous acoustical material
JP2004009084A (en) Method for producing exothermic body for casting
JPS61245937A (en) Compound for casting mold material
JP3472701B2 (en) Resin-coated sand for shell mold
JPS59197339A (en) Binder for molding sand and application thereof
JPS61144235A (en) Binder for molding sand
JPH0469017B2 (en)
JPS58176048A (en) Binder for molding sand
JPS62173049A (en) Resin coated sand grain for shell mold
JPS58218342A (en) Binder for molding sand
JPS63177938A (en) Production of resin coated sand for casting
JPS6360172A (en) Manufacture of porous sound absorber
JPS62146229A (en) Production of metal matrix composite material