JPS5977139A - Friction material - Google Patents

Friction material

Info

Publication number
JPS5977139A
JPS5977139A JP18618882A JP18618882A JPS5977139A JP S5977139 A JPS5977139 A JP S5977139A JP 18618882 A JP18618882 A JP 18618882A JP 18618882 A JP18618882 A JP 18618882A JP S5977139 A JPS5977139 A JP S5977139A
Authority
JP
Japan
Prior art keywords
resin
friction material
polyvinyl acetal
modified phenolic
friction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18618882A
Other languages
Japanese (ja)
Other versions
JPH0131057B2 (en
Inventor
Riichi Otake
利一 大竹
Yoshinori Hanawa
宜紀 塙
Yamato Miyoshi
三好 大和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP18618882A priority Critical patent/JPS5977139A/en
Publication of JPS5977139A publication Critical patent/JPS5977139A/en
Publication of JPH0131057B2 publication Critical patent/JPH0131057B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D69/02Composition of linings ; Methods of manufacturing
    • F16D69/025Compositions based on an organic binder
    • F16D69/026Compositions based on an organic binder containing fibres

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Braking Arrangements (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

PURPOSE:To improve abrasion resistance of a friction material made of metallic fiber as the basic material, in all operating temperatures, by using a specific modified phenolic resin as an essential ingredient of the bonding agent thereby to enhance the binding force. CONSTITUTION:The suitable modified phenolic resin as the ingredient of the bonding agent to constitute the friction material is polyvinyl acetal resin modified phenolic resin (hereafter to be called the resin A) or aromatic hydrocarbon resin modified polyvinyl acetal resin modified phenolic resin (hereafter to be called the resin B). The resin A can be obtained by first preparing novolac type phenolic resin, through a predetermined period of time of reaction between phenol and aldehyde in the presence of acid catalyst, then adding polyvinyl acetal resin thereto allowing both resin to react with each other, and finally allowing the product of reaction to pass through a dehydrating process. The resin B is obtained by first allowing aromatic hydrocarbon resin and phenol to react with each other in the presence of acid catalyst, then adding polyvinyl acetal resin thereto for further reaction, and finally allowing the product of reaction to pass through a dehydrating process. Using metallic fiber as basic friction material and using the resin A or B as an essential ingredient of the bonding agent, a very useful friction material with abrasion resistance remarkably improved also in low operating temperature can be provided.

Description

【発明の詳細な説明】 本発明は新規にして有用なる摩擦材に関するものであり
、さらに詳細には、特定の変性フェノール系樹脂を結合
剤の必須成分として含んで成る摩擦材に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a new and useful friction material, and more particularly to a friction material comprising a specific modified phenolic resin as an essential component of a binder.

ブレーキライニング、ディスクパッドなどの如き摩擦材
は、従来より、アスベスト短繊維を補強基材として用い
、さらに有愼および無機質充填材をも用いて、これらを
熱硬化型フェノール樹脂で結合させることにより得られ
ているが、かかるアスベスト繊維はそれ自体1人体に吸
収された場合に呼吸系統の疾患を惹起せしめる可能性の
あること娘医学的に実赴されており、当該アスベスト系
摩擦材の製造工程中におけるアスベストの飛散物による
作業者への影響を1要視することが、近年、益々クロー
ズ・アップされてきている。
Friction materials such as brake linings and disc pads have conventionally been produced by using short asbestos fibers as a reinforcing base material, and also by using abrasive and inorganic fillers and bonding them with thermosetting phenolic resin. However, it has been medically proven that such asbestos fibers may cause respiratory system diseases if absorbed into the human body, and during the manufacturing process of the asbestos-based friction material. In recent years, attention has been focused more and more on the impact of asbestos debris on workers.

こうした状況下にあって、′脱アスベスト′化を1指し
て、ブレーキライニングやディスクパッドなどの如き各
棟摩擦材の製造用の代替基材として、金属繊維が次第に
有望視されてきている。
Under these circumstances, with the aim of ``de-asbestos'', metal fibers are increasingly being seen as a promising alternative base material for the production of various friction materials such as brake linings and disc pads.

これは金属繊維自体が安価で人手し易いという理由と、
さらにアスベスト基材に用いられてきた技術が概ねその
ままの形で利用しうるという理由にもよるものではある
が、これに反して、この金属繊維を用いた場合には、6
00°C以上という高温領域での耐摩耗性にはすぐれて
いるものの、250℃以下という低温領域でのそれは、
従来のアスベスト系摩擦材に比して、必ずしもすぐれて
いるとも言えないという難点がある。
This is because the metal fiber itself is cheap and easy to handle, and
Furthermore, this is due to the fact that the technology used for asbestos base materials can be used almost as is, but on the other hand, when this metal fiber is used,
Although it has excellent wear resistance in the high temperature range of 00°C or higher, it has poor wear resistance in the low temperature range of 250°C or lower.
The drawback is that it cannot necessarily be said to be superior to conventional asbestos-based friction materials.

その主たる原因としては、基材と結合剤との接着結合性
、換言すれば、かかる金属基材と熱硬化型フェノール樹
脂との接着結合性の弱さが埜けられるが、その弱さが摩
擦中において摩擦椙からの基材の脱離といったトラブル
を誘発し、その結果は、摩擦制の摩耗量を増大せしめる
ものとなるということも考えられよう。
The main reason for this is the weak adhesive bond between the base material and the binder, in other words, the weak adhesive bond between the metal base material and the thermosetting phenolic resin, and this weakness causes friction. It is also conceivable that this may cause problems such as detachment of the base material from the friction pad, and as a result, the amount of wear of the friction pad will increase.

これまでにも、こうした愛読基材との組み合わせにおい
て純粋フェノール樹脂、カシュー油変性フェノール樹脂
、ゴム変性フェノール樹脂またはアルキルフェノール変
性フェノ−ルミ1脂などの各種熱硬化型フェノール樹脂
が使用されてきてはいるけれども、いずれのタイプのも
のも上述した如き難点の除去、つまり低温領域での耐摩
耗性の改善という課題を解決しうる材料であるとは言え
ない。
Various thermosetting phenolic resins, such as pure phenolic resin, cashew oil-modified phenolic resin, rubber-modified phenolic resin, or alkylphenol-modified phenolic resin, have been used in combination with these favorite base materials. However, none of these types can be said to be a material that can eliminate the above-mentioned difficulties, that is, solve the problem of improving wear resistance in a low temperature region.

しかるに、本発明者らはこうした上述の技術的背景に立
脚し、金属繊維と結合剤との接着結合力を増大させ、と
くに低温領域での耐摩粍性の向上化、ひいては摩擦材と
しての全温度領域での耐摩粍性の向上化をはかることを
目的として鋭意研究した結果、特定の変性フェノール糸
樹脂を結合剤の必須成分として摩擦材中に含有せしめる
ことにより、前述した問題点の悉くか解決され、本発明
の目的が兄事に達せられることを見出して、本発明を構
成されるに到った。
However, based on the above-mentioned technical background, the present inventors have increased the adhesive bonding force between the metal fibers and the binder, improved the abrasion resistance especially in the low temperature range, and further improved the overall temperature resistance as a friction material. As a result of intensive research aimed at improving abrasion resistance in various areas, all of the above-mentioned problems were resolved by incorporating a specific modified phenolic thread resin into the friction material as an essential component of the binder. The inventors have discovered that the object of the present invention can be achieved in a similar manner, and have constructed the present invention.

すなわち、本発明はポリビニルアセタール樹脂を、また
はこれと芳香族炭化水素樹脂とを変性剤成分とした変性
フェノール系樹脂を結合剤の必須成分として含んで成る
摩擦材を提供するものである。
That is, the present invention provides a friction material comprising a polyvinyl acetal resin or a modified phenolic resin containing polyvinyl acetal resin and an aromatic hydrocarbon resin as an essential component of the binder.

ここにおいて、本発明の摩擦材を構成する結合剤成分た
る前記変性フェノール系樹脂とは、変性剤成分としてポ
リビニルアセタール樹l旨を用いるか、ある(・&1こ
のポリビニルアルコールlid l)Wと芳香族炭化水
素樹脂とを用(・る力・の(・ずれかを用いて得られる
もの、つまりポリビニルアセクール樹脂変性フェノール
系樹脂(以下、樹脂囚とも(・う。)または芳香族炭化
水素樹脂変性−ポリビニルアセクール樹脂変性フェノー
ル系樹脂(以下、樹脂(B)とも(・う。)を相称する
ものであり、これらの変性フェノール糸mtlIv+1
次のようにして得られる。
Here, the modified phenolic resin which is a binder component constituting the friction material of the present invention means that polyvinyl acetal resin is used as a modifier component, or (・&1 this polyvinyl alcohol lid l) W and an aromatic compound. Polyvinyl acecool resin modified phenolic resin (hereinafter referred to as resin resin) or aromatic hydrocarbon resin modified - Polyvinyl acecool resin modified phenolic resin (hereinafter also referred to as resin (B)), these modified phenolic yarns mtlIv+1
It can be obtained as follows.

すなわち、拘り旨(ハ)!−まずフェノール類とアルデ
ヒド類とを酸性触媒の存在下に所定時間反応させ、次(
・で力・くしで得られたノボラック型フェノール樹脂に
ポリビニルアセタール樹脂を添加し、反応させてから脱
水工程を経て得らオLるし、他方、樹脂(Blは芳香族
炭化水素樹脂とフェノール類とを酸性触媒下で反応させ
1次いでさらにポリビニルアセクール樹脂をも反応させ
てから脱水工程を経由して得られるが、ポリビニルアセ
タール樹脂とはポリビニルアルコール、またはポリ酢酸
ビニルの如きポリビニルエステル類の部分けん化物中の
水酸基の一部がアルデヒド類との縮合によってアセター
ル化されたものであって、そのうち代表的なものとして
はポリビニルホルマールまたはポリビニルブチラールな
どが挙げられる。
In other words, I am particular about it (ha)! -First, phenols and aldehydes are reacted in the presence of an acidic catalyst for a predetermined period of time, and then (
・Polyvinyl acetal resin is added to the novolac type phenolic resin obtained by force and combing, and the resin is obtained through a dehydration process after reaction. Polyvinyl acetal resin is obtained by reacting polyvinyl acetal resin under an acidic catalyst, then reacting with polyvinyl acetic resin, and then dehydrating the resin. Some of the hydroxyl groups in the saponified product are acetalized by condensation with aldehydes, and typical examples include polyvinyl formal and polyvinyl butyral.

当該ポリビニルアセタール樹脂にあっては、このポリビ
ニルアルコール単位の残存水酸基が官能基となってフェ
ノール類との縮合反応により変性されることになるが、
そのさく1の変性量は原料フェノール類に対して1〜7
0重量%なる範囲が、好ましくは5〜60重量4なる範
囲が適当である。
In the polyvinyl acetal resin, the residual hydroxyl group of the polyvinyl alcohol unit becomes a functional group and is modified by a condensation reaction with a phenol.
The amount of denaturation of the sac 1 is 1 to 7 with respect to the raw material phenols.
A range of 0% by weight is suitable, preferably a range of 5 to 60% by weight.

この変性量が70Tc量チを越える場合は、金属繊維と
の接着力は補強されるが、樹脂(Al自体の耐熱性が劣
化し、加えて高温での耐摩耗性も損なわれるから、逆に
1重量悌未満の場合には本発明にとって望ましい効果が
得られなt・から、いずれも好ましくない。
If the amount of this modification exceeds 70 Tc, the adhesive strength with the metal fibers will be strengthened, but the heat resistance of the resin (Al itself will deteriorate, and in addition, the abrasion resistance at high temperatures will be impaired. If the amount is less than 1 kg by weight, the desired effects of the present invention cannot be obtained, so both are not preferred.

また、上記のフェノール類としてはフェノール、クレゾ
ール、キシレノールまたはその他のアルキルフェノール
などが代表的な例であり、上記のアルデヒド類としては
ホルムアルデヒド、パラホルムまたはグリオキザールな
どが代表例であり、さらにヘキサメチレンテトラミンな
どの如きホルムアルデヒドを放出するような物質も同様
に使用できる。
Typical examples of the above phenols include phenol, cresol, xylenol, and other alkylphenols, and typical examples of the aldehydes include formaldehyde, paraform, and glyoxal, and hexamethylenetetramine and the like. Materials that emit formaldehyde, such as, can be used as well.

他方、前記芳香族炭化水素樹脂とは芳香族炭化水素、た
とえばベンゼン、トルエンまたはキシレンとアルデヒド
類とを酸性触媒の存在下に反応させてイ41−られるも
のであり、そのうち代表的なものを挙ければベンゼン・
ホルムアルデヒド崩■旨、トルエン嗜ホルムアルデヒド
樹口旨、キシレンe得うれる混合アルキルベンゼン・ホ
ルムアルデヒド樹脂などである。
On the other hand, the aromatic hydrocarbon resin is a resin produced by reacting an aromatic hydrocarbon such as benzene, toluene or xylene with an aldehyde in the presence of an acidic catalyst. If so, benzene
These include formaldehyde disintegration, toluene-containing formaldehyde resin, and mixed alkylbenzene/formaldehyde resin obtained from xylene.

そして、この芳香族炭化水素樹脂の使用量は原料フェノ
ール類に対して5〜100重量%なる範囲が、好ましく
は10〜8ON量膚なる範囲が適当である。
The amount of the aromatic hydrocarbon resin to be used is preferably 5 to 100% by weight, preferably 10 to 8% by weight, based on the raw material phenol.

この使用量が100重知゛チを越える場合は、樹脂(B
埴;遅硬化性のものとなり、摩擦材の生産性を低下させ
ることとなるし、逆に5重量%未満の場合には本発明に
とって望ましい効果が得られなくなるから、いずれも好
ましくない。
If the amount used exceeds 100%, resin (B
Molten: It becomes slow-curing, reducing the productivity of the friction material, and conversely, if it is less than 5% by weight, the desired effect for the present invention cannot be obtained, so both are not preferred.

さらに、前記の酸性触媒として代表的なものには硫酸、
塩酸もしくは硝酸などの如き無機酸、またはパラトルエ
ンスルホン酸、しゆう酸もしくは酢酸などの如き有機酸
があり、それらの混合使用もできる。
Furthermore, typical acidic catalysts include sulfuric acid,
Examples include inorganic acids such as hydrochloric acid and nitric acid, and organic acids such as para-toluenesulfonic acid, oxalic acid and acetic acid, and mixtures thereof can also be used.

而して、本発明の摩擦材は止揚された如き主たる原料化
合物を用いて得られる、たとえば各a変性のノボラック
型フェノール樹脂を、その1〜30重量%のへキサメチ
レンテトラミンと共に精粉砕し、次いでかくして得られ
る粉砕物を、いわゆる摩擦基材と摩擦改良剤とその他の
フィラーと共に混合機中で均一に混ぜ合わせたのち熱圧
成型機を用いて成型し、次いで焼成し、研磨加工せしめ
ることにより得られるものであって、使用全温度領域に
亘って耐摩粍性にすぐれるという、高い摩擦係数を示し
、しかもその安定性にもすぐれた極めて有用なものであ
る。
Thus, the friction material of the present invention is obtained by finely pulverizing each a-modified novolak type phenol resin, which is obtained using a main raw material compound such as a submerged one, together with 1 to 30% by weight of hexamethylenetetramine. Next, the pulverized product thus obtained is mixed uniformly with a so-called friction base material, a friction modifier, and other fillers in a mixer, then molded using a hot pressure molding machine, and then fired and polished. This product is extremely useful because it exhibits a high coefficient of friction with excellent abrasion resistance over the entire temperature range of use, and is also excellent in stability.

ここにおいて、上述した摩擦基材として代表的なものに
は鉄系繊維、黄銅懺維などの如き金属繊維があるが、さ
らにアスベスト短繊維などの如き公知慣用の繊維を使用
することもできる。
Here, typical friction base materials include metal fibers such as iron fibers and brass fibers, but further known and commonly used fibers such as asbestos staple fibers may also be used.

また、上記の摩擦改良剤としてはカシュー穀油のゲル化
物たるカシューダストをはじめとしてカーボンないしは
グラフアイドナどが代表的なものであり、さらにその他
のフィラーとしては炭酸カルシウム、硫酸バリウム、ア
ルミナ粉、鉤粉または酸化亜鉛粉などが代表的なもので
ある。
Typical friction modifiers include cashew dust, which is a gelled product of cashew grain oil, and carbon or graphite powder.Other fillers include calcium carbonate, barium sulfate, alumina powder, and starch powder. Or zinc oxide powder is a typical example.

本発明の摩擦材を得るにさいし、熱圧成型を行なう場合
には、結合剤成分たる前記樹脂仏)または樹脂(B)が
架橋されるのに十分な温度であればよい。−例を示せは
140〜220℃なる金型@度条件と、150〜450
ky/cl’なる圧力条件とか与えられる。
When hot-pressing molding is performed to obtain the friction material of the present invention, the temperature may be sufficient as long as the temperature is sufficient to crosslink the resin (B) or resin (B) as the binder component. -Could you give an example of a mold @ temperature condition of 140~220℃ and
A pressure condition of ky/cl' is given.

このようにして、本発明は特に前記摩擦基材として金属
基拐を、他方、結合剤としては特にノボラック型フェノ
ール糸樹脂をポリビニルアセタール樹脂の単独で、また
はこのポリビニルアセタール樹脂と芳香族炭化水素樹脂
とを併用して変性させて得られる樹脂(A)または樹脂
(B)を必須の成分として用いることにより、かかる金
属繊維との接着結合力が強化され、従来型摩擦材の欠点
となっていた低温領域での耐摩粍性もまた顕著に向上さ
れた極めて有用なる摩擦材が得られる。
In this way, the present invention particularly uses a metal substrate as the friction base material, and a novolak type phenolic thread resin as a binder, either alone or with a polyvinyl acetal resin and an aromatic hydrocarbon resin. By using resin (A) or resin (B) as an essential component, which is obtained by modifying resin (A) or resin (B), the adhesive bonding force with such metal fibers is strengthened, which has been a drawback of conventional friction materials. An extremely useful friction material with significantly improved abrasion resistance in low temperature ranges can be obtained.

当該摩擦材に要求される基本的性能としては、前述した
ように、さらに一層の高温での耐摩耗性、摩擦係数の高
さ、および安定性などが挙げられるが、最近における過
酷な制動条件下では、こうした高温領域での諸特性も重
要視されてきており、本発明の摩擦材はこうした時代の
要求に添ったものとして高く評価され得よう。
As mentioned above, the basic performance required of such friction materials includes even higher wear resistance at high temperatures, a high coefficient of friction, and stability, but under recent harsh braking conditions. Now, various characteristics in such a high temperature region are also becoming important, and the friction material of the present invention will be highly evaluated as meeting the demands of this era.

こうした高温領域での諸特性が発揮されるのは前記樹脂
(B)に負う処が多く、該樹脂(B)がフェノール核と
置換ベンゼン核とメチレン結合とのみから成るものであ
って、耐熱性にすぐれ、かつ柔軟性にもすぐれるという
特質を有する処からであろうし、他方、従来型摩擦材の
欠点ないしは難点とされて低温領域での耐摩耗性が本発
明の摩擦材により解決できたのはポリビニルアセタール
樹脂を変性剤として得られるフェノール系樹脂に負うも
のであり、加えて金属繊維を摩擦基材の必須成分として
用いている処に負うものであろうと考えられる。
Many of the properties exhibited in these high-temperature ranges are due to the resin (B), which is composed only of phenol nuclei, substituted benzene nuclei, and methylene bonds, and has excellent heat resistance. This may be due to the fact that it has the characteristics of being excellent in hardness and flexibility, and on the other hand, the friction material of the present invention solves the problem of wear resistance in low temperature ranges, which is considered to be a drawback or difficulty of conventional friction materials. This is thought to be due to the phenolic resin obtained using polyvinyl acetal resin as a modifier, and also to the fact that metal fibers are used as an essential component of the friction base material.

かくして得られる本発明の摩擦材は低温から高温までの
全温度領域に亘って広範囲に使用できる処から、ブレー
キライニングやディスクパッド用などの摩擦材としては
勿論、6批の産業機械用ブレーキライニングなどの分野
にも広(利用されうるものである。
The friction material of the present invention obtained in this way can be used in a wide range of temperatures over the entire temperature range from low to high temperatures, so it can be used not only as a friction material for brake linings and disc pads, but also for brake linings for industrial machinery. It can also be used in a wide range of fields.

次に、本発明を実施例および比較例により具体的に説明
′1−るが、部およびチは特に断りのない限り、すべて
重量基準であるものとする。
Next, the present invention will be explained in detail with reference to Examples and Comparative Examples. Unless otherwise specified, all parts and parts are based on weight.

実施例1 還流冷却装置、攪拌装置および常圧・減圧蒸留装置を備
えた反応釜に、フェノールの930部を仕込み、さらに
98チ硫酸の0.96部を加え七から昇温を開始して1
00℃になった処で、市販の37.21ホルマリンの6
30部を徐々に滴下させて還流状態で1時間反応せしめ
たのち、[デンカホルマール 30HJ(電気化学工条
■製のポリビニルホルマール)の186部を添加してか
ら更に還流状態で1時間反応せしめた。
Example 1 930 parts of phenol was charged into a reaction vessel equipped with a reflux cooling device, a stirring device, and a normal pressure/vacuum distillation device, and 0.96 parts of 98-thiosulfuric acid was added, and the temperature was increased from 7 to 1.
When the temperature reached 00℃, commercially available 37.21 formalin 6
After 30 parts were gradually added dropwise and reacted for 1 hour under reflux, 186 parts of Denka Formal 30HJ (polyvinyl formal manufactured by Denki Kagaku Kojo) was added and further reacted for 1 hour under reflux. .

次いで、市販の25チアンモニア水の1.3部を加えて
中和したのち、直ちに密圧蒸留にて脱水を開始して、反
応釜内温度が160℃に達した時点を以て密圧蒸留の終
点とする一方、同時点で減圧蒸留回路に切り替えて減圧
度を徐々に上げて竹って生成樹脂の軟化点が114℃と
なった時点を以て減圧蒸留の終点とし、ここで生成樹脂
を取り出した(収電は1100部)。
Next, after neutralizing by adding 1.3 parts of commercially available 25 thiammonia water, dehydration was immediately started by closed pressure distillation, and the end point of closed pressure distillation was reached when the temperature inside the reaction pot reached 160°C. At the same time, the vacuum distillation circuit was switched to, the degree of vacuum was gradually increased, and the end point of the vacuum distillation was when the softening point of the bamboo resin produced reached 114°C, at which point the produced resin was taken out. Collected electricity is 1100 copies).

か(して得られた仙脂を窒耐させたのち粗粉砕させ、ヘ
キサメチレンテトラミンの77部を加えて精粉砕させた
のち、200メツシュ通過分が94%なる粒度なもった
粉末状の樹脂を得た。以下、これを樹脂(A−1)と略
記する。
After subjecting the resulting Senso to nitrogen resistance, it was roughly pulverized, and 77 parts of hexamethylenetetramine was added and finely pulverized to obtain a powdered resin with a particle size of 94% that passed through 200 meshes. Hereinafter, this will be abbreviated as resin (A-1).

次いで、この樹脂(A−1)を用いて下記に示されるよ
うな配合で、目的とする摩擦材を調製するが、まず各配
合原料を混合機で均一に混合したのち、熱圧成型機にて
金型温度を165℃とし、かつプレス圧力を300に9
/cII?とじて、かかる条件で10分間保持して成型
せしめ、次いでこの成型物を180℃で8時間焼成させ
、しかるのち研磨せしめて摩擦材を得た。
Next, the desired friction material is prepared using this resin (A-1) with the formulation shown below. First, each compounded raw material is mixed uniformly in a mixer, and then put into a hot pressure molding machine. The mold temperature was set to 165°C, and the press pressure was set to 300°C.
/cII? The molded product was sealed and held under these conditions for 10 minutes to be molded, and then the molded product was fired at 180° C. for 8 hours and then polished to obtain a friction material.

この摩擦材のJIS  D−4411による摩擦係数お
よび摩耗率の測定結果は第1表にまとめて示す。
The results of measuring the friction coefficient and wear rate of this friction material according to JIS D-4411 are summarized in Table 1.

鉄系繊維       50チ 樹脂(A−1)10チ カシューダスト         5qb銅     
粉         10チ硫酸バリウム      
    10係黒鉛(グラファイト)       1
5qb実施例2 「デンカホルマール 30H」を使用せずに実施例1と
同様の操作を繰り返して中和、次いで常圧蒸留による脱
水を行ない、蒸留物が減少して釜内温度が上昇し、15
0’Cになった時点でI°デンカブチラール ioロー
1」(同上社製品)の186部をはじめて添加し、同温
度で1時間反応させてから温度を160℃まで徐々に上
昇させつつ常圧蒸留を行なって、同温度に達した時点で
減圧蒸留に切り替えた。
Iron-based fiber 50cm Resin (A-1) 10cm Dust 5qb Copper
Powder 10-barium sulfate
10th grade graphite (graphite) 1
5qb Example 2 The same operation as in Example 1 was repeated without using "Denka Formal 30H" to perform neutralization, followed by dehydration by atmospheric distillation, the distillate decreased and the temperature inside the pot increased, and 15
When the temperature reached 0'C, 186 parts of I°Denka Butyral IO Rho 1' (product of the same company) was added for the first time, and after reacting at the same temperature for 1 hour, the temperature was gradually raised to 160°C and the temperature was increased to normal pressure. Distillation was performed, and when the same temperature was reached, switching to vacuum distillation was performed.

以後も、実施例1と同様にして得られた樹脂の軟化点は
123℃であり、収量は1100部であって1次いで粗
粉砕物にヘキサメチレンテトラミンを添加し、精粉砕せ
しめて得られた94チなる粒度をもった樹脂についても
、摩擦係数および摩耗率の測定結果を第1表に示す。
Thereafter, the softening point of the resin obtained in the same manner as in Example 1 was 123 ° C., the yield was 1100 parts, and hexamethylenetetramine was then added to the coarsely pulverized material and finely pulverized. Table 1 also shows the measurement results of the friction coefficient and wear rate for the resin having a particle size of 94 inches.

実施例6 斯化学■製キシレンーホルムアルデヒド樹脂)の200
部とフェノールの500部とを仕込み、さらに49チ硫
酸の16部を加えて120℃で2.5時間反応させた。
Example 6 200 xylene-formaldehyde resin manufactured by Shikagaku ■
and 500 parts of phenol, and further added 16 parts of 49-thiosulfuric acid and reacted at 120° C. for 2.5 hours.

次いで、90℃に降温させてから37.21ホルマリン
の312部と49チ硫酸の4.2部とを加えて100℃
で1時間反応させ、25%アンモニア水の6.15部を
加えて中和したのち、[デンカブチラール3000−I
Jの120部を加えて30分間反応させてからは、実施
例1と同様に処理して軟化点が119℃なる樹脂を10
00部得た。
Next, the temperature was lowered to 90°C, and 312 parts of 37.21 formalin and 4.2 parts of 49 sulfuric acid were added, and the mixture was heated to 100°C.
After reacting for 1 hour and neutralizing by adding 6.15 parts of 25% aqueous ammonia, [Denka Butyral 3000-I
After adding 120 parts of J and reacting for 30 minutes, the resin with a softening point of 119°C was treated in the same manner as in Example 1.
I got 00 copies.

以後も、実施例1と同様にして粉末状樹脂を得、次いで
摩擦材を得たが、この摩擦材についての摩擦係数および
摩耗率は第1表に示す通りである。
Thereafter, a powdered resin was obtained in the same manner as in Example 1, and then a friction material was obtained. The friction coefficient and wear rate of this friction material are as shown in Table 1.

実施例4 「ニカノール H」の使用量を400部とし、かつ「デ
ンカブチラール 、15000−IJの使用量を60部
と変更させた以外は、実施例6と同様にして軟化点か1
12℃なる樹脂1140部を得た。
Example 4 The same procedure as in Example 6 was carried out, except that the amount of "Nicanol H" used was 400 parts, and the amount of "Denka Butyral, 15000-IJ" was changed to 60 parts.
1140 parts of resin having a temperature of 12° C. was obtained.

以後は、この樹脂について実施例1と同様にして粉末樹
脂を得、次いで摩擦材を得たか、か(して得られた摩擦
材についての摩擦係数および摩耗率の測定結果は第1表
に示す通りである。
Thereafter, a powder resin was obtained using this resin in the same manner as in Example 1, and then a friction material was obtained (the measurement results of the friction coefficient and wear rate of the obtained friction material are shown in Table 1). That's right.

比較例1 実施例1と同様の反応釜に、フェノールの1000部お
よび98チ硫酸の2部を仕込んで100℃に加熱し、さ
らに!+ 7.2 %ホルマリンの644部を同温度で
滴下させ1滴下終了後も2時間反応を継続させ、次いで
25チアンモニア水の2.8部を加えて中和してから常
圧蒸留を開始させて反応系の温度が160℃に達するま
で脱水な行なったのち減圧蒸留をも行なって、軟化点が
109℃なる対照用の樹脂1000部を得た。
Comparative Example 1 Into the same reaction pot as in Example 1, 1000 parts of phenol and 2 parts of 98-thiosulfuric acid were charged, heated to 100°C, and further! + 644 parts of 7.2% formalin was added dropwise at the same temperature, and the reaction was continued for 2 hours after the completion of one drop. Then, 2.8 parts of 25% ammonia water was added to neutralize, and then atmospheric distillation was started. After dehydration was carried out until the temperature of the reaction system reached 160°C, vacuum distillation was also carried out to obtain 1000 parts of a control resin having a softening point of 109°C.

ヘキサメチレンテトラミンの量を70部に変更させた以
外は、実施例1と同様にして精粉砕された粉末状の樹脂
を得1次いで摩擦材を得たが、この摩擦材についての摩
擦係数および摩耗率の結果は第1表に示す。
A finely ground powdered resin was obtained in the same manner as in Example 1, except that the amount of hexamethylenetetramine was changed to 70 parts, and then a friction material was obtained. The rate results are shown in Table 1.

比較例2 余分に150部のカシュー殻重合油をも仕込み、かつ。Comparative example 2 Added an extra 150 parts of cashew shell polymerized oil.

そのあと加えるべきホルマリンの短を695部に変更さ
せた以外は、比較例1と同様にして軟化点か105℃な
るカシュー油変性ノボラック佃脂120U部を得た。
120 U parts of cashew oil-modified novolac tsukusa with a softening point of 105° C. was obtained in the same manner as in Comparative Example 1, except that the amount of formalin to be added was changed to 695 parts.

以後も、比較例1と同様にして粉末状の樹脂を得、次い
で対重u用の摩擦材な得た。
Thereafter, a powdered resin was obtained in the same manner as in Comparative Example 1, and then a friction material for weight u was obtained.

この#擦制について摩擦係数および摩耗率を測定した結
果は、第1表に示す通りである。
The results of measuring the friction coefficient and wear rate for this #rubbing are shown in Table 1.

第1表の結果からも明らかなように、ポリビニルアセタ
ール樹脂変性フェノール樹脂または芳香族炭化水素樹脂
−ポリビニルアセタール樹脂変性フェノール樹脂を結合
剤の必須成分とする本発明の摩擦材は、従来型フェノー
ル樹脂の代表的なものである純粋フェノール樹脂または
カシュー油変性フェノール樹脂などに比較して、とくに
耐摩耗性の顕著なる向上効果が発揮されており、加えて
商い摩擦係数とその安定性をも有するものであり、本発
明の摩擦制は極めて有用なものであることが知れる。
As is clear from the results in Table 1, the friction material of the present invention in which a polyvinyl acetal resin-modified phenolic resin or an aromatic hydrocarbon resin-polyvinyl acetal resin-modified phenolic resin is an essential component of the binder is a conventional phenolic resin. Compared to typical pure phenolic resins or cashew oil-modified phenolic resins, it exhibits a particularly remarkable improvement in wear resistance, and also has a high commercial friction coefficient and stability. Therefore, it is known that the friction system of the present invention is extremely useful.

なお、本発明に用いられる前記各変性フェノール樹脂が
アスベスト系基材をベースとする摩擦材用の結合剤とし
ても有用であることは勿論である。
It goes without saying that each of the modified phenol resins used in the present invention is also useful as a binder for friction materials based on asbestos base materials.

Claims (1)

【特許請求の範囲】[Claims] 変形剤としてポリビニルアセタール樹脂の単独またはこ
れと芳香族炭化水素樹脂とを併用して得られる変性フェ
ノール系樹脂を、結合剤の必須成分として営んで成る摩
擦材。
A friction material comprising a modified phenolic resin obtained by using polyvinyl acetal resin alone or in combination with an aromatic hydrocarbon resin as a deforming agent, as an essential component of a binder.
JP18618882A 1982-10-25 1982-10-25 Friction material Granted JPS5977139A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18618882A JPS5977139A (en) 1982-10-25 1982-10-25 Friction material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18618882A JPS5977139A (en) 1982-10-25 1982-10-25 Friction material

Publications (2)

Publication Number Publication Date
JPS5977139A true JPS5977139A (en) 1984-05-02
JPH0131057B2 JPH0131057B2 (en) 1989-06-23

Family

ID=16183925

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18618882A Granted JPS5977139A (en) 1982-10-25 1982-10-25 Friction material

Country Status (1)

Country Link
JP (1) JPS5977139A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269734A (en) * 1988-04-19 1989-10-27 Aisin Chem Co Ltd Wet friction material
ES2078141A1 (en) * 1992-04-06 1995-12-01 Weinsheim Chemie Damping cover

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01269734A (en) * 1988-04-19 1989-10-27 Aisin Chem Co Ltd Wet friction material
JPH0526049B2 (en) * 1988-04-19 1993-04-14 Aishin Kako Kk
ES2078141A1 (en) * 1992-04-06 1995-12-01 Weinsheim Chemie Damping cover

Also Published As

Publication number Publication date
JPH0131057B2 (en) 1989-06-23

Similar Documents

Publication Publication Date Title
US4427800A (en) Phenolic resin for refractory uses
US4026867A (en) Acid modified phenol-aldehyde resinous condensation products and friction particles therefrom
US4316827A (en) Rubber modified phenolic friction particles
JPWO2016159218A1 (en) Resol-type modified phenolic resin composition, production method thereof and adhesive
CA2299010C (en) Polymer composition for curing novolac resins
JP3138751B2 (en) Composition for friction element
US4419477A (en) Powder phenolic resin composition for dry process resin-bonded felt
JPS5977139A (en) Friction material
JP3008992B2 (en) Heat resistant resin dust
JPS61152717A (en) Phenolic resin composition modified with boric acid
JP3381734B2 (en) Friction material
JPH02232171A (en) Resinoid grindstone
JP3240662B2 (en) Heat resistant resin dust
JPH03243613A (en) Phenol-melamine cocondensation resin and production thereof
JPH0651824B2 (en) Phenolic resin binder
CA1182942A (en) Phenolic resin compositions containing bisphenol type epoxy resin and novolac type epoxy resin
JPS638451A (en) Resin composition for friction material
JPH0239650B2 (en) MASATSUZAI
JPH0791441B2 (en) Phenolic resin composition
US2279512A (en) Molding compound
JPH0694531B2 (en) A phenol resin composition for felt
JP2001139767A (en) Novolak-type phenol resin composition and frictional material
JPS5964616A (en) Solid resol resin and its production
JPH0144213B2 (en)
JPH0995597A (en) Highly reactive modified phenolic resin composition and molded product produced using the same