JPS5978501A - Ceramic resistance material - Google Patents
Ceramic resistance materialInfo
- Publication number
- JPS5978501A JPS5978501A JP57187457A JP18745782A JPS5978501A JP S5978501 A JPS5978501 A JP S5978501A JP 57187457 A JP57187457 A JP 57187457A JP 18745782 A JP18745782 A JP 18745782A JP S5978501 A JPS5978501 A JP S5978501A
- Authority
- JP
- Japan
- Prior art keywords
- resistance
- resistivity
- resistance material
- ceramic
- present
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Compositions Of Oxide Ceramics (AREA)
- Non-Adjustable Resistors (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
〔発明の属する技術分野〕
本発明は高温まで安定で抵抗の変化が小さいセラミック
抵抗材料に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Technical field to which the invention pertains] The present invention relates to a ceramic resistance material that is stable up to high temperatures and exhibits small changes in resistance.
従来抵抗材料として、Cu−Ni系合金、炭素抵抗材、
TiN、 8iCなどのセラミック抵抗材等が用
いられている。Conventional resistance materials include Cu-Ni alloy, carbon resistance material,
Ceramic resistance materials such as TiN and 8iC are used.
この内Cu−Ni系合金の抵抗の温度係数は50ppm
/℃と非常に小さく、安定したものであるが固有抵抗率
は4〜5X16”’Ωlであるだめ高い抵抗値を持つ抵
抗体を作製する際に断面積を小さくするか、長さを大き
くしなければならないという欠点があつた。Among these, the temperature coefficient of resistance of Cu-Ni alloy is 50 ppm.
/℃, which is very small and stable, but the specific resistivity is 4 to 5 x 16'' Ωl, so when making a resistor with a high resistance value, it is necessary to reduce the cross-sectional area or increase the length. There was a drawback that it had to be done.
また炭素抵抗は安価であり、抵抗率が10′fiΩ(至
)程度であるが、温度係数が−t500ppm/’Gと
大きく、高精度を必要としない低価格用抵抗材として用
いられていた。Further, carbon resistors are inexpensive and have a resistivity of about 10'fiΩ (minimum), but have a large temperature coefficient of -t500 ppm/'G, and have been used as low-cost resistive materials that do not require high precision.
TiN、 SiCなどのセラミック梼′市性微粉末と
ガラス7リツトとを用いた抵抗側は製造工程が複雑なだ
めコスト高となる欠点があり、しかも抵抗緒特性は必ず
しも満足できるものではなかった。Resistors using ceramic powders such as TiN, SiC, etc. and glass particles have the disadvantage that the manufacturing process is complicated and costs are high, and the resistor characteristics are not always satisfactory.
本発明は上述の欠点に鑑みてなされたもので、高温まで
安定した抵抗値を有し、固有抵抗が大きく、しかも安価
なセラミック抵抗材料を提供することを目的とする。The present invention was made in view of the above-mentioned drawbacks, and an object of the present invention is to provide a ceramic resistance material that has a stable resistance value up to high temperatures, has a high specific resistance, and is inexpensive.
し発明の概要〕
本発明は化学式でBa(Pb、−XCrx)Os(Q、
25< Xり0.35)と示されるセラミック抵抗材料
である。Summary of the invention] The present invention has a chemical formula of Ba(Pb, -XCrx)Os(Q,
It is a ceramic resistance material shown as 25<
つまり本発明はBaPbO,を基本材料として種々の元
素により一部置換を行った結果、抵抗の安定性にCrの
添加が有効であることを見い出したものである。That is, in the present invention, as a result of partially substituting BaPbO with various elements using BaPbO as a basic material, it was discovered that the addition of Cr is effective for stabilizing the resistance.
なお本発明における数値限定は以下の如き理由によるも
のである。Note that the numerical limitations in the present invention are based on the following reasons.
Ba(Pb、−>(Crx)O,においてXが025未
満では抵抗の温度係数の低減化に効果が小さく、また固
有抵抗の増加も小さしく。一方Xが035を越えると、
抵抗の温度係数は負の大きな値となり、固有抵抗は増加
し、X=0.35の時B a P bo、よりも3桁以
上高い固有抵抗率を待つようになる。従ってCrの含有
量は0.25≦X≦035とするが、実用上は固有抵抗
率の点から0.3<X<Q、35とする事が望ましい。When X is less than 025 in Ba(Pb, ->(Crx)O), the effect of reducing the temperature coefficient of resistance is small and the increase in specific resistance is also small.On the other hand, when X exceeds 035,
The temperature coefficient of resistance becomes a large negative value, and the specific resistance increases, reaching a specific resistivity that is three orders of magnitude higher than B a P bo when X=0.35. Therefore, the Cr content is set to 0.25≦X≦035, but from the viewpoint of specific resistivity, it is desirable to set the content to 0.3<X<Q, 35 for practical purposes.
し発明の実施例〕 本発明を実施例を用いC示す。Examples of the invention] The present invention will be illustrated using examples.
Ba(Pb、−XCrx)0.においてX=0 、0.
1 、0.25 、0.3.0.35となるように原料
BaC0,、Pb5O4,Cr、 03粉末を秒置調合
し、ボールミルを用いて湿式混合した。この混合粉末を
乾燥後アルミナルツボを用い酸素フロー中880℃3時
間仮焼粉末は再びボールミルによる混合、乾燥を経て酸
素フロー中880℃3時間の仮焼を行い、粉砕、混合、
乾燥を行った。ここで2回の仮焼工程は混合粉を均一に
反応させるだめに行ったものであるが、必ずしも必要で
はなく、1回の仮焼でも十分な効果が得られる。仮焼の
終了した粉末は一般に用いられる5!インダと混合した
後、両押しプレスを用いて20φ×5に成形した。Ba(Pb, -XCrx)0. In X=0, 0.
Raw materials BaC0, Pb5O4, Cr, and 03 powders were mixed in seconds to give a powder of 0.1, 0.25, 0.3, and 0.35, and wet-mixed using a ball mill. After drying this mixed powder, the powder was calcined at 880°C for 3 hours in an oxygen flow using an alumina crucible.The powder was mixed again using a ball mill, dried, and then calcined at 880°C for 3 hours in an oxygen flow, pulverized, mixed,
It was dried. Although the two calcination steps were carried out in order to uniformly react the mixed powder, it is not necessarily necessary, and a sufficient effect can be obtained even with one calcination. The powder that has been calcined is generally used5! After mixing with indah, it was molded into a size of 20φ×5 using a double press.
成形体は白金板上に置き、酸素フロー中でtooo〜1
150″’Q 3時間焼成した。The molded body was placed on a platinum plate and heated to too~1 in an oxygen flow.
Baked for 150''Q for 3 hours.
次にペレット状試料から約15X3X l (m3)の
矩形を切り出し抵抗率測定用サンプルとした。抵抗率の
測定は通常の直流四端子法を用い室温から900℃まで
測定した。この電極としてA31−Pd又はptベース
トを焼き付けだものを用いた。Next, a rectangle of approximately 15×3×1 (m3) was cut out from the pellet sample and used as a sample for resistivity measurement. Resistivity was measured from room temperature to 900° C. using the usual DC four-terminal method. As this electrode, a baked A31-Pd or PT base was used.
第1図に室温抵抗率のCr 置換量依存性を示す。FIG. 1 shows the dependence of room temperature resistivity on the amount of Cr substitution.
置換量の増加と共に室温抵抗率は増加する。また抵抗率
の温度係数は第2図に示すようにcr による置換で徐
々に減少し、X≧0.35で負の値をとるようになる。Room temperature resistivity increases as the amount of substitution increases. Further, as shown in FIG. 2, the temperature coefficient of resistivity gradually decreases by substitution with cr, and takes a negative value when X≧0.35.
ここで抵抗率ρの温度依存性は室温抵抗率ρ0゜温度係
数αとして次式で示されるとして求めた。Here, the temperature dependence of resistivity ρ was determined as expressed by the following equation as room temperature resistivity ρ0° and temperature coefficient α.
ρ=ρo(t+α(T−TR)) ただしTnは室温。ρ=ρo(t+α(T-TR)) However, Tn is room temperature.
この結果第2図から明らかな如くXの値が0.25<
X < 0.35で温度係数が±3o0ppm/’C以
下の特性が得られ、x=Q、3で最も低い値(80pp
m/’G )をもつすぐれた抵抗特性が得られた。As a result, as is clear from Figure 2, the value of X is 0.25<
When X < 0.35, a temperature coefficient of ±3o0ppm/'C or less is obtained, and when x=Q, 3, the lowest value (80ppm/'C) is obtained.
Excellent resistance characteristics with m/'G) were obtained.
また特に0.3≦X≦035の範囲では固有抵抗値が1
o’(Ω−)以上の高い値を有する為、高抵抗体を小型
化する事ができる。In particular, in the range of 0.3≦X≦035, the specific resistance value is 1
Since it has a high value of o' (Ω-) or more, it is possible to downsize the high resistance element.
し発明の効果〕
以上の如く本発明に係るセラミック抵抗利料は高温まで
安定した抵抗値を有し、かつ大きな固有抵抗が得られる
ものである。[Effects of the Invention] As described above, the ceramic resistor according to the present invention has a stable resistance value up to high temperatures and can obtain a large specific resistance.
さらに本発明におい℃は原料としてBaC0,、Pb3
O41Cr20gを用いる事ができるため、その抵抗特
性と併せ、従来技術に比較して安価なセラミック抵抗材
料を得ることができる。Furthermore, in the present invention, °C is BaC0, Pb3 as a raw material.
Since 20 g of O41Cr can be used, in addition to its resistance properties, a ceramic resistance material that is cheaper than the conventional technology can be obtained.
第1図は本発明に係るセラミック抵抗材料におけるcr
置換量の室温抵抗に及ばず影響を示した曲線図、第2
図は本発明に係るBarb、、 CrxPbO,ノ抵抗
率の温度依存性を示す曲線図。
(7317) 代理人 弁理士 則 近 憲 佑 (
ほか1名)第1図
C□厘蚊1
第2図FIG. 1 shows the CR in the ceramic resistance material according to the present invention.
Curve diagram showing the effect of substitution amount on room temperature resistance, 2nd
The figure is a curve diagram showing the temperature dependence of the resistivity of Barb, CrxPbO, and the like according to the present invention. (7317) Agent: Patent Attorney Noriyuki Chika (
and 1 other person) Figure 1 C □ Rin Mosquito 1 Figure 2
Claims (1)
、0.25<xり035なる組成を有することを特徴と
したセラミック抵抗材料。A ceramic resistance material represented by the chemical formula Ba(Pb,-)(Crx)Os and having a composition of 0.25<x035.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187457A JPS5978501A (en) | 1982-10-27 | 1982-10-27 | Ceramic resistance material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57187457A JPS5978501A (en) | 1982-10-27 | 1982-10-27 | Ceramic resistance material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5978501A true JPS5978501A (en) | 1984-05-07 |
Family
ID=16206406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57187457A Pending JPS5978501A (en) | 1982-10-27 | 1982-10-27 | Ceramic resistance material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5978501A (en) |
-
1982
- 1982-10-27 JP JP57187457A patent/JPS5978501A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3950273A (en) | Medium temperature thermistor | |
US3928837A (en) | Ceramic oxide resistor element | |
JPS58217464A (en) | Zirconium oxide ceramic | |
JPS6022302A (en) | Oxide semiconductor for thermistor | |
JPH02143502A (en) | Manufacture of ntc thermistor | |
JPS5978501A (en) | Ceramic resistance material | |
TW406061B (en) | Indium-containing, oxide-ceramic thermistor | |
JP3202273B2 (en) | Composition for thermistor | |
JPS5945964A (en) | Ceramic resistor material | |
JPS6328325B2 (en) | ||
JPS5945963A (en) | Ceramic resistor material | |
JP2002193665A (en) | Semiconductor ceramic for thermistor and chip type thermistor using it | |
JP3202276B2 (en) | Composition for thermistor | |
JP3202274B2 (en) | Composition for thermistor | |
JPH03271154A (en) | Composition for thermistor | |
JPS5917206A (en) | Ceramic resistance material | |
JPS6322601B2 (en) | ||
JPH04701A (en) | Manufacture of ntc thermistor | |
JPS60118662A (en) | High temperature ptc material and manufacture | |
JPS6136901A (en) | Method of producing ptc element | |
JPS62282416A (en) | Voltage nonlinear resistance unit | |
JPH0582307A (en) | Composition for thermistor | |
JPS6030082B2 (en) | Manufacturing method of moisture sensing element | |
JPS59208804A (en) | Oxide semiconductor for thermistor | |
JPS5944807A (en) | Voltage nonlinear resistance porcelain |