JPH0516932B2 - - Google Patents

Info

Publication number
JPH0516932B2
JPH0516932B2 JP59185162A JP18516284A JPH0516932B2 JP H0516932 B2 JPH0516932 B2 JP H0516932B2 JP 59185162 A JP59185162 A JP 59185162A JP 18516284 A JP18516284 A JP 18516284A JP H0516932 B2 JPH0516932 B2 JP H0516932B2
Authority
JP
Japan
Prior art keywords
phenolic resin
metal powder
resin
sand
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59185162A
Other languages
Japanese (ja)
Other versions
JPS6163335A (en
Inventor
Yasushi Yoshida
Hiroshi Kano
Fumio Shirota
Isamu Ide
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lignyte Co Ltd
Original Assignee
Lignyte Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lignyte Co Ltd filed Critical Lignyte Co Ltd
Priority to JP18516284A priority Critical patent/JPS6163335A/en
Publication of JPS6163335A publication Critical patent/JPS6163335A/en
Publication of JPH0516932B2 publication Critical patent/JPH0516932B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C1/00Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds
    • B22C1/16Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents
    • B22C1/20Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents
    • B22C1/22Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins
    • B22C1/2233Compositions of refractory mould or core materials; Grain structures thereof; Chemical or physical features in the formation or manufacture of moulds characterised by the use of binding agents; Mixtures of binding agents of organic agents of resins or rosins obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • B22C1/2246Condensation polymers of aldehydes and ketones
    • B22C1/2253Condensation polymers of aldehydes and ketones with phenols

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Mold Materials And Core Materials (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[技術分野] 本発明は、シエルモールド用のレジンコーテツ
ドサンドの製造法に関するものである。 [背景技術] シエルモールドは、珪砂など鋳型用の砂を粘結
剤樹脂によつて結合させることによつて造型する
ことで得られる。このシエルモールドは鋳肌が滑
らかで寸法精度が良いなどの優れた特長を有して
いるために多用されている。そしてこのシエルモ
ールド用の粘結剤としては一般に、フエノール類
とアルデヒド類とをモル比を1:0.6〜0.9に調整
して酸性触媒下で反応させたノボラツク型フエノ
ール樹脂や、あるいはフエノール類とアルデヒド
類とをモル比を1:1〜3に調整してアルカリ触
媒下で反応させた固形のレゾール型フエノール樹
脂が用いられ、ノボラツク型フエノール樹脂では
硬化剤としてヘキサメチレンテトラミンを配合
し、レゾール型フエノール樹脂ではそのままで、
加熱した鋳型用の砂と混合して粘結剤の被覆層が
被覆されたレジンコーテツドサンドを作成し、こ
のレジンコーテツドサンドを加熱された金型にふ
りかけたり充填したりして粘結剤を溶融硬化させ
ることによつてシエルモールドへと造型するので
ある。 しかしながら粘結剤としてフエノール樹脂を用
いたシエルモールドにあつては、一般に注湯時に
クラツクが生じ易いという問題がある。これは注
湯時の高熱による樹脂分の急熱膨張と砂分の急熱
膨張に起因すると考えられる。そこでこの問題を
解決するために、フエノール樹脂やレジンコーテ
ツドサンドにクツシヨン効果のある物質を添加し
てシエルモールドに柔軟性を持たせると共にシエ
ルモールドの熱膨張率を小さくし、クラツクの発
生を防止する試みがなされている。このクツシヨ
ン材としては従来よりビスフエノールA、石油系
樹脂、ロジンなどが使用されているが、これらは
いずれもシエルモールドの熱膨張率を低下させて
クラツクの発生を防止する効果はある程度あるも
のの、注湯時に熱分解や揮発を起こして悪臭を発
生したりあるいは注湯時のシエルモールドの崩壊
性が悪いという欠点がある。またこのものではア
ルミニウムや鋳鉄を鋳造する場合には効果がある
が、注湯温度の高いステンレス鋼や高マンガン鋼
などを鋳造する場合には注湯時の急激な熱膨張に
よつてクラツクはどうしても発生することにな
り、しかも急激な加熱を受けて上記分解や揮発が
急激に生じたりまたフエノール樹脂自体の酸化に
よつて分解ガスが発生したりし、鋳物の「さしこ
み」やオレンジピールなど鋳物の鋳肌に欠陥を発
生させる欠点もある。 またシエルモールドの熱膨張を低く抑えるため
に、フエノール樹脂をビスフエノールAまたは残
渣あるいはアルキルフエノールなどによつて変性
したり、あるいは架橋密度を抑えたり、酸化鉄な
どを混合したりすることも試みられており、ある
程度の効果は得られているものの、限界があつて
高温の湯にはあまり効果は期待できない。そして
このように架橋密度を抑えるように変性したフエ
ノール樹脂を使用すると、シエルモールドの熱間
強度が低くなつて強度不足によるクラツクが発生
したり、あるいは樹脂の使用時の炭化によるガス
発生量が多くて鋳肌を悪化させるという欠点もあ
る。 この鋳肌の向上のためには従来よりシエルモー
ルドの表面に黒鉛、ジルコン、酸化アルミニウム
粉などを含んだ塗型剤を塗布して表面精度、強度
の向上を図るようにしているが、塗型剤には幾分
かの樹脂が含有されているためにシエルモールド
の湯に接する面の熱膨張率を益々大きくしてクラ
ツクが発生しやすくなり、しかも塗型剤は水に分
散させたりアルコールに分散させたりして使用さ
れるものであるために塗布したりデイツプしたり
さらには乾燥したりの繁雑な作業が必要になると
いう欠点がある。 上記のように従来では、鋳物の鋳肌を悪くする
ことなくシエルモールドのクラツクを防止するよ
うにすることは未だに実現されていないものであ
つた。 [発明の目的] 本発明は、上記の点に鑑みて為されたものであ
り、鋳物の鋳肌を悪化させることなくシエルモー
ルドのクラツクを防止することができるシエルモ
ールド用レジンコーテツドサンドの製造法を提供
することを目的とするものである。 [発明の開示] しかして本発明に係るシエルモールド用レジン
コーテツドサンドの製造法は、液状のフエノール
樹脂に金属粉末を混合して金属粉末が配合された
フエノール樹脂粘結剤を調製し、次いで鋳型用砂
にこのフエノール樹脂粘結剤を混合することによ
つて、鋳型用砂の表面に金属粉末が含有されたフ
エノール樹脂粘結剤による被覆層を被覆せしめる
ことを特徴とするもので、以下本発明を詳細に説
明する。 フエノール樹脂としてはノボラツク型フエノー
ル樹脂、レゾール型フエノール樹脂のいずれでも
用いることができるもので、このフエノール樹脂
に配合される金属粉末としては酸素と親和力が高
くて容易に酸化されるもの、例えばAl、Mg、
Si、Fe、Ni、Cr、Ti、Nb、Vを挙げることが
でき、これらのうち一種または二種以上を併用し
て使用することができる。また金属粉末として上
記列挙した金属の2種以上からなる合金、例えば
Al−Mg、Al−Si等を用いることもできる。金属
粉末の粒度としては均一な混合性や表面積を大き
くして酸化がより容易になされるようにするなど
の見地から10μ以下が好ましい。 そしてこの金属粉末をフエノール樹脂と混合分
散してシエルモールド用のフエノール樹脂粘結剤
を調製するものであるが、混合は液状のフエノー
ル樹脂に金属粉末を配合しておこなうようにす
る。具体的には、フエノール頼とアルデヒド類と
を縮合させてフエノール樹脂を調製する途中にお
いて金属粉末を配合して混合したり、この縮合反
応物を反応釜から取り出す前に金属粉末を配合し
て混合したり、あるいはフエノール樹脂を造粒冷
却したのちにこれを加熱溶融してここに金属粉末
を配合し混合したり、さらにはフエノール樹脂を
溶剤に溶解してこの状態で金属粉末を配合して混
合したりすることができる。フエノール樹脂と金
属粉末との混合割合は、シエルモールドの要求さ
れる性能によつて変動があるが、一般的にフエノ
ール樹脂の樹脂分100重量部に対して金属粉末1
〜30重量部程度が好ましい。 上記のようにシエルモールド用のフエノール樹
脂粘結剤が調製されるが、このフエノール樹脂粘
結剤を鋳型用砂に混合して被覆させることによつ
てシエルモールド用のコーテツドサンドを得る。
砂にフエノール樹脂粘結剤をコーテイングするに
あたつては、ドライホツトコート法、コールドコ
ート法、セミホツトコート法、粉末溶剤法などで
おこなうことができる。ドライホツトコート法
は、金属粉末含有の上記固形フエノール樹脂を
130〜160℃に加熱した砂に添加して混合し、砂に
よる加熱によつて固形フエノール樹脂を溶融させ
て溶融フエノール樹脂で砂の表面を濡らして被覆
層としてコートさせ、しかるのちにこの混合を保
持したまま冷却し、粒状でさらさらしたレジンコ
ーテツドサンドを得るものである。コールドコー
ト法は、上記金属粉末含有フエノール樹脂をメタ
ノールなどの溶剤に溶解して液状になし、これを
砂に添加して混合し、溶剤を揮発させることによ
つてレジンコーテツドサンドを得るものである。
セミホツトコート法は、上記溶剤に溶解した液状
フエノール樹脂を50〜90℃に加熱した砂に添加混
合してレジンコーテツドサンドを得るものであ
る。粉末溶剤法は、固形の上記金属粉末含有フエ
ノール樹脂を粉砕し、この粉砕樹脂を砂に添加し
てさらにメタノールなどの溶剤を添加し、これを
混合してレジンコーテツドサンドを得るものであ
る。以上いずれの方法においても粒状でさらさら
したレジンコーテツドサンドを得ることができる
が、作業性などの点においてドライホツトコート
法が好ましい。砂とフエノール樹脂との混合割合
は、シエルモールドの要求される性能によつて変
動があるが、一般的に砂100重量部に対してフエ
ノール樹脂を樹脂固形分換算で1〜4重量部程度
が好ましい。またこの混合の際に必要に応じて硬
化剤、その他砂とフエノール樹脂粘結剤とを親和
させるためのシランカツプリング剤などを配合す
ることができる。 このようにして得られたレジンコーテツドサン
ドを常法に従つて加熱された金型にふりかけたり
充填したりしてフエノール樹脂粘結剤を溶融硬化
させることによつて、この粘結剤によるサンドの
結合作用でシエルモールドを造型するものであ
る。このものにあつて、金属粉末が含有されてい
るために金属粉末の低い熱膨張率によつてシエル
モールドの注湯時の熱膨張を抑え、シエルモール
ドにクラツクが生じることが防止されるものであ
り、また金属粉末は酸素と容易に反応して酸化さ
れるものであつて、注湯時の急激な加熱の際にフ
エノール樹脂粘結剤が酸化されることを金属粉末
によつて酸素が消費されることによつて防止でき
るものである。 次に本発明を実施例によつて具体的に説明す
る。 実施例 1 2リツトルの四ツ口フラスコにフエノール940
g、37%ホルマリン648g、シユウ酸5.6gを投入
し、約90分を要して還流させ、反応液が乳化後さ
らに90分間反応を続けたのち、常圧脱水を開始し
て150℃まで脱水した。次に100mmHgの減圧度で
さらに脱水をおこない、内温が150℃になるまで
おこなつた。 次に粒径が5μmの金属アルミニウム粉末95gを
注意深く投入し、30分間良く混合したのちこれを
バツトに払い出し、冷却したのち0.5〜3mmの粒
径に粗砕した。 得られた金属アルミニウム含有ノボラツク型フ
エノール樹脂粘結剤の軟化点は92℃で、金属アル
ミニウム粉末の含有率は10%であつた。 次に、140℃に加熱したフラタリー珪砂30Kgを
ワールドミキサーに仕込み、これに上記のように
して得られたノボラツク型フエノール樹脂粘結剤
750gを加え、30秒間混練した後ヘキサメチレン
テトラミン110gを300gの水に溶解して添加し、
砂粒の塊りが崩壊するまで混練した。次いでさら
にこれにステアリン酸カルシウム15gを添加し、
30秒間混練した後にこれを払い出してエアレーシ
ヨンをおこない、レジンコーテツドサンドを得
た。 実施例 2 金属アルミニウム粉末の投入量を9.5gにした
他は、実施例1と同様にして、軟化点が88℃、金
属アルミニウム粉末の含有率が1%の金属アルミ
ニウム含有ノボラツク型フエノール樹脂粘結剤を
得た。 このノボラツク型フエノール樹脂粘結剤を用い
るようにした他は実施例1と同様にしてレジンコ
ーテツドサンドを得た。 実施例 3 実施例1で得た金属粉末未配合の軟化点85℃の
ノボラツク型フエノール樹脂1.5Kgを2リツトル
のフラスコに取り、これを加熱溶融して内温が
140℃になつたところで実施例1と同じ金属アル
ミニウム粉末165gを注意深く投入し、約30分間
良く攪拌混合した。 得られた金属アルミニウム含有ノボラツク型フ
エノール樹脂粘結剤の軟化点は92.5℃で、金属ア
ルミニウム粉末の含有率は10%であつた。 このノボラツク型フエノール樹脂粘結剤を用い
るようにした他は実施例1と同様にしてレジンコ
ーテツドサンドを得た。 実施例 4 2リツトルの四ツ口フラスコにフエノール470
g、37%ホルマリン827g、28%アンモニア水110
を投入し、約60分を要して内温を80℃にし、その
まま4時間反応させた。 次に70mmHgで減圧脱水をおこない、内温が65
℃になつたところで粒径が6μmの金属ケイ素粉末
を40g加え、さらに減圧濃縮を90℃までおこなつ
た。直ちにこれをバツトに払い出して冷却したの
ち0.5〜3mm径に粗砕した。 得られた金属ケイ素含有レゾール型フエノール
樹脂粘結剤の軟化点は83℃で、金属ケイ素粉末の
含有率は5%であつた。 このレゾール型フエノール樹脂粘結剤を用いる
ようにし、ヘキサメチレンテトラミンを使用しな
い他は実施例1と同様にしてレジンコーテツドサ
ンドを得た。 実施例 5 軟化点90℃のノボラツク型フエノール樹脂1300
gを四ツ口フラスコに取り、これにメタノール
700gを加えて良く溶解させた。 次にこれを実施例1と同じ金属アルミニウム粉
末70gを加えて良く混合して分散させた。 得られた金属アルミニウム含有ノボラツク型フ
エノール樹脂粘結剤ワニスの25℃における粘度は
13ポアズであり、金属アルミニウム粉末の含有率
は固形分換算で5%であつた。 次に、80℃に加熱したフラタリー珪砂30Kgをワ
ールドミキサーに仕込み、上記のようにして得た
ノボラツク型フエノール樹脂粘結剤ワニス1150g
にヘキサメチレンテトラミン110gを分散させた
ものを加え、砂粒が崩壊するまで混練した。次い
でステアリン酸カルシウム15gを添加して30秒間
混練した後にこれを払い出してエアレーシヨンを
おこない、レジンコーテツドサンドを得た。 実施例 6 金属ケイ素を配合しない他は実施例5と同様に
して反応させて調製した軟化点78℃の固形レゾー
ル型フエノール樹脂1300gを四ツ口フラスコに取
り、これにメタノール700gを加えて良く溶解さ
せた。 次にこれに金属アルミニウム粉末70gを加えて
良く分散させた。 得られた金属アルミニウム含有レゾール型フエ
ノール樹脂粘結剤ワニスの25℃における粘度は13
ポアズであり、金属アルミニウム含有率は固形分
換算で5%であつた。 このようにして得たレゾール型フエノール樹脂
粘結剤ワニスを用いるようにし、ヘキサメチレン
テトラミンを使用しない他は実施例5と同様にし
てレジンコーテツドサンドを得た。 実施例 7 金属アルミニウム粉末の代わりにAl−Mg粉末
を用いるようにした他は、実施例5と同様にして
Al−Mg含有ノボラツク型フエノール樹脂粘結剤
ワニスを得た。このものの25℃における粘度は13
ポアズで、Al−Mg粉末の含有率は固形分換算で
5%であつた。 このようにして得たノボラツク型フエノール樹
脂粘結剤ワニスを用いた他は実施例5と同様にし
てレジンコーテツドサンドを得た。 比較例 1 金属アルミニウム粉末を用いない他は、実施例
1と同様にしてレジンコーテツドサンドを得た。 比較例 2 金属ケイ素粉末を用いない他は、実施例4と同
様にしてレジンコーテツドサンドを得た。 上記実施例1乃至実施例7及び比較例1、2に
よつて得たレジンコーテツドサンドについて各種
の試験をおこなつた。結果を次表に示す。次表に
おいて、融着点(℃)はJACT試験法SM−1に、
常温曲げ強度(Kg/cm2)はJACT試験法C−1に
それぞれ準拠し、急熱膨張率(%)はJACT試験
法SM−7に準拠してN2ガス中で1000℃の測定温
度でそれぞれ試験をおこなつた。熱間曲げ強度
(Kg/cm2)はJACT試験法SM−1によつて作成し
たテストピースを1000℃にセツトした電気炉に入
れ、1分分間処理した後に1000℃で曲げ強度を測
定することによつておこなつた。耐酸化性は
JACT試験法SM−7に準じて作成したテストピ
ース(20φ×50mm)を1000℃にセツトした電気炉
中に並べて5分間処理したのち取り出し、冷却し
たのちに振動フルイに乗せて1分間振動させた後
に重さを量り、次式によつて計算して残留物の重
量%を算出して評価とした。 処理後の重さ/処理前の重さ×100(%)鋳肌の
判定は、レジンコーテツドサンドによつて内径
100φ、高さ100mm、肉厚20mmのルツボを作成し、
これに1650℃の湯を流し込んで冷却したのちに出
来上がつた鋳物の鋳肌を目視によつて観察するこ
とによりおこなつた。
[Technical Field] The present invention relates to a method for producing resin coated sand for shell molds. [Background Art] A shell mold is produced by bonding molding sand such as silica sand with a binder resin. This shell mold is widely used because it has excellent features such as a smooth casting surface and good dimensional accuracy. The binder for this shell mold is generally a novolak type phenolic resin made by adjusting the molar ratio of phenols and aldehydes to 1:0.6 to 0.9 and reacting them under an acidic catalyst, or a phenol and aldehyde resin. A solid resol type phenol resin is used, which is prepared by adjusting the molar ratio of 1:1 to 3 and reacting it under an alkali catalyst.For novolak type phenol resin, hexamethylenetetramine is blended as a curing agent, and resol type phenol resin is used. Leave the resin as it is,
A resin-coated sand coated with a coating layer of binder is created by mixing it with heated molding sand, and the resin-coated sand is sprinkled or filled into a heated mold to remove the binder. By melting and hardening it, it is molded into a shell mold. However, shell molds using phenolic resin as a binder generally have a problem in that cracks are likely to occur during pouring. This is thought to be due to the rapid thermal expansion of the resin and sand due to the high heat during pouring. In order to solve this problem, we added a substance with a cushioning effect to phenolic resin or resin-coated sand to make the shell mold more flexible and to reduce the coefficient of thermal expansion of the shell mold, thereby preventing the occurrence of cracks. Attempts are being made to do so. Conventionally, bisphenol A, petroleum resin, rosin, etc. have been used as this cushion material, but although these all have some effect in reducing the coefficient of thermal expansion of the shell mold and preventing the occurrence of cracks, There are drawbacks such as thermal decomposition and volatilization during pouring, producing a bad odor, and poor disintegration of the shell mold during pouring. Also, although this product is effective when casting aluminum or cast iron, when casting stainless steel or high manganese steel, which have high pouring temperatures, cracks are inevitable due to rapid thermal expansion during pouring. In addition, the decomposition and volatilization described above occur rapidly due to rapid heating, and decomposition gas is generated due to the oxidation of the phenol resin itself. It also has the disadvantage of causing defects in the casting surface. In order to suppress the thermal expansion of shell molds, attempts have also been made to modify the phenolic resin with bisphenol A, residues, or alkylphenols, to reduce the crosslinking density, or to mix iron oxide, etc. Although it has been shown to be effective to some extent, there are limits and high temperature hot water cannot be expected to be very effective. If a phenolic resin modified to suppress the crosslink density is used, the hot strength of the shell mold will be lowered, resulting in cracks due to insufficient strength, or the amount of gas generated due to carbonization during use of the resin will increase. It also has the disadvantage of worsening the casting surface. In order to improve this casting surface, conventional coating agents containing graphite, zircon, aluminum oxide powder, etc. have been applied to the surface of the shell mold in order to improve surface precision and strength. Since the agent contains some resin, the coefficient of thermal expansion of the surface of the shell mold that comes into contact with the hot water increases, making cracks more likely to occur. Since it is used after being dispersed, it has the disadvantage that it requires complicated operations such as coating, dipping, and drying. As mentioned above, in the past, it has not yet been possible to prevent shell mold cracks without deteriorating the casting surface of the casting. [Object of the Invention] The present invention has been made in view of the above points, and provides for the production of resin-coated sand for shell molds that can prevent cracks in shell molds without deteriorating the casting surface of castings. The purpose is to provide law. [Disclosure of the Invention] According to the method for producing resin-coated sand for shell molds according to the present invention, a phenolic resin binder containing the metal powder is prepared by mixing a liquid phenolic resin with a metal powder, and then By mixing this phenolic resin binder with molding sand, the surface of the molding sand is coated with a coating layer of the phenolic resin binder containing metal powder, and the following is described. The present invention will be explained in detail. As the phenolic resin, either a novolac type phenolic resin or a resol type phenolic resin can be used.The metal powder to be mixed with this phenolic resin is one that has a high affinity for oxygen and is easily oxidized, such as Al, Mg,
Examples include Si, Fe, Ni, Cr, Ti, Nb, and V, and one or more of these can be used in combination. Also, as metal powder, alloys consisting of two or more of the metals listed above, such as
Al-Mg, Al-Si, etc. can also be used. The particle size of the metal powder is preferably 10 μm or less from the viewpoint of uniform mixing and increasing the surface area to facilitate oxidation. This metal powder is mixed and dispersed with a phenolic resin to prepare a phenolic resin binder for shell molding, and the mixing is carried out by blending the metal powder into the liquid phenolic resin. Specifically, metal powder is blended and mixed during the process of condensing phenol resin and aldehydes to prepare phenolic resin, or metal powder is blended and mixed before taking out the condensation reaction product from the reaction vessel. Alternatively, after granulating and cooling the phenolic resin, it is heated and melted, and metal powder is added and mixed therein. Furthermore, the phenolic resin is dissolved in a solvent and in this state, metal powder is added and mixed. You can do it. The mixing ratio of phenolic resin and metal powder varies depending on the required performance of the shell mold, but generally 1 part by weight of metal powder is mixed with 100 parts by weight of the resin content of the phenolic resin.
It is preferably about 30 parts by weight. A phenolic resin binder for shell molds is prepared as described above, and coated sand for shell molds is obtained by mixing this phenolic resin binder with molding sand and coating it.
In coating the sand with the phenolic resin binder, a dry hot coating method, a cold coating method, a semi-hot coating method, a powder solvent method, etc. can be used. The dry hot coating method uses the above solid phenolic resin containing metal powder.
It is added to sand heated to 130-160℃ and mixed, the solid phenolic resin is melted by the heating by the sand, the surface of the sand is wetted with the molten phenolic resin and coated as a coating layer, and then this mixture is applied. It is cooled while being held to obtain granular and smooth resin-coated sand. In the cold coating method, the metal powder-containing phenolic resin is dissolved in a solvent such as methanol to form a liquid, which is added to sand and mixed, and the solvent is evaporated to obtain resin-coated sand. be.
In the semi-hot coating method, a liquid phenol resin dissolved in the above-mentioned solvent is added to and mixed with sand heated to 50 to 90°C to obtain resin coated sand. In the powder solvent method, the solid metal powder-containing phenolic resin is pulverized, the pulverized resin is added to sand, a solvent such as methanol is further added, and the mixture is mixed to obtain resin-coated sand. Although granular and smooth resin-coated sand can be obtained using any of the above methods, the dry hot coating method is preferred from the viewpoint of workability. The mixing ratio of sand and phenolic resin varies depending on the required performance of the shell mold, but in general, the ratio of phenolic resin to 100 parts by weight of sand is about 1 to 4 parts by weight in terms of resin solid content. preferable. Further, during this mixing, a curing agent and a silane coupling agent for making the sand and the phenol resin binder compatible may be added as necessary. The resin-coated sand thus obtained is sprinkled or filled into a heated mold according to a conventional method, and the phenolic resin binder is melted and hardened. A shell mold is formed by the bonding action of the two. Since this product contains metal powder, the low coefficient of thermal expansion of the metal powder suppresses thermal expansion during pouring into the shell mold and prevents cracks from occurring in the shell mold. In addition, metal powder easily reacts with oxygen and becomes oxidized, and the phenolic resin binder is oxidized during rapid heating during pouring, meaning that oxygen is consumed by the metal powder. This can be prevented by doing so. Next, the present invention will be specifically explained using examples. Example 1 Phenol 940 in a 2 liter four neck flask
g, 648 g of 37% formalin, and 5.6 g of oxalic acid were added and refluxed for about 90 minutes. After the reaction solution was emulsified, the reaction continued for another 90 minutes, and then atmospheric dehydration was started to dehydrate it to 150℃. did. Next, dehydration was further performed at a reduced pressure of 100 mmHg until the internal temperature reached 150°C. Next, 95 g of metallic aluminum powder with a particle size of 5 μm was carefully added, mixed well for 30 minutes, and then discharged into a vat, cooled, and coarsely crushed into particles with a particle size of 0.5 to 3 mm. The softening point of the obtained novolac-type phenolic resin binder containing metallic aluminum was 92°C, and the content of metallic aluminum powder was 10%. Next, 30 kg of flattery silica sand heated to 140°C was charged into a world mixer, and the novolac type phenolic resin binder obtained as described above was added to the world mixer.
After adding 750g and kneading for 30 seconds, 110g of hexamethylenetetramine dissolved in 300g of water was added.
The mixture was mixed until the clumps of sand grains were broken up. Next, 15g of calcium stearate was added to this,
After kneading for 30 seconds, the mixture was discharged and aerated to obtain resin coated sand. Example 2 A metal aluminum-containing novolac type phenolic resin caking with a softening point of 88°C and a metal aluminum powder content of 1% was prepared in the same manner as in Example 1, except that the amount of metal aluminum powder was changed to 9.5 g. obtained the drug. A resin-coated sand was obtained in the same manner as in Example 1 except that this novolak type phenolic resin binder was used. Example 3 1.5 kg of the novolac-type phenolic resin obtained in Example 1, which was not mixed with metal powder and had a softening point of 85°C, was placed in a 2-liter flask and melted by heating until the internal temperature reached
When the temperature reached 140° C., 165 g of the same metal aluminum powder as in Example 1 was carefully added, and the mixture was thoroughly stirred and mixed for about 30 minutes. The softening point of the obtained novolak-type phenolic resin binder containing metallic aluminum was 92.5°C, and the content of metallic aluminum powder was 10%. A resin-coated sand was obtained in the same manner as in Example 1 except that this novolak type phenolic resin binder was used. Example 4 Phenol 470 in a 2 liter four neck flask
g, 37% formalin 827g, 28% ammonia water 110g
was added, the internal temperature was raised to 80°C over about 60 minutes, and the reaction was continued for 4 hours. Next, perform vacuum dehydration at 70 mmHg, and the internal temperature will be 65.
When the temperature reached ℃, 40 g of metal silicon powder with a particle size of 6 μm was added, and vacuum concentration was further carried out to 90℃. Immediately this was poured into a vat, cooled, and then coarsely crushed to a diameter of 0.5 to 3 mm. The softening point of the obtained resol type phenolic resin binder containing metallic silicon was 83° C., and the content of metallic silicon powder was 5%. A resin coated sand was obtained in the same manner as in Example 1 except that this resol type phenolic resin binder was used and hexamethylenetetramine was not used. Example 5 Novolac type phenolic resin 1300 with a softening point of 90°C
Transfer g to a four-necked flask and add methanol to it.
700g was added and dissolved well. Next, 70 g of the same metal aluminum powder as in Example 1 was added to this and thoroughly mixed and dispersed. The viscosity of the obtained novolac type phenolic resin binder varnish containing metallic aluminum at 25℃ is
13 poise, and the content of metallic aluminum powder was 5% in terms of solid content. Next, 30 kg of flattery silica sand heated to 80°C was charged into a world mixer, and 1150 g of the novolac type phenolic resin binder varnish obtained as above was obtained.
A dispersion of 110 g of hexamethylenetetramine was added to the mixture, and the mixture was kneaded until the sand grains were disintegrated. Next, 15 g of calcium stearate was added, kneaded for 30 seconds, and then discharged for aeration to obtain resin coated sand. Example 6 1300 g of a solid resol type phenolic resin with a softening point of 78°C, which was prepared by reacting in the same manner as in Example 5 except that metallic silicon was not mixed, was placed in a four-necked flask, and 700 g of methanol was added to it to dissolve it well. I let it happen. Next, 70 g of metallic aluminum powder was added to this and well dispersed. The viscosity of the obtained resol type phenolic resin binder varnish containing metallic aluminum at 25°C was 13
Poise, and the metal aluminum content was 5% in terms of solid content. A resin-coated sand was obtained in the same manner as in Example 5, except that the resol type phenolic resin binder varnish thus obtained was used and hexamethylenetetramine was not used. Example 7 Same as Example 5 except that Al-Mg powder was used instead of metal aluminum powder.
A novolak type phenolic resin binder varnish containing Al-Mg was obtained. The viscosity of this material at 25℃ is 13
The content of Al-Mg powder was 5% in terms of solid content. A resin-coated sand was obtained in the same manner as in Example 5, except that the novolak type phenolic resin binder varnish thus obtained was used. Comparative Example 1 Resin-coated sand was obtained in the same manner as in Example 1, except that metal aluminum powder was not used. Comparative Example 2 A resin-coated sand was obtained in the same manner as in Example 4, except that no metal silicon powder was used. Various tests were conducted on the resin coated sand obtained in Examples 1 to 7 and Comparative Examples 1 and 2 above. The results are shown in the table below. In the following table, the melting point (°C) is according to JACT test method SM-1.
Room temperature bending strength (Kg/cm 2 ) is based on JACT test method C-1, and rapid thermal expansion coefficient (%) is measured at a measurement temperature of 1000℃ in N 2 gas based on JACT test method SM-7. Tests were conducted on each. Hot bending strength (Kg/cm 2 ) is determined by placing a test piece prepared according to JACT test method SM-1 in an electric furnace set at 1000°C, and measuring the bending strength at 1000°C after processing for 1 minute. It was done by Oxidation resistance is
Test pieces (20φ x 50mm) prepared according to JACT test method SM-7 were placed in an electric furnace set at 1000℃ and treated for 5 minutes, then taken out, cooled, and placed on a vibrating sieve and vibrated for 1 minute. Afterwards, the weight was measured, and the weight percent of the residue was calculated using the following formula for evaluation. Weight after treatment / Weight before treatment x 100 (%) Casting surface is determined by measuring the inner diameter using resin coated sand.
Create a crucible with a diameter of 100 mm, a height of 100 mm, and a wall thickness of 20 mm.
This was done by pouring hot water at 1650°C into the mold and visually observing the surface of the finished casting after cooling.

【表】 ◎:非常に良好 ○:良好 △:普通
表の結果、各実施例のものは急熱膨張率が比較
例のものより小さく、シエルモールドにクラツク
が生じることを防止できる効果があることが確認
され、また各実施例のものは耐酸化性が優れると
共に鋳肌の良好な鋳物の鋳造をおこなえることが
確認される。 [発明の効果] 上述のように本発明によれば、フエノール樹脂
粘結剤に金属粉末が含有されているために、金属
粉末の低い熱膨張率によつてシエルモールドの注
湯時の熱膨張を抑え、シエルモールドにクラツク
が生じることを防止できるものであり、しかも金
属粉末は酸素と容易に反応して酸化されるもので
あつて、注湯時の急激な加熱の際にフエノール樹
脂粘結剤が酸化されることを金属粉末によつて酸
素が消費されることによつて防止でき、フエノー
ル樹脂粘結剤の酸化分解によるガス分の発生など
によつて鋳造物の鋳肌が悪くなるようなことを防
ぐことができるものである。そして本発明では、
液状のフエノール樹脂に金属粉末を混合して金属
粉末が配合されたフエノール樹脂粘結剤を調製
し、次いで鋳型用砂にこのフエノール樹脂粘結剤
を混合することによつて、鋳型用砂の表面に金属
粉末が含有されたフエノール樹脂粘結剤による被
覆層を被覆せしめるようにしたので、金属粉末は
液状のフエノール樹脂に均一に分散されて、金属
粉末を均一に混合したフエノール樹脂粘結剤を得
ることができ、金属粉末を均一に分散させた状態
で鋳型用砂に被覆させることができるものであ
り、シエルモールド中に金属粉末を均一に分散さ
せて含有させることができるものであつて、金属
粉末の添加による効果を安定して得ることができ
るものである。
[Table] ◎: Very good ○: Good △: Fair The results in the table show that the rapid thermal expansion coefficient of each example is lower than that of the comparative example, and is effective in preventing cracks from occurring in the shell mold. was confirmed, and it was also confirmed that the products of each example had excellent oxidation resistance and could be cast into castings with good casting surfaces. [Effects of the Invention] As described above, according to the present invention, since the metal powder is contained in the phenolic resin binder, the thermal expansion during pouring of the shell mold is reduced due to the low coefficient of thermal expansion of the metal powder. In addition, since metal powder easily reacts with oxygen and is oxidized, phenol resin caking occurs during rapid heating during pouring. The oxidation of the agent can be prevented by the consumption of oxygen by the metal powder, and the generation of gas components due to oxidative decomposition of the phenolic resin binder can be prevented from deteriorating the casting surface of the casting. This is something that can be prevented. And in the present invention,
A phenolic resin binder containing metal powder is prepared by mixing metal powder with liquid phenolic resin, and then this phenolic resin binder is mixed with molding sand to improve the surface of the molding sand. Since the metal powder is coated with a coating layer of a phenolic resin binder containing metal powder, the metal powder is uniformly dispersed in the liquid phenolic resin, and the phenolic resin binder containing the metal powder is uniformly dispersed in the liquid phenolic resin. The metal powder can be coated on the molding sand in a uniformly dispersed state, and the metal powder can be uniformly dispersed and contained in the shell mold, The effect of adding metal powder can be stably obtained.

Claims (1)

【特許請求の範囲】 1 液状のフエノール樹脂に金属粉末を混合して
金属粉末が配合されたフエノール樹脂粘結剤を調
製し、次いで鋳型用砂にこのフエノール樹脂粘結
剤を混合することによつて、鋳型用砂の表面に金
属粉末が含有されたフエノール樹脂粘結剤による
被覆層を被覆せしめることを特徴とするシエルモ
ールド用レジンコーテツドサンドの製造法。 2 金属粉末がAl、Mg、Si、Fe、Ni、Cr、Ti、
Nb、Vのうちの一種以上であることを特徴とす
る特許請求の範囲第1項記載のシエルモールド用
レジンコーテツドサンドの製造法。
[Scope of Claims] 1. A phenolic resin binder containing metal powder is prepared by mixing metal powder with liquid phenolic resin, and then this phenolic resin binder is mixed with molding sand. A method for producing resin-coated sand for shell molds, which comprises coating the surface of molding sand with a coating layer made of a phenolic resin binder containing metal powder. 2 Metal powder is Al, Mg, Si, Fe, Ni, Cr, Ti,
The method for producing resin coated sand for shell molds according to claim 1, characterized in that the resin coated sand is one or more of Nb and V.
JP18516284A 1984-09-04 1984-09-04 Phenolic resin binder for shell mold and resin coated sand for shell mold Granted JPS6163335A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18516284A JPS6163335A (en) 1984-09-04 1984-09-04 Phenolic resin binder for shell mold and resin coated sand for shell mold

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18516284A JPS6163335A (en) 1984-09-04 1984-09-04 Phenolic resin binder for shell mold and resin coated sand for shell mold

Publications (2)

Publication Number Publication Date
JPS6163335A JPS6163335A (en) 1986-04-01
JPH0516932B2 true JPH0516932B2 (en) 1993-03-05

Family

ID=16165912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18516284A Granted JPS6163335A (en) 1984-09-04 1984-09-04 Phenolic resin binder for shell mold and resin coated sand for shell mold

Country Status (1)

Country Link
JP (1) JPS6163335A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2504638B2 (en) * 1990-07-05 1996-06-05 花王株式会社 Curable mold manufacturing additive and method for manufacturing mold
DE69130141T2 (en) * 1990-07-05 1999-02-25 Kao Corp., Tokio/Tokyo Process for the production of casting molds
JP4947970B2 (en) * 2005-12-16 2012-06-06 リグナイト株式会社 Molding material and method for producing molded article

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699042A (en) * 1980-01-09 1981-08-10 Daihatsu Motor Co Ltd Core sand
JPS59185161A (en) * 1983-04-05 1984-10-20 Nec Corp Dc/dc converter circuit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5699042A (en) * 1980-01-09 1981-08-10 Daihatsu Motor Co Ltd Core sand
JPS59185161A (en) * 1983-04-05 1984-10-20 Nec Corp Dc/dc converter circuit

Also Published As

Publication number Publication date
JPS6163335A (en) 1986-04-01

Similar Documents

Publication Publication Date Title
JP4119515B2 (en) Resin coated sand for mold
JPS61169127A (en) Production of resin coated sand for shell mold
US3838095A (en) Foundry sand coated with a binder containing novolac resin and urea compound
JPH0516932B2 (en)
US8367749B2 (en) Coated microspheres and their uses
EP0163093B1 (en) Foundry sand binder
JPS5870939A (en) Resin coated sand for shell mold and its production
JPS61169128A (en) Phenolic resin binder for shell mold and resin coated sand for shell mold
JPH0469017B2 (en)
JP2002346691A (en) Method of manufacturing resin coated sand for shell mold and resin coated sand for shell mold
JP7527939B2 (en) Resin-coated sand with excellent mold disintegration properties
JP2023152693A (en) Method for manufacturing highly collapsible mold
JP7499815B2 (en) Organic binder for molds, molding sand composition obtained using the same, and mold
JPS58224038A (en) Composition of coated sand and its production
US2997759A (en) Shell molding mixture
JPS6240949A (en) Resin composition for coated sand
JP2971925B2 (en) Resin coated sand for shell mold
JPH0146219B2 (en)
JPS6064744A (en) Coated sand composition for shell mold
JPS61245937A (en) Compound for casting mold material
JPH0669597B2 (en) Low expansion mold material
JPS60145239A (en) Binder for molding sand
JPS5835039A (en) Binder for shell mold
JPS613630A (en) Production of casting sand
JPS62282742A (en) Resin coated sand