JPS5976855A - Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability - Google Patents

Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability

Info

Publication number
JPS5976855A
JPS5976855A JP57184694A JP18469482A JPS5976855A JP S5976855 A JPS5976855 A JP S5976855A JP 57184694 A JP57184694 A JP 57184694A JP 18469482 A JP18469482 A JP 18469482A JP S5976855 A JPS5976855 A JP S5976855A
Authority
JP
Japan
Prior art keywords
alloy
flux density
magnetic
magnetic flux
corrosion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57184694A
Other languages
Japanese (ja)
Other versions
JPS6150133B2 (en
Inventor
Koichi Tamaki
玉城 幸一
Tsutomu Nakamura
務 中村
Takashi Takahashi
俊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tohoku Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku Metal Industries Ltd filed Critical Tohoku Metal Industries Ltd
Priority to JP57184694A priority Critical patent/JPS5976855A/en
Publication of JPS5976855A publication Critical patent/JPS5976855A/en
Publication of JPS6150133B2 publication Critical patent/JPS6150133B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Soft Magnetic Materials (AREA)
  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To obtain an alloy having high saturation magnetic flux density, high magnetic permeability and improved corrosion resistance in an acidic atmosphere by specifying the amounts of Fe, Si, Al and Ti contained in an alloy and by regulating the amount of S remaining in the alloy. CONSTITUTION:This corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability consistis of, by weight, 4-12% Si, 3-8% Al, 0.1-1.0% Ti and the balance essentially Fe. The alloy may further contain 0.02-0.5% Ru, and the amount of S remaining in the alloy is regulated to <=3ppm. The alloy has improved acid resistance and high magnetic flux density because of Ti added alone or Ti and Ru added combinedly and the restricted S content. The alloy is suitable for use as the material of a magnetic head, etc.

Description

【発明の詳細な説明】 本発明はFe−8t−AA磁性合金に関し、特に酸性雰
囲気における耐食性、すなわち耐酸性に優れた磁気今ッ
ドコア用高飽和磁束密度高透磁率合金に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a Fe-8t-AA magnetic alloy, and particularly to a high saturation magnetic flux density and high magnetic permeability alloy for magnetic cores that has excellent corrosion resistance in an acidic atmosphere, that is, acid resistance.

一般に磁気へラドコア用磁性材料が具備すべき特性は、
磁気記録媒体の摺動に対する耐摩耗性が良く、記録媒体
を完全に磁化するだめに飽和磁束密度が高く、磁気ヘッ
ドの感度に関係した透磁率が高く、記録媒体による帯磁
を防ぐために保磁力が低いこと、さらにはいかなる環境
においても使用が可能なだめに耐食性に優れていること
等が挙げられる。
In general, the characteristics that magnetic materials for magnetic helad cores should have are:
It has good wear resistance against sliding of the magnetic recording medium, high saturation magnetic flux density to completely magnetize the recording medium, high magnetic permeability related to the sensitivity of the magnetic head, and high coercive force to prevent magnetization by the recording medium. Furthermore, it has excellent corrosion resistance so that it can be used in any environment.

従来、磁気ヘッドコア用磁性材料としては、パ7マロイ
、ン7トフェライト等が使用されているが、ノや−マロ
イは耐摩耗性が悪く、ソフトフェライトは飽和磁束密度
が低いという欠点を有している。
Conventionally, permalloy, ferrite, etc. have been used as magnetic materials for magnetic head cores, but ferrite has poor wear resistance, and soft ferrite has a low saturation magnetic flux density. ing.

最近、オー7” 4才分野およびVTR分野において記
録密度の高い磁気記録媒体としてメタルテープ。
Recently, metal tape has been used as a magnetic recording medium with high recording density in the O7" and VTR fields.

蒸着テープ等が普及しており、さらにVTR分野におい
ては狭トラック化、狭ギヤツプ長化が進んでいることか
ら、高飽和磁束密度、すなわち印加磁場10エルステッ
ドにおける磁束密度(以下B10)が9300ガウス以
上を有し、耐摩耗性を兼ね備えた磁気ヘッドコア材が要
求されている。
As vapor-deposited tapes and the like are becoming more widespread, and narrower tracks and narrower gap lengths are progressing in the VTR field, high saturation magnetic flux density, that is, magnetic flux density at an applied magnetic field of 10 Oe (hereinafter referred to as B10), is 9300 Gauss or higher. There is a demand for a magnetic head core material that has both wear resistance and wear resistance.

ソコテ、ノクーマロイ、フェライトの欠点を補いさらに
上記要求を満足する磁性材料としてFe −81−At
磁性合金が最近注目されている。Fe−8t −At磁
性合金はへソドコア材として優れた磁気特性を有してい
るが、主体元素がFeであるために耐食性が十分でない
という問題がある。
Fe-81-At is a magnetic material that compensates for the shortcomings of Sokote, Nokumalloy, and ferrite and also satisfies the above requirements.
Magnetic alloys have been attracting attention recently. Although the Fe-8t-At magnetic alloy has excellent magnetic properties as a hesodo core material, there is a problem in that the corrosion resistance is insufficient because the main element is Fe.

ところで磁気記録媒体、特に磁気録音用テープを蒸留水
(pH=7)中に24時間浸漬すると磁気テープの/6
イングーが溶は出し、蒸留水はpH=3.7程度にまで
変化し、酸性を呈するようTなる。このため、 li’
e−8t−At磁性合金をヘッドコア材として使用した
場合、コアは磁気テープとの摺動によシ常に酸性雰囲気
にさらされるので長時間の使用によシ腐食が生じる。コ
アの磁気テープ摺動面に腐食が生じるとテープ走行が妨
げられ、まだ腐食摩耗という現象によシ耐摩耗性が著し
く劣化し、さらにスペーシング損失をもたらし出力低下
のもと一般に鉄合金の耐食性は不働態化現象に基づいて
おり、高い耐食性を得るだめには強固な不働態皮膜を形
成させると良い。しかし不働態皮膜を形成させても孔食
という局部腐食に弱いという大きな欠点がある。このた
めにこの欠点を克服するためには合金中に存在するC2
N、P、Sなどの不純物元素を低下させる必要がある。
By the way, when a magnetic recording medium, especially a magnetic recording tape, is immersed in distilled water (pH = 7) for 24 hours, the magnetic tape becomes
Ingu dissolves and the pH of the distilled water changes to about 3.7, becoming acidic. For this reason, li'
When an e-8t-At magnetic alloy is used as the head core material, the core is constantly exposed to an acidic atmosphere due to sliding with the magnetic tape, resulting in corrosion over long periods of use. If corrosion occurs on the magnetic tape sliding surface of the core, tape running will be hindered, and the wear resistance will be significantly degraded due to the phenomenon of corrosion wear, which will further lead to spacing loss and reduce output. This is based on the passivation phenomenon, and in order to obtain high corrosion resistance, it is best to form a strong passive film. However, even if a passive film is formed, it has a major drawback of being susceptible to localized corrosion called pitting corrosion. Therefore, in order to overcome this drawback, C2 present in the alloy must be
It is necessary to reduce impurity elements such as N, P, and S.

この中でも特にSが耐食性を著しく劣化させることから
、Sを極力低下させる必要がある。
Among these, S in particular significantly deteriorates corrosion resistance, so it is necessary to reduce S as much as possible.

本発明者らはFe−3i−At磁性合金の耐食性におい
ても上記の一般の鉄合金と同様であることを見い出した
。すなわちFe−8i−At磁性合金に不働態皮膜を形
成させる合金元素を添加しても、不純物に起因する孔食
という局部腐食を押えることが不可能であった。以前に
本発明者らは、このようなFe −8i−At磁性合金
の孔食の原因となる不純物は主としてSであシ、このS
量を3〜30ppm(重量比、以下同じ)に低減させる
ことによって、孔食によるFe −81−At磁性合金
の局部腐食を著しく改善するととを提案した(特願昭5
7−85433 )が、その際にはS量を3ppm以下
にすることは困難であった。
The present inventors have discovered that the corrosion resistance of the Fe-3i-At magnetic alloy is also similar to that of the above-mentioned general iron alloy. That is, even if an alloying element that forms a passive film is added to the Fe-8i-At magnetic alloy, it has been impossible to suppress localized corrosion called pitting corrosion caused by impurities. Previously, the present inventors discovered that the impurity that causes pitting corrosion in such Fe-8i-At magnetic alloys is mainly S.
It was proposed that localized corrosion of Fe-81-At magnetic alloy due to pitting corrosion could be significantly improved by reducing the amount to 3 to 30 ppm (weight ratio, same hereinafter) (Japanese Patent Application No. 1983).
7-85433), but in that case it was difficult to reduce the amount of S to 3 ppm or less.

その後Sを3ppm以下にすべく研究を重ねた結果。After that, we conducted repeated research to reduce the S content to 3 ppm or less.

後述する方法によりS量が3ppm以下のli’e−8
i−At磁性合金を工業的に製造することが可能となっ
た。こうすることにより局部腐食を格段に改善できるこ
とを見い出し本発明に至ったものである。
li'e-8 with an S amount of 3 ppm or less by the method described below
It has become possible to industrially manufacture i-At magnetic alloys. It was discovered that by doing so, local corrosion could be significantly improved, leading to the present invention.

すなわち本発明の第一の発明は、Si4〜12%。That is, the first invention of the present invention has Si of 4 to 12%.

At 3〜8チ、 Ti O11〜1.0チおよび残部
が実質的にFeからなる合金であって、該合金中に残存
するS量が3 ppm以下であり、酸性雰囲気における
耐食性に優れ、かつB+Oが9300ガウス以上を有す
る耐食性高飽和磁束密度高透磁率合金である。
An alloy consisting of 3 to 8 inches of At, 11 to 1.0 inches of TiO, and the remainder substantially Fe, the amount of S remaining in the alloy is 3 ppm or less, and has excellent corrosion resistance in an acidic atmosphere. It is a corrosion-resistant, high saturation magnetic flux density, and high magnetic permeability alloy with B+O of 9300 Gauss or more.

また第二の発明は、Si4〜12チ、At3〜8チ。Moreover, the second invention is Si4-12th and At3-8th.

T r 0.1〜1.09’ t Ru 0.02〜0
.5 %および残部が実質的にFeからなる合金であっ
て、該合金中に残存するS量が3 ppm以下であシ、
酸性雰囲気における耐食性に優れ、かつBIOが930
0ガウス以上を有する耐食性高飽和磁束密度高透磁率合
金である0 本発明において、 Siは7〜10.、 %が最適であ
るが、 At、Fe等の関係から4〜12%の範囲にお
いても十分良好な磁気特性を有するので下限を4チ。
T r 0.1-1.09' t Ru 0.02-0
.. 5% and the balance substantially consists of Fe, the amount of S remaining in the alloy is 3 ppm or less,
Excellent corrosion resistance in acidic atmosphere and BIO of 930
In the present invention, Si is a corrosion-resistant high saturation magnetic flux density high magnetic permeability alloy having a magnetic flux density of 7 to 10 Gauss or more. , % is optimal, but due to the relationship between At, Fe, etc., it has sufficiently good magnetic properties even in the range of 4 to 12%, so the lower limit is set to 4.

上限を12チとしだ。AAの量は4〜6係が最適である
が、3〜8饅の範囲においても十分良好な特性を有する
ので下限を3チ、上限を8チとしだ。
The upper limit is set at 12 inches. The optimum amount of AA is 4 to 6 parts, but since it has sufficiently good properties even in the range of 3 to 8 parts, the lower limit is set to 3 parts and the upper limit to 8 parts.

Tiは合金表面を不働態化させるだめに添加するもので
あり、添加量が0.1%未満では効果が小さく、また1
、Of6を越えるとTiが結晶粒界に打出し粒界腐食の
原因となると共に13+oを低下させる要因となること
から、添加量を0.1〜1.0チとした。
Ti is added to passivate the alloy surface, and if the amount added is less than 0.1%, the effect will be small;
, Of6 is exceeded, Ti is pushed out to the grain boundaries and becomes a cause of intergranular corrosion and causes a decrease in 13+o. Therefore, the amount added was set to 0.1 to 1.0 Ti.

第二の発明において添加するRuも合金表面を不働態化
させるのに有効な元素でありTi単独よりもRuO,0
2〜0.5チとTiを複合添加した方がより一層耐食性
は改善される。Ru添加量が0.02%以下では添加効
果が小さく Ti単独添加の場合と大差がない。また0
、5チを越えて添加しても、より一層の耐食性の改善は
認め難(,0,02〜0.5係の添加で十分である。
Ru added in the second invention is also an effective element for passivating the alloy surface, and is more effective than Ti alone.
Corrosion resistance is further improved by adding 2 to 0.5 Ti in combination. When the amount of Ru added is 0.02% or less, the effect of addition is small and there is no significant difference from the case of adding Ti alone. 0 again
It is difficult to see any further improvement in corrosion resistance even if more than 5.0% is added (addition of 0.02 to 0.5% is sufficient.

Fe−8i−At磁性合金の酸性雰囲気における腐食形
態は2合金中に残存するSおよび硫化物が起請点となる
孔食から始まシ、長時間酸性雰囲気にさらされると全面
腐食へと進行する形態である。そこで孔食を防止するだ
めには起請点の原因となる合金中のSおよび硫化物を低
減させる必要がある。
The form of corrosion of Fe-8i-At magnetic alloys in an acidic atmosphere starts with pitting caused by S and sulfides remaining in the two alloys, and progresses to full-scale corrosion when exposed to an acidic atmosphere for a long time. It is. Therefore, in order to prevent pitting corrosion, it is necessary to reduce S and sulfides in the alloy, which cause pitting corrosion.

すなわち合金中に残存するS量を3ppm以下にすると
孔食は、はぼ完全に防止できる。S量が3ppm以上で
もある程度孔食は防止できるものの。
That is, if the amount of S remaining in the alloy is 3 ppm or less, pitting corrosion can be almost completely prevented. Although pitting corrosion can be prevented to some extent even if the S content is 3 ppm or more.

未だ不十分である。It is still insufficient.

ところで合金中に残存するS量の大部分はFe原料から
持ち込まれるものであるから1合金中のS量を低下させ
るだめにはFe原料中のS量を低下させれば良い。工業
的に用いられているFe原料中には50〜1100pp
のSが存在しているので、このFe原料を用いて真空溶
解しても合金中には40〜B Oppm程度のSが残存
する。そこでまずFe原料のみを溶解し、フラックス処
理精錬を行なうことによりS量が30 ppm以下の高
純度鉄を作製し。
By the way, most of the amount of S remaining in the alloy is brought in from the Fe raw material, so in order to reduce the amount of S in one alloy, it is sufficient to reduce the amount of S in the Fe raw material. Fe raw materials used industrially contain 50 to 1100 pp
Since S exists in the alloy, even if this Fe raw material is used for vacuum melting, about 40 to B Oppm of S remains in the alloy. Therefore, first, only the Fe raw material was melted and then fluxed and refined to produce high-purity iron with an S content of 30 ppm or less.

さらにこの高純度鉄を用いてFe−8t−At合金を上
記と同様な精錬を行なうと合金中に残存するS量を3 
ppm以下にすることが可能である。
Furthermore, when a Fe-8t-At alloy is refined in the same manner as above using this high-purity iron, the amount of S remaining in the alloy is reduced to 3.
It is possible to reduce the amount to less than ppm.

次に本発明の実施例について述べる。Next, examples of the present invention will be described.

S含有量が80 ppmである通常のFe原料50kg
をアルゴンガス雰囲気中で溶解し、AA15.!17を
添加して脱酸を行ない、その後65 % CaO−15
%CaF2−20 % Az2o3よシなるフラックス
を溶湯表面が常にフラックスによって被われるように3
0分間に3回以上にわたって添加した。とうして精錬し
たFe原料についてSおよびOの含有量を分析した結果
を第1表に示す。
50 kg of normal Fe raw material with S content of 80 ppm
was dissolved in an argon gas atmosphere to form AA15. ! 17 was added to perform deoxidation, and then 65% CaO-15
A flux such as %CaF2-20% Az2o3 was added so that the surface of the molten metal was always covered with the flux.
It was added three times or more in 0 minutes. Table 1 shows the results of analyzing the S and O contents of the refined Fe raw material.

第   1 ゛  表 これよりS含有量の低い高純度鉄を得ることが可能であ
り、この高純度鉄を用いてFe−3i −At合金を上
記と同様なフラックス精錬によシ溶製した。
Table 1 It is possible to obtain high-purity iron with a lower S content than this, and using this high-purity iron, Fe-3i-At alloy was produced by flux refining in the same manner as above.

このときのFe−8i−A1合金のSおよび0の含有量
を分析した結果を第2表に示す。
Table 2 shows the results of analyzing the S and 0 contents of the Fe-8i-A1 alloy at this time.

第   2   表 このようにしてFe−8t−At合金を溶製すると2合
金中に残存するS量を3 ppm以下にすることが可能
である。
Table 2 When the Fe-8t-At alloy is melted in this manner, it is possible to reduce the amount of S remaining in the two alloys to 3 ppm or less.

第3表にこのようにして作製した種々の合金の組成、磁
気特性および耐酸試験の結果を示す。なお合金1〜4は
比較例でS量を3 ppmに調整しなかったものであり
9合金5〜21が本発明の実施例である。試験片の寸法
は下記のとおシであシ。
Table 3 shows the composition, magnetic properties, and acid resistance test results of various alloys thus prepared. Alloys 1 to 4 are comparative examples in which the S amount was not adjusted to 3 ppm, and Alloys 9 and 5 to 21 are examples of the present invention. The dimensions of the test piece are as shown below.

各試験片は所定の熱処理を施したのち磁気特性の測定、
および耐酸試験に供された。
After each test piece was subjected to prescribed heat treatment, magnetic properties were measured.
and was subjected to acid resistance tests.

磁気特性測定用試験片は、外径8咽、内径4 wn p
厚さ0.2mで耐酸試験用試験片は直径30鱈、厚さ5
ffl+++であった。
The test piece for measuring magnetic properties has an outer diameter of 8 mm and an inner diameter of 4 mm.
The test piece for acid resistance test is 0.2m thick and has a diameter of 30mm and a thickness of 5mm.
It was ffl+++.

耐酸試験は、20チ塩酸水溶液(30℃)を用い・これ
に1分間浸漬する方法とし、評価方法はlz2あだシに
生じる孔食数(N)の比較とした。
The acid resistance test was conducted using a 20% hydrochloric acid aqueous solution (30° C.) and immersed in this for 1 minute, and the evaluation method was a comparison of the number of pitting corrosion (N) occurring in lz2 adashi.

第3表よシ明らかなごとく、S量が3 ppmを越えて
いる場合は、 TiあるいはTiおよびRuを添加して
も1cm2あたりの孔食数(N)は著しく多いが、S量
を3 ppm以下にするとNは2個以下と大幅に改善さ
れている。例えば1合金番号12 、14 、16.2
1はS量が3ppm以下であシ、さらにTiとRuを添
加することによF) 1crn2あたシの孔食数はOと
なシ。
As is clear from Table 3, when the amount of S exceeds 3 ppm, the number of pitting corrosion (N) per cm2 is extremely high even if Ti or Ti and Ru are added. When it is set below, N is significantly improved to 2 or less. For example, 1 alloy number 12, 14, 16.2
1 has an S content of 3 ppm or less, and by adding Ti and Ru, the pitting corrosion number of 1crn2 becomes O.

20チ塩酸水溶液(30℃)に1分間の浸漬では全く腐
食されないことがわかる。
It can be seen that immersion in a 20% hydrochloric acid aqueous solution (30° C.) for 1 minute caused no corrosion at all.

この結果、Fe−8t−A7合金にTiを0.1〜1.
0%含有し、かつ合金中に残存するS量が3 ppm以
下であることが耐酸性を改善するだめに最適であること
が明らかであ!l)、4たさらにRuを0.02〜0.
5チ含有させることによシ、一層剛酸性が改善されるこ
とが明らかである。
As a result, Ti was added to the Fe-8t-A7 alloy by 0.1 to 1.
It is clear that a S content of 0% and an amount of S remaining in the alloy of 3 ppm or less is optimal for improving acid resistance! l), 4 and further Ru from 0.02 to 0.
It is clear that the acidity is further improved by containing 5%.

以上述べた如く2本発明によれば、上述のように構成し
たので耐酸性に優れ、しかも磁束密度の大きい合金を得
ることが可能である。従って1本発明による合金を磁気
ヘッド材として使用して好適である。
As described above, according to the present invention, it is possible to obtain an alloy having excellent acid resistance and high magnetic flux density since it is constructed as described above. Therefore, the alloy according to the present invention is suitable for use as a magnetic head material.

Claims (1)

【特許請求の範囲】 1、重量%でSt 4〜12チ、At3〜8%、 Ti
O,1〜1.0%および残部が実質的にFeからなる合
金であって2合金中に残存するS量が3 ppm以下で
あることを特徴とする耐食性高飽和磁束密度高透磁率合
金。 2、重量%でSi 4〜12%、At3〜8%、 Ti
O,1〜1.O% 、 Ru0.02〜0.5%および
残部が実質的にFeからなる合金であって2合金中に残
存するS量が3 ppm以下であることを特徴とする耐
食性高飽和磁束密度高透磁率合金。
[Claims] 1. St 4-12% by weight, At 3-8%, Ti
1. A corrosion-resistant, high saturation magnetic flux density, high magnetic permeability alloy, characterized in that the alloy consists of 1 to 1.0% O, and the balance substantially Fe, and the amount of S remaining in the two alloys is 3 ppm or less. 2. Si 4-12%, At 3-8%, Ti in weight%
O, 1-1. An alloy with high corrosion resistance, high saturation magnetic flux density, and high permeability, characterized in that the alloy consists of O%, Ru0.02 to 0.5%, and the balance substantially Fe, and the amount of S remaining in the two alloys is 3 ppm or less. magnetic alloy.
JP57184694A 1982-10-22 1982-10-22 Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability Granted JPS5976855A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57184694A JPS5976855A (en) 1982-10-22 1982-10-22 Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57184694A JPS5976855A (en) 1982-10-22 1982-10-22 Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability

Publications (2)

Publication Number Publication Date
JPS5976855A true JPS5976855A (en) 1984-05-02
JPS6150133B2 JPS6150133B2 (en) 1986-11-01

Family

ID=16157736

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57184694A Granted JPS5976855A (en) 1982-10-22 1982-10-22 Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability

Country Status (1)

Country Link
JP (1) JPS5976855A (en)

Also Published As

Publication number Publication date
JPS6150133B2 (en) 1986-11-01

Similar Documents

Publication Publication Date Title
JPS5976855A (en) Corrosion resistant alloy having high saturation magnetic flux density and high magnetic permeability
US3837844A (en) Wear resisting magnetic material having high permeability
JPS58204155A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPS58204153A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPS58204154A (en) Corrosion-resistant alloy with high saturation magnetic flux density and high magnetic permeability
JPS6128740B2 (en)
JPH0352530B2 (en)
JPS6151024B2 (en)
KR900002758B1 (en) Amorphous alloy for magnetic heads
JPS6089552A (en) Wear-resistant alloy having high magnetic permeability
JPS625973B2 (en)
JPS6089547A (en) Corrosion-resistant alloy having high magnetic flux density and high magnetic permeability
JP2862985B2 (en) Magnetic shield parts
JPS59170234A (en) Magnetic alloy
JPS5927371B2 (en) Fe↓-Co magnetic material
JPS6034627B2 (en) Corrosion resistant high permeability alloy
JPS6046341A (en) Magnetic alloy
JPS58123854A (en) Corrosion resistant alloy with high magnetic flux density
JPH01252756A (en) Ni-fe-cr soft magnetic alloy
JPS62222B2 (en)
JPS58126957A (en) Corrosion-resistant alloy with high magnetic permeability
JPS5922781B2 (en) Wear resistant high permeability high saturation magnetic flux density alloy
JPS6154102B2 (en)
JPS645096B2 (en)
JPS58104149A (en) High magnetic permeability alloy